Tool-Based Specification of Visual Languages
and Graphic Editors

Magnus Niemann and Roswitha Bardohl

Department of Computer Science
Technische Universitat Berlin
{maggi,rosi}@cs.tu-berlin.de

Abstract In this contribution we introduce GENGED, an environment
which is used to interactively specify and generate syntax-directed editors
for visual languages.

In analogy to textual languages a visual language is specified by both, an
alphabet and a grammar. Hence, the GENGED environment provides an
Alphabet Editor and a Grammar Editor, respectively. The grammar rules
defined using the Grammar Editor specify not only language-generating
rules but additionally the editing commands of the Graphic Editor for
the specific visual language. The language-specific Graphic Editor then
can be used in various environments to allow for syntax-directed drawing
of diagrams.

1 Introduction

Visual languages are everywhere! Since often a graphical description of a problem
or a model provides more readability and takes less space than a textual one,
diagrams are used to visualize complex facts. To support the communication
within larger communities, diagrams need some syntax and semantics to be
understood by all members. In analogy to textual languages (natural but also
formal ones) we can summarize syntactical and even semantical information in
diagrams.

The graphical capabilities of today’s computer systems permit the construc-
tion of diagrams completely with a computer, like it is done in architecture and
electrical engineering. Nowadays, diagrams are additionally used in computer
science for modeling and programming of complex systems. Such diagrams con-
cern visual languages. It depends on the purpose of the visual language whether
it is called wvisual modeling language or visual programming language. Visual
modeling languages used for software engineering are, e.g., the Unified Modeling
Language (UML) [Rat98] and statecharts [[Har87]. Without a doubt, there are
needs for editors to draw diagrams in those languages. Furthermore, in order
to state about software quality and correctness it is important to draw correct’
diagrams.

! Diagrams can be correct with respect to some formal specification.

S. Graf and M. Schwartzbach (Eds.): TACAS/ETAPS 2000, LNCS 1785, pp. 456-470, 2000.
© Springer-Verlag Berlin Heidelberg 2000

Tool-Based Specification of Visual Languages and Graphic Editors 457

The problem with existing tools and editors for, e.g., software development
(Rational Rose, Statemate, etc.) and also with so-called visual programming
environments (Visual Basic, Delphi, etc.) is that the visual means are tightly
integrated in the visual environment. Re-implementation is necessary whenever
the concepts of a visual language or the basic visual means change. The GENGED
environment [Bar00,BNS00] on the other hand permits the easy and interactive
definition of arbitrary Graphic Editors for visual languages?.

There are two major ways to build an editor for a visual language according
to some specification: The first way is to take a simple graphical editor with
which some kind of diagrams based on graphical primitives (like line, rectangle,
circle etc.) can be drawn. This can be either some existing vector graphics editor
or a slightly modified editor adapted to the symbols we use in our language. To
check for syntactical correctness of a drawn diagram we will have to do some
scanning- and parsing-like operations on the diagram according to a graphical
syntax given in some way. We will denote those editors as freehand editors. The
second way is to provide the user drawing a diagram with only the operations
(insert a symbol, remove a symbol) with which he or she is “forced” to draw
syntactically correct diagrams. That circumvents the syntax checking but adds
more restriction to the user of such an editor. These editors will be called syntaz-
directed editors.

The path we choose in the GENGED environment is the second one, i.e., we
consider syntax-directed editors. We do this because we can provide the designer
of a visual language with powerful means to write grammars — in analogy to for-
mal language grammars — with which we then generate a Graphic Editor for this
language. So our environment can be used to specify existing visual languages like
graph-like class diagrams occurring in the UML or box-like Nassi-Shneiderman
diagrams [NS73], but also to construct completely new visual languages from
scratch.

This presentation is built as follows: We start by giving an informal definition
about the concepts of visual language specifications underlying the GENGED
environment in section 2. For illustrational reasons we use some features of the
well-known visual language of class diagrams [Rat98]. In section 3 we introduce
the GENGED environment which is elucidated by screenshots. Some related
approaches concerned in generating editors from visual language definitions will
be mentioned in section 4. Concluding remarks will be made in section 5.

