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Abstract. Bisimulations enjoy numerous applications in the analysis of
labeled transition systems. Many of these applications are based on two
central observations: first, bisimilar systems satisfy the same branching-
time properties; second, bisimilarity can be checked efficiently for finite-
state systems. The local character of bisimulation, however, makes it
difficult to address liveness concerns. Indeed, the definitions of fair bisim-
ulation that have been proposed in the literature sacrifice locality, and
with it, also efficient checkability. We put forward a new definition of fair
bisimulation which does not suffer from this drawback.
The bisimilarity of two systems can be viewed in terms of a game played
between a protagonist and an adversary. In each step of the infinite
bisimulation game, the adversary chooses one system, makes a move, and
the protagonist matches it with a move of the other system. Consistent
with this game-based view, we call two fair transition systems bisimilar
if in the bisimulation game, the infinite path produced in the first system
is fair iff the infinite path produced in the second system is fair.
We show that this notion of fair bisimulation enjoys the following proper-
ties. First, fairly bisimilar systems satisfy the same formulas of the logics
Fair-AFMC (the fair alternation-free µ-calculus) and Fair-CTL∗. There-
fore, fair bisimulations can serve as property-preserving abstractions for
these logics and weaker ones, such as Fair-CTL and LTL. Indeed, Fair-
AFMC provides an exact logical characterization of fair bisimilarity. Sec-
ond, it can be checked in time polynomial in the number of states if two
systems are fairly bisimilar. This is in stark contrast to all trace-based
equivalences, which are traditionally used for addressing liveness but re-
quire exponential time for checking.

1 Introduction

In system analysis, a key question is when two systems should be considered
equivalent. One way of answering this question is to consider a class of queries
and to identify those systems which cannot be distinguished by any query from
the considered class. Queries typically have the form “does a system satisfy
� This research was supported in part by the DARPA (NASA) grant NAG2-1214, the
SRC contract 99-TJ-683.003, the MARCO grant 98-DT-660, the DARPA (MARCO)
grant MDA972-99-1-0001, and the NSF CAREER award CCR-9501708.

S. Graf and M. Schwartzbach (Eds.): TACAS/ETAPS 2000, LNCS 1785, pp. 299–314, 2000.
c© Springer-Verlag Berlin Heidelberg 2000



300 Thomas A. Henzinger and Sriram K. Rajamani

a requirement specified in a given logic?” If one considers finite behaviors of
systems, then a useful model is the labeled transition graph, whose states or
transitions are labeled with observations, and the finest reasonable equivalence
on labeled transition graphs is bisimilarity [Par80,Mil89]. On one hand, no µ-
calculus query, no matter how complex, can distinguish bisimilar systems. On
the other hand, bisimilarity is not too fine for constructing an abstract quo-
tient system if branching-time properties are of interest. This is because simple
Hennessy-Milner queries, which correspond to the quantifier-free subset of the
µ-calculus, can distinguish systems that are not bisimilar.

If one wishes to consider infinite limit behaviors also, then the labeled tran-
sition graph needs to be equipped with fairness constraints. The most common
fairness constraints have either Büchi form (requiring that a transition cannot
be enabled forever without being taken) or Streett form (requiring that a tran-
sition cannot be enabled infinitely often without being taken). If we can observe
whether a transition is enabled or taken —that is, if the query logic can re-
fer to these events— then bisimilarity still captures the equivalence induced by
branching-time queries. However, if, as is often the case in system design, the
private (i.e., unobservable) part of the system state contributes both to whether
a transition is enabled and to the result of the transition, then bisimilarity is too
coarse for branching-time queries. For example, if we ask whether a system has
an infinite fair behavior along which some observation repeats infinitely often,
then the answer may be Yes and No, respectively, for two bisimilar systems,
because infinite behaviors may be identical in their observations yet different
in their fairness. (One should note that one solution, albeit a nonoptimal one,
is simply to define bisimilarity with respect to an extended set of observations
whose new elements make fairness observable. This solution is nonoptimal as the
resulting “extended-bisimilarity” relation is generally too fine: there can be sys-
tems that are not extended-bisimilar, yet cannot be distinguished by queries that
refer to the newly introduced observations in a restricted way, namely, only for
checking if an infinite behavior is fair. An example of this is given in Section 5).

It is therefore not surprising that generalized notions of bisimilarity have been
proposed which take into account fairness constraints. These notions generally
have in common that they start from a query logic, such as Fair-CTL [ASB+94]
or Fair-CTL∗ [GL94] (where all path quantifiers range over fair behaviors only),
and define the equivalence induced by that logic: two systems are equivalent
iff no query can distinguish them. Unfortunately, the resulting equivalences
are unsuitable for use in automatic finite-state tools, because checking equiv-
alence between two systems is either not known to be polynomial (for Fair-
CTL based bisimilarity) or known to be PSPACE-hard (for Fair-CTL∗ based
bisimilarity) in the combined number of states [KV96]. This is in stark contrast
to the unfair case, where bisimilarity for finite-state systems can be checked
efficiently [PT87,KS90,CPS93].