2 Concepts of Visual Language Specifications

When we take a closer look on two-dimensional diagrams following a certain
specification there are two major parts we have to consider. On one hand we
have some graphical symbols like classes or associations in an UML class diagram
(see fig. 1 (a)). On the other hand there are spatial relations such that a symbol

2 Research is partially supported by the German Research Council (DFG), and the
ESPRIT Basic Research Working Group APPLIGRAPH

458 Magnus Niemann and Roswitha Bardohl

must be aligned with another one or, more precisely, that an association arrow
must start at the border of a class symbol (see fig. 1 (b)).

Rectangle Rectangle
+origin:Point 1 groups 1.* +origin:Point i groups 1.*
+width:int L +width:int
+height:int +height:int
+move(p:Point) +move(p:Point) anchorBorder
+resize(w:int, h:int) +resize(w:int, h:int) constraint
Class Symbol Association Symbol from: Association -> Class

(a) (b)

Figurel. Symbols (a) and connections (b) of class diagrams

In formal textual languages, relations between symbols like “follows” are not
described explicitly in an alphabet. However, in analogy to formal languages,
for a visual language we first need an alphabet over which sentences, namely
diagrams, can be constructed. In the GENGED approach, an alphabet keeps all
the information about the graphical symbols and furthermore, the possible rela-
tions between symbols. We will denote those relations as connections because we
consider not only spatial relations like the anchorBorder constraint in figure 1
(b) but additionally the corresponding underlying structural relationships from:
Association — Class. These structural relationships are used to express the
logical meaning of a diagram. E.g., according to the UML specification, it is not
allowed that an association symbol is “dangling” as illustrated in figure 1 (b).
The end of the association arrow has to be connected with a class symbol, too.
In order to avoid such incorrect constellations, a second structural relationship
like to: Association — Class has to be defined together with suitable spatial
relations. Both connections (from, to) then ensure that an association symbol
is always connected with class symbols.

It is not sufficient to construct diagrams from an alphabet only. And addi-
tionally, it is not sufficient to generate a specific Graphic Editor where one can
arbitrarily insert and remove symbols and connections. In this case there will
be diagrams with illegal syntactical constellations. Like in formal languages, we
have to give some rules to define insertion and deletion of symbols and implicitly
the corresponding connections. The rules together with a start diagram (which
is analogous to a start sentence in formal languages) form a grammar. The gram-
mar rules are used as editing operations on the start diagram?® — so we will not
only give language-generating rules, but also editing rules allowing for changing
or deleting symbols and connections in a language-specific Graphic Editor.

The alphabet and the grammar of a visual language establishes a visual lan-
guage specification over that diagrams can be edited. These concepts are based
on the well-established theory of algebraic graph transformation that is fully
described in [Bar00]. In the following we do informally explain these concepts
which are implemented in the GENGED environment.

3 In fact this will be done in the GENGED environment later on.

Tool-Based Specification of Visual Languages and Graphic Editors 459

2.1 The Alphabet

An alphabet comprises a set of symbols and a set of connections. From the
graphical point of view, symbols are expressed by sets of graphical primitives,
and connections are expressed by sets of graphical constraints.

Primitives Graphical primitives are simple graphics like lines, rectangles, cir-
cles, etc. They all have a location in a two-dimensional space and some properties
like width, height, color, starting point etc.

Constraints Graphical constraints denote spatial relations between graphics.
One constraint may concern to one or more graphics. A constraint is given by
a set of equations and inequalities over the graphic’s properties. Some examples
for constraints are given in figure 2. A graphically correct diagram is a diagram
where all constraints are satisfied. So we have to make sure that the symbol’s
properties like size and location are chosen in a way that the corresponding
constraints are satisfied. This can be achieved using a constraint solver.

above inside rightOf anchorRight
[obj1, obj2] [obj1, obj2] [obj1, obj2] [line, obj]

line n
- l

Figure2. Constraint examples

Symbols A symbol consists of a certain symbol name and a symbol graphic.
This graphic is a grouping of several graphical primitives. The grouping is defined
by graphical constraints like that of figure 2. Nevertheless, each symbol graphic
consists of a box enclosing the corresponding primitives. This box can be treated
like a common graphical primitive.

Connections A connection is defined between two symbols with respect to the
symbol names and the symbol graphics. According to the symbol names it is
a directed connection where one symbol name is in the source and the other
one is in the target of the connection (see fig. 1 (b)). Note that due to the
underlying theory [Bar(0] the insertion of a directed connection on the instance
level requires for a symbol that is in the source of the connection the presence
of a symbol that is in the target such that the connection is correctly defined.
We will call this property “structural correctness”. In addition to a directed
connection, according to the structural relationship a connection is defined by a
set of constraints between the involved symbol graphics.