Borrowing ideas from earlier work on fair simulations [HKR97], we show that
a fair refinement of bisimilarity can be defined which (1) corresponds to a natural
query logic and (2) can be checked efficiently. Our starting point is the game-
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based view of bisimilarity. The bisimilarity of two systems can be viewed in terms
of a two-player game between a protagonist and an adversary. In each step of the
game, the adversary chooses one of the systems together with a transition, and
the protagonist must match the resulting observation by a transition of the other
system. The game proceeds either until the protagonist cannot match, in which
case the adversary wins, or for an infinite number of steps, in which case the
protagonist wins. If the adversary has a winning strategy, then the two systems
are not bisimilar; if the protagonist has a winning strategy, then the systems
are bisimilar. In the presence of fairness constraints, we generalize this game
as follows. If the bisimulation game is played for a finite number of steps, then
the adversary wins as before. However, if the bisimulation game is played for an
infinite number of steps, then the winner is determined differently. If the infinite
paths traversed in the two systems are either both fair or both unfair, then the
protagonist wins; otherwise the adversary wins. In other words, the objective of
the protagonist is not only to match observations but also to match both the
satisfaction and the violation of fairness constraints.

In Section 2, we define our notion of fair bisimilarity formally and show that
it is finer than the previously proposed notions; that is, it distinguishes states
that cannot be distinguished by Fair-CTL∗. The main benefit of our definition
is its efficient implementability in finite-state tools: it can be checked in time
polynomial in the combined number of states if two systems are fairly bisimilar
according to our definition. A tree-automata based algorithm is given in Section 3
together with its complexity analysis. In Section 4, we prove that two systems
with Büchi or Streett constraints are fairly bisimilar, in our sense, iff they sat-
isfy the same formulas of Fair-AFMC (the fair alternation-free µ-calculus). It
follows that Fair-AFMC provides an exact logical characterization and a query
language for our fair bisimilarity. Finally, in Section 5, we discuss several issues
in constructing system abstractions using fair-bisimilarity quotients.

Related work. In process algebra, several preorders and equivalences on la-
beled transition systems have been defined to account for fairness and have been
studied from axiomatic and denotational angles [BW90,HK96]. That line of re-
search usually considers fairness in the context of divergence (infinitely many
silent τ actions). By contrast, our model has no silent actions, and our notions
of Büchi and Streett fairness are inspired from ω automata. Also, our focus is
on efficient algorithms. In contrast, all fair preorders based on failures [BKO87]
and testing [Hen87,VEB95,NC95] are closely related to fair trace containment,
and the problems of checking them are hard for PSPACE.

2 Defining Fair Bisimilarity, Game-Theoretically

A (Kripke) structure is a 5-tuple K = 〈Σ, W, ŵ, R, L〉 with the following com-
ponents:

– A finite alphabet Σ of observations. Usually, we have a finite set P of propo-
sitions and Σ = 2P .
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– A finite set W of states.
– An initial state ŵ ∈ W .
– A transition relation R ⊆ W × W .
– A labeling function L : W → Σ that maps each state to an observation.

The structure K is deterministic if whenever R(w, w1) and R(w, w2) for w1 �= w2,
then L(w1) �= L(w2). For a state w ∈ W , a w-run of K is a finite or infinite
sequence w = w0 ·w1 ·w2 · · · of states wi ∈ W such that w0 = w and R(wi, wi+1)
for all i ≥ 0. If w = w0 · w1 · w2 · · ·wn then |w| is n. If w is infinite, then |w| is
ω. We write inf(w) for the set of states that occur infinitely often in w. A run
of K is a ŵ-run, for the initial state ŵ. Let σ be the a finite or infinite sequence.

A fairness constraint for K is a function that maps every infinite run of K
to the binary set {fair , unfair}. We consider two kinds of fairness constraints:

– A Büchi constraint F is specified by a set FB ⊆ W of states. Then, for
an infinite run w of K, we have F (w) = fair iff inf(w) ∩ FB �= ∅. Büchi
constraints can be used for specifying the weak fairness of transitions (e.g.,
a transition is infinitely often either taken or disabled).

– A Streett constraint F is specified by a set FS ⊆ 2W × 2W of pairs of state
sets. Then, for an infinite run w of K, we have F (w) = fair iff for every pair
〈l, r〉 ∈ FS , if inf(w) ∩ l �= ∅ then inf(w) ∩ r �= ∅. Streett constraints can be
used for specifying the strong fairness of transitions (e.g., if a transition is
infinitely often enabled, then it is infinitely often taken).