Data Attributes Some symbols need attributes we cannot handle in a purely
graphical way. Such attributes are e.g., class names or association cardinalities
as shown in figure 1. Data attributes can be strings, integers, lists or any other

460 Magnus Niemann and Roswitha Bardohl

well-defined* datatype. Every data type has a set of operations (like append:
Stringlist String — StringList) which can be used to code attribute
changes (renaming, increasing counters and the like) into our rules. This goes
beyond the capabilities of graphic editors which allow only the use and the sim-
ple renaming of strings. Nevertheless, each datatype must have a certain layout
that depends on the specific datatype. For strings, e.g., the layout information
includes text size and text font.

2.2 The Grammar

With the means to describe the graphical structure of diagrams we will now
add the concepts used to construct syntactically correct diagrams. This is made
possible by the grammar that is based on the language-specific alphabet. The
grammar is defined by a start diagram and a set of rules. The rules are not re-
stricted to be context-free; they are context-sensitive and may be enhanced with
some application conditions. Moreover, the rules define the editing commands
of the aimed Graphic Editor that is generated from the visual language specifi-
cation consisting of an alphabet and a grammar. These rules can be applied to
a given start diagram.

Start diagram A start diagram comprises symbols and connections that are
uniquely instantiated from the alphabet. Due to the alphabet, each symbol con-
sists of a certain symbol name and a symbol graphic, probably some symbol
constraints. Each connection is defined by a directed connection between the
involved symbol names and some constraints between the corresponding symbol
graphics.

Rules and Rule Application A visual language rule consists mainly of a left
hand side (LHS) and a right hand side (RHS). A mapping of symbols from the
LHS to the RHS (see upper part of fig. 3) indicates that the mapped symbols
are preserved when the rule is applied to a given diagram. The connections are
mapped implicitly.

Applying a rule to a given diagram, the symbols of the LHS have to be
mapped to the symbols of the diagram we want to transform. This mapping
is called match. The connections are mapped implicitly if there are some. This
implicit mapping is called “match completion”.

The RHS of a rule contains another diagram comprising all the elements
which persist through the transformation (namely those which are mapped from
the left to the right) and all elements which are added through the transforma-
tion. The elements (symbols and connections) which appear in the LHS but not
in the RHS will be deleted from the diagram where the rule is applied to.

Figure 3 illustrates the application of the rule that allows for the insertion
of an association symbol. The two class symbols of its LHS are mapped to the

4 Well-defined in GENGED means that the attribute can be handled like a “black box”
which can be drawn somewhere in the diagram.

Tool-Based Specification of Visual Languages and Graphic Editors 461

LHs .-~ -~ “mappings " ~._RHS
= ~ a4 4
—
' N Association-1
Class-1 Class-2~ Class-1 Class-2
" match match -« _
v - Di bef
GroupObject Shape lagram before
+origin:Point +origin:Point rule application
+elements:Vector .
+move(p:Point)
+move(p:Point)
Class-1 Class-2

Figure3. Example rule InsertAssociation and its application to a diagram

class symbols of the diagram. Due to the mappings, the transformation process
inserts the association symbol between these two class symbols. Note that it is
also conceivable to map both class symbols of the rule’s LHS to one class symbol
of the diagram.

Negative Application Conditions Rules like that of figure 3 are sometimes
not sufficient to describe the complete syntax of a visual language and the editing
commands of the aimed Graphic Editor. Therefore, rules can be enhanced with
negative application conditions (NACs) expressing that some constellations must
not occur in the diagram where the rule is applied to. So one of our rules consists
of a LHS, a RHS, a mapping from the LHS to the RHS and a (possibly empty)
set of NACs, each one with a mapping from the LHS into the NAC diagram.
The mappings into the NACs deliver the connection for the conditions.

In order to illustrate NACs let us have a look to figure 4 showing the rule for
deleting a class symbol. This rule is enhanced with two NACs stating that the
class symbol that is to be deleted is not connected with an association symbol,
neither by the structural from connection nor by the to connection. For the
application of a rule with NACs, we have to check whether one of the NACs can
be satisfied after matching the LHS’ elements to a diagram. If this is the case,
the application will not take place.

NAC1

LHS RHS

~-----

A iation-1 - - -- 4
Class-1 ssoctation Class-2 NAC -—
mappings _ - -

NAC2 L i Class-1

1 Association-1

Class: Class-2

Figured4. Rule with negative application conditions

462 Magnus Niemann and Roswitha Bardohl

Assuming the rule of figure 4 without any NACs. We have to mention that the
application of such a rule would lead to the deletion of all adherent association
symbols due to the from and the to connections defined for the alphabet. This
behavior is probably not desired which is the reason for defining the NACS.

Data Attributes and Rule Parameters Until now we have presented rules
without data attributes for symbols, so in the examples there have been no
association cardinalities nor class names. Data attributes may appear in the LHS,
RHS and in the NACs, namely as variables, constants or complex expressions
that are defined for the corresponding datatypes. In contrast to the rules, a
diagram where rules can be applied to, comprises constants only.

Rule parameters allow for the external definition of data attributes. A rule
parameter consists usually of a variable and a datatype. The rule is applied with
user-defined values for the rule parameters. Then, the variables take the role
of matched variables, i.e., they are matched with a constant. One example is
given by figure 5 showing the rule for the insertion of a class symbol. The rule
comprises a rule parameter with the variable c¢n of type String. This variable
occurs in the NAC as well as in the RHS of the rule. Applying this rule, the
user is asked to define a class name for the variable that is substituted by the
name. Hence, the NAC states that the class symbol with this name must not be
existent in the diagram where the rule is applied to.

InsertClass (cn: String)

RHS

cn: String cn: String

Class-1 Class-1

Figure5. Rule for inserting a class name

An example for complex expressions is given by figure 6. Each class symbol
comprises a method list (modeled by the datatype StringList) that is connected
to the lower rectangle of a class symbol. The rule that allows for adding a method
to the method list of a class symbol is given by figure 6. It contains a variable
for the user-defined method in its rule parameter. In its LHS the variable for
the method list is illustrated together with the datatype. This variable together
with the rule parameter variable are part of the available operation add denoted
in the RHS of the rule. The operation is executed when the rule is to be applied
to a given diagram. Therefore, the user is forced to define a concrete method as
described above.

AddMethod (m:String)

RHS

methods:StringList append(methods, m): StringList

Class-1 Class-1

Figure6. Rule for adding methods to the method list

Tool-Based Specification of Visual Languages and Graphic Editors

Until now we have suggested the most important concepts for visual language
specifications and editing of diagrams. These concepts are implemented in the

GENGED environment that is explained in the following section.

3 The GenGEd Environment

The GENGED environment comprises two major components: the Alphabet Fd-
itor and the Grammar Editor (see fig. 7), each editor corresponds to the respec-
tive part of the visual language, namely the alphabet and the grammar. To assure
the graphically correct drawing of diagrams both editors use the constraint solver
PARCON [Gri96]. The transformation of diagrams via rule application is done

by the graph transformation system Acc [TER99].

Alphabet Alphabet Grammar | VL Specification | Graphic
Editor ———— .
Editor Editor
Symbol | Connection
Editor Editor
Tool Level
Z
AGG
Graph Transformation System
PARCON
Constraint Solver .
Machine Level

Figure7. Overview about the GENGED environment

Simply speaking, the specification of a Graphic Editor for a visual language

using GENGED works like this:

1. We define the symbols and connections of a specific visual language using

the Alphabet Editor.

2. The final alphabet is taken as an input to the Grammar Editor which then
generates simple insertion/deletion rules. Those rules are to be used (in the
notion of editor commands) to construct more complex visual language rules

and to define a start diagram for the visual language.

3. The final visual language specification, consisting of the alphabet, the visual
language rules and the start diagram, are then fed into a parameterized
Graphic Editor. The user-defined editing commands of this editor (“insert”,

“delete” etc.) are built from the grammar rules.

The GENGED environment is implemented in Java, also is the AGG system.
Because the PARCON constraint solver — implemented in Objective-C — is only
available for Linux and Solaris, GENGED runs only on these two platforms. A

prototype is available for download at

http://cs.tu-berlin.de/ genged.

http://cs.tu-berlin.de/~genged

464 Magnus Niemann and Roswitha Bardohl

3.1 The Alphabet Editor

The Alphabet Editor is a bundling of two minor editors — the Symbol Editor (see
fig. 9) and the Connection Editor (see fig. 10). The Alphabet and Connection
Editors feature the usual GUI elements like a menu and toolbar to add symbols,
data attributes, connections and constraints and a statusbar to display various
useful information. The appearance of the editors is the same: on the left side
there is a structure display of the objects we work on showing primitives and
constraints. On the right there is a graphical display of the selected symbol
or connection. This graphical display is already constraint-based, so each added
constraint will be checked for solvability and will be visualized immediately after
creation. Both editors use a further subcomponent, the Constraint Editor.

Constraint Editor The constraint editor as shown in figure 8 is available
in both, the Symbol Editor as well as the Connection Editor. In both editors,
constraints can be defined on arbitrary primitives.

= Intern [Class)
=

Constraitd

'@ AllgnT op|Bass, Base| =
Cajsct! algns 1 tha upper sida of objact?,

"

[Type] I Objects _ Vald |
Base ChinctT 0 Clarss Roctan, -
Base Chpact) 0 Class Fectangls | - |
| Insert sakected objects | | Remove | ched
[Tok || cancsl

Figure8. The Constraint Editor

The constraint solver PARCON that is used for constraint solving permits only
the definition of very low level constraints. We have enhanced these constraints
by a high-level constraint language (HLCL). This language features extensibility,
types over the graphical primitives and built-in definitions for user dialogs. Here
is an example for an above-Constraint taken from the extendable HLC database:

constraint Above(Base a, Base b) {
Dialog(a, "English", "Objectl");
Dialog(a, "Deutsch", "Objekti");
Dialog(b, "English", "Object2");
Dialog(b, "Deutsch", "Objekt2");
Description("English", "Objectl lies above object2.");
Description("Deutsch", "Objektl liegt \"{ul}ber Objekt2.");
a.lt.y < b.1t.y - a.h; }

The graphical attributes of the primitives being part of the constraint (width,
height, x/y-location, etc.) can be accessed using a path notation. The HLCL is
easily editable and extendable by editing a simple text file.

Tool-Based Specification of Visual Languages and Graphic Editors 465

All constraints we define in one of the GENGED Alphabet Editors are imme-
diately applied to the symbol(s). When the user scales or moves single objects
in the display all constraints are automatically solved, which leads possibly to
a new arrangement of the whole graphic in the display. Constraints which are
unsolvable will be marked for overworking.

Symbol Editor The Symbol Editor is shown in figure 9. It works similar to
well-known vector graphic editors except that the grouping of symbols is han-
dled as described in section 2 — using constraints to connect the primitives in
a graphic. Implemented primitives available are lines, polylines, bezier curves,
rectangles, ellipses, images (GIF/JPEG), text, invisible boxes (which can serve
as placeholders) and connection points which can be used to define complex
connections in the Connection Editor. The primitives’ properties like color, line
width or text properties can be edited.

= Alphabet Editor 1]
Fle Edt Wiew Toos Exiras Hep

D@ Smiea [» - [lals 5

23 Symbole

g o ™ 53 ED = = =]
o @ Assaciatian !|ﬁ$ |||||||||I|||||||||I||.1||||||I||||||||||||||I|||||||‘
¢ @ Class [EAD

O Fectangle .

O Rectangs! [=1|ENE

O Recangied RIET|
T Intemal| Class)
& AlgnLemi[Rectangle 1, Rectanglea], Fefl | 8]SS

B

CANERPANE]

0
& MinSize| Fectangle2, 4000, 3000)
& sameWidihi[Rectangle 1, RactangleZ],
2 Datatypas
& D Assachama
& D Atwlist
& D Clasahame
& D MefodList

ERNNRNRAE]

v
| IBAEEEE]

?
|

Figure9. The Alphabet Editor with activated Symbol Editor

Data attributes appear as independent graphical objects. From the constraint
view they are just “boxes with something in it”. Each datatype is implemented
by a unique Java class. Similar to a JavaBean, the datatype class has to provide
methods for drawing the attributes and for changing the properties (like text
font, text size or, for a list of strings, the arrangement of text elements) either
interactively (using an editing dialog) or by calling a changing method. Other
methods can be used to build complex Java expressions which will be evaluated
during rule application (see section 3.2).

Currently implemented are the classes StringDT, StringListDT, IntegerDT
and FloatDT. Using the given interface for datatype classes and the existing

implementations as templates, the designer of a visual language may add own
datatype classes.

Connection Editor Concerning the constraint definitions, the Connection Ed-
itor as illustrated in figure 10 works in just the same way as the Symbol Editor.

466 Magnus Niemann and Roswitha Bardohl

In contrast to the Symbol Editor, we can select any two symbols as source and
target of the connection that is to be defined. Again the Constraint Editor is
used to define constraints between the primitives of the involved symbol graph-
ics. Note that the connection according to the structural relationship connects
two symbols (namely the symbol names). In contrast to the concepts, in the
current implementation the connection constraints can be defined between the
primitives only, and not between the boxes enclosing the symbol graphics.

-& Alphabet Editor BEE
Fl¢ Edt Miew Extas Hep
Nia [1nnd = RE B
i 1/ I N ST P P TTUNT: YT TN, /PP A
o B ahlame &l =
& % chame

& @ Assodation

*@Cass
¥ @ Constiants
B AnchorStanFaintCrighyLine, Rectan
- 5 riist
b1

Ll B B B

"o s ||
[[[[nass 1Bz

Figurel0. The Alphabet Editor with activated Connection Editor

3.2 The Grammar Editor

The behavior of the Grammar Editor (see Fig. 11) is slightly different from the
Alphabet Editor because we use instances of the already defined symbols and
connections to generate simple editing rules. When we start the specification of
a new visual language grammar, we are first asked to give an alphabet.

Simple Rules and Structural Correctness From the alphabet, some simple
rules are generated that are the editing commands of the grammar editor. These
rules reflect the structure of the alphabet in the sense that they are “struc-
turally correct”. This property has been described in section 2 when we talked
about connections. This means that on the one hand every single rule diagram is
structurally correct and that on the other hand every rule does a ” ‘structurally
correct”’ transformation, i.e. correct diagrams are transformed into correct dia-
grams. An example for a generated rule InsertAssociationis given in figure 3.
Note that some of these automatically generated rules may be already a rule of
the intended grammar.

Data Attributes and Rule Parameters For the data attribute part of the
visual language specification we have means to define rule parameters as well
as to define and change the expressions for the transformation of datatypes.
Because of the data attributes belonging to Java classes, the attribute expressions
depicted in section 2 are in fact Java expressions which are evaluated to get an

Tool-Based Specification of Visual Languages and Graphic Editors 467

object of the corresponding data attribute class. For example, the expression on
the right hand side in figure 6 will look like this: methods.append (m). Applying
this rule to a given diagram, the user is first asked to match the class symbol of
the rule’s LHS to one class symbol in the diagram. Then, the editor window for
the data attribute StringDT (the rule parameter) will pop up. When the user
has given a value for the parameter, the expression on the RHS will be evaluated
during transformation. In this example, the user-defined method is added to the
method list of the class symbol.

The Graphical User Interface The Grammar Editor is shown in figure 11.
On the left hand side there is a structure view of the grammar which contains
all the names of the automatically generated rules, the start diagram and the
rules we build using the Grammar Editor. The names of NACs which may occur
in a rule are written below the rule names. On the right hand side we have two
parts: The upper part shows the LHS and RHS of a rule which will be used
for transformation. The NACs (selected in the structure view) can be displayed,
too. The lower part is the work display: Here we built the LHS and RHS (or
LHS and a NAC respectively) of a new rule, add mappings between the two rule
sides and edit the rule parameters.

e Ba
File Edit Match Options

[Di@E e % (B8 T8 +=% 3w Al morphisms on|

1. CD.alp 1| Insert Association()

* & Rules ¢ Insert Association:LHS | Insert Association:RHS |
R Insert Class ' — = = = - . e 7 .
* R Delate Class I P T T P O | P P PO P e |
R Insert ClassName 1 . ramciE =
R Insert AttrList rarabiare. E —
R Insert MathodList i | octssheme SIS
R Change ClassHamd . E
R Change AttrList - S . [e Assochipns: st
R Change MethodList E| »
n i MathisdLat B
2 murAtsonmen E -
R Insert AssocName . - = i 3 i
R Change AssocNamy = | |2 -
R InsertNamedAssoc v | o — oL
= [Diagrams =¥
InsertNamedAss ocLHS InsertNamedAss ocRHS |

Bt ™ o ED E3
TN T AT T T AR TN RNl TR ET)

Bt] W] = T
v e el

Clasrane:

SIEW x|]

Figurell. The Grammar Editor

There are two toolbars: The main toolbar (below the menu) is used to add and
delete rules and NACs and to provide save/load and other main functionality.
Furthermore, the main toolbar is used to define a match from the rule which is
to be applied onto one of the work diagrams and to trigger the transformation.
The smaller toolbar (in the work display) provides functionality to add/remove
mappings in the work rule and to edit the rule parameters.

Because the graphical displays which are used in the Grammar Editor are de-
rived from those in the Alphabet Editor, they provide constraint solving, moving
and scaling of symbols and also single graphical primitives in the same fashion.

468 Magnus Niemann and Roswitha Bardohl

3.3 Generating a Graphic Editor

The final step is to export a set of rules and a start diagram into a visual
language grammar®. Then, the Graphic Editor that is a parameterized editor
takes this grammar and uses the grammar rules to provide the language-specific
editing commands. The Graphic Editor for our simple class diagram language is
is illustrated in figure 12.

W= = Diagram Editor =E0 0
File

Diagra - Undo

a0 240 00 o =0 AB0
s Lowwvwvoralonpoprneibornoornnelonvnrireloornenaiiluiieersl |
Finish

pt
Lt ST

Insert ClassName — groups
Insert AttrList +origin:Point

Insert MethodList +elements:Vector
Change ClassName Z

Change AttrList
Change MethodList
Insert Association

ey R |
Insert AssocName ECtang e
Change AssocName
Insert Generalization
Delete Generalization
Insert Subclass

R e H et e eaaa s s sa T s e bt Tkl

Y

GroupObject Shape

B Bonn i #®

x
IENNENNN SRR NEN

Figurel2. A Graphic Editor for simple class diagrams

In the current implementation, the Graphic Editor allows for syntax-directed
editing only. Nevertheless, each edited diagram comprises two levels of descrip-
tion. These are the logical structure of a diagram and its layout. The logical
structure can be used for further extensions as, e.g., for code generation.

4 Related Work

Many different tools have been proposed supporting visual programming. The
reader is referred to [Shugs,Cha90,BGLI5] giving a broad overview. However,
most existing tools are developed for specific application purposes. Moreover,
the tools allow for visual programming and not for modeling languages like
GENGED. This means that the visual means are tightly integrated with the
corresponding programming environment. In contrast to such environments,
GENGED is a generic framework based on a user-defined visual alphabet and a
grammar.

The purpose of GENGED is the visual definition of visual languages. From the
definition a language-specific Graphic Editor is generated. Some other

5 The alphabet is added automatically, so in fact we export a visual language specifi-
cation.

Tool-Based Specification of Visual Languages and Graphic Editors 469

approaches with the same purpose are to mention. These are e.g.,
PROGRES [SWZ99], DIAGEN [MV95], and VLcc [CODLI5]. We have to mention
that a comparison between GENGED, PROGRESand DIAGEN according to the
underlying theory as well as the tools is given in [BTMS99]. A brief summary is
given below.

PROGRES is a graph-based framework allowing for programming with rules
and for the generation of prototypes. The PROGRES environment offers assistance
for creating, analyzing, compiling, and debugging graph transformation specifi-
cations. Outside the PROGRES environment such a specification can be executed
in a stand-alone prototype. In PROGRES, visual languages can be specified using
the visual means of graphs. It is not possible to specify a visual language under
consideration of the appearances of symbols as it can be done using GENGED.

D1AGEN is a diagram editor generator. The input of the generator is a textual
specification of a visual language. In general, visual statements are difficult to
describe textually because of their graphical structure. This is due to the fact
that multi-dimensional representations have to be coded into one-dimensional
strings. Moreover, the DIAGEN approach is concerned with a restricted kind of
context-sensitive grammars. Hence, the class diagram language, e.g., cannot be
specified using the DIAGEN approach [BTMS99].

G.Costagliola et al. introduced the VLcC-environment [CODLI5] supporting
the visual definition of visual languages, too. A symbol editor can be used to
define terminal and non-terminal symbols. The defined symbols are then avail-
able within a production editor allowing the definition of context-free positional
grammar rules. In contrast, we use grammars which are not restricted to be
context-free.

5 Summary

In this contribution we informally introduced visual languages as they can be
defined using the GENGED environment. Similar to textual languages, a vi-
sual language is defined by an alphabet and a grammar. Correspondingly, the
GENGED environment comprises an Alphabet Editor and a Grammar Editor.
These editors as well as a generated Graphic Editor are described. An in-depth
description of the design and the implementation of the environment can be
found in [Sch99] and [Nic99], the underlying theory is depicted in [Bar00].
Despite the prototypical character of the environment, there are several case
studies. These are restricted kinds of visual languages like statecharts, class di-
agrams, sequence diagrams and Nassi-Shneiderman diagrams. Some more are
yet to come. Thereby, we investigate how to integrate several visual languages
similar to the UML in order to generate not only a Graphic Editor but a visual
environment. Future work is concerned with a major overhaul of the Grammar
Editor, simplifying the rule definition. Another idea is to change the generated
Graphic Editor into a JavaBean, thus providing other tools (e.g., the AGG sys-
tem) with a generic graphic display and making the underlying structure of a
diagram accessible. We are also planning to allow for more freedom in diagram

470 Magnus Niemann and Roswitha Bardohl

editing, combining syntax-directed and freehand editing. The latter one is con-
cerned with parsing.

References

Bar00.

BGL95.

BNSO00.

BTMS99.

Cha90.

CODL95.

Gri96.

Har87.

MV95.

Nie99.

NS73.

Rat98.

Ro0z99.

Sch99.

Shu88.

SWZ99.

TER99.

R. Bardohl. Visual Definition of Visual Languages based on Algebraic Graph
Transformation. PhD thesis, Technische Universitat Berlin, Berlin, 2000.
457, 458, 459, 469

Margaret M. Burnett, Adele Goldberg, and Ted G. Lewis, editors. Visual
Object-Oriented Programming: Concepts and Environments. Manning Pub-
lications Co., Greenwich, 1995. 468

R. Bardohl, M. Niemann, and M. Schwarze. GENGED — A Development En-
vironment for Visual Languages. In Application of Graph Transformations
with Industrial Relevance, LNCS. Springer, 2000. 457

R. Bardohl, G. Taentzer, M. Minas, and A. Schiirr. Application of Graph
Transformation to Visual Languages. In [[70299]. 1999. 469

Shi-Kuo Chang, editor. Principles of Visual Programming Systems. Inter-
national Editions. Prentice Hall, Englewood Cliffs, NJ, 1990. 468

G. Costagliola, S. Orefice, and A. De Lucia. Automatic Generation of Visual
Programming Environments. IEEE Computer, 28(3):56-66, March 1995.
469

P. Griebel. ParCon - Paralleles Losen von grafischen Constraints. PhD
thesis, Paderborn University, February 1996. 463

D. Harel. Statecharts: A visual formalism for complex systems. Science of
Computer Programming, 8:231-274, 1987. 456

M. Minas and G. Viehstaedt. Diagen: A generator for diagram editors pro-
viding direct manipulation and execution of diagrams. In Proc. IEEE Sym-
posium on Visual Languages, pages 203-210, 1995. 469

M. Niemann. Konzeption und Implementierung eines generischen Gram-
matikeditors fiir visuelle Sprachen. Master’s thesis, Technische Universitat
Berlin, 1999. 469

I. Nassi and B. Shneiderman. Flowchart techniques for structured program-
ming. SIGPLAN Notices, 8(8), 1973. 457

Rational Software Corporation. UML — Unified Modeling Language. Tech-
nical report, Rational Software Corporation, 2800 San Tomas Expressway,
Santa Clara, CA 95051-0951, 1998. http://www.rational.com/uml. 456,
457

G. Rozenberg, editor. Handbook of Graph Grammars and Computing
by Graph Transformations, Volume 2: Applications, Languages and Tools.
World Scientific Publishing, Singapore, 1999. 470

M. Schwarze. Konzeption und Implementierung eines generischen Alpha-
beteditors fiir visuelle Sprachen. Master’s thesis, Technische Universitit
Berlin, 1999. 469

N.C. Shu, editor. Visual Programming. Van Nostrand Reinhold, New York,
1988. 468

A. Schiirr, A.J. Winter, and A. Ziindorf. The PROGRES Approach: Lan-
guage and Tool Environment. In [R0z99]. 1999. 469

G. Taentzer, C. Ermel, and M. Rudolf. The AGG Approach: Language and
Tool Environment. In [R0z99]. 1999. 463

	Introduction
	Concepts of Visual Language Specifications
	The Alphabet
	The Grammar

	The GenGEd Environment
	The Alphabet Editor
	The Grammar Editor
	Generating a Graphic Editor

	Related Work
	Summary
	References