A fair structure K = 〈K, F 〉 consists of a structure K and a fairness constraint F
for K. The fair structure K is a Büchi structure if F is a Büchi constraint, and
K is a Streett structure if F is a Streett constraint. In particular, every Büchi
structure is also a Streett structure. For a state w ∈ W , a fair w-run of K is
either a finite w-run of K or an infinite w-run w of K such that F (w) = fair . A
fair run of K is a fair ŵ-run, for the initial state ŵ.

In the following, we consider two structures K1 = 〈Σ, W1, ŵ1, R1, L1〉 and
K2 = 〈Σ, W2, ŵ2, R2, L2〉 over the same alphabet, and two fair structures K1 =
〈K1, F1〉 and K2 = 〈K2, F2〉.

Bisimulation

A binary relation S ⊆ W1 × W2 is a bisimulation between K1 and K2 if the
following three conditions hold [Par80,Mil89]:

1. If S(w1, w2), then L1(w1) = L2(w2).
2. If S(w1, w2) and R1(w1, w′

1), then there is a state w′
2 ∈ W2 such that

R2(w2, w′
2) and S(w′

1, w′
2).

3. If S(w1, w2) and R2(w2, w′
2), then there is a state w′

1 ∈ W1 such that
R1(w1, w′

1) and S(w′
1, w′

2).

The structures K1 and K2 are bisimilar if there is a bisimulation S between K1

and K2 such that S(ŵ1, ŵ2). The problem of checking if K1 and K2 are bisimilar
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can be solved in time O((|R1|+ |R2|) · log(|W1| + |W2|)) [PT87]. The following
alternative definitions of bisimilarity are equivalent to the definition above.

The game-theoretic view. Consider a two-player game whose positions are
pairs 〈w1, w2〉 ∈ W1 ×W2 of states. The initial position is 〈ŵ1, ŵ2〉. The game is
played between an adversary and a protagonist and it proceeds in a sequence of
rounds. In each round, if 〈w1, w2〉 is the current position, the adversary chooses a
structure and makes a move that respects its transition relation. Then, the pro-
tagonist makes a matching move in the other structure. If the adversary chooses
to move in K1, and updates the first component w1 to an R1-successor w′

1, then
the protagonist must update the second component w2 to some R2-successor w′

2

such that L1(w′
1) = L2(w′

2). If no such w′
2 exists, then the protagonist loses.

Similarly, if the adversary chooses to move in K2, and updates the second com-
ponent w2 to an R2-successor w′

2, then the protagonist must update the first
component w1 to some R1-successor w′

1 such that L1(w′
1) = L2(w′

2). If no such
w′

1 exists, then the protagonist loses. If the game proceeds ad infinitum, for ω
rounds, then the adversary loses. It is easy to see that K1 and K2 are bisimilar
iff the protagonist has a winning strategy.

The temporal-logic view. Bisimilarity provides a fully abstract semantics for
the branching-time logics CTL, CTL∗, AFMC (the alternation-free fragment of
the µ-calculus), and MC (the µ-calculus) [BCG88]. Formally, two structures K1

and K2 are bisimilar iff for every formula ψ of CTL (or CTL∗ or AFMC or
MC), K1 satisfies ψ iff K2 satisfies ψ.

Previous Definitions of Fair Bisimulation

In the literature, we find two extensions of bisimilarity that account for fairness
constraints. The two extensions are motivated by the branching-time logics Fair-
CTL and Fair-CTL∗, which are interpreted over fair structures with the path
quantifiers being restricted to the infinite runs that are fair [CES86].

CTL-bisimulation [ASB+94]. A binary relation S ⊆ W1 × W2 is a CTL-
bisimulation between K1 and K2 if the following three conditions hold:

1. S is a bisimulation between K1 and K2.
2. If S(w1, w2), then for every periodic fair w1-run w = u0 ·u1 ·u2 · · ·un ·(un+1 ·

un+2 · · ·un+k)ω of K1, there is a fair w2-run w′ = u′
0 · u′

1 · u′
2 · · · of K2 such

that for 1 ≤ i ≤ n we have S(ui, u′
i), and for i > n there exists u ∈ inf(w)

such that S(u, u′
i).

3. If S(w1, w2), then for every periodic fair w2-run w′ = u′
0 ·u′

1 ·u′
2 · · ·u′

n ·(u′
n+1 ·

u′
n+2 · · ·u′

n+k)
ω of K2, there is a fair w1-run w = u0 · u1 · u2 · · · of K1 such

that for 1 ≤ i ≤ n we have S(ui, u′
i), and for i > n there exists u′ ∈ inf(w′)

such that S(ui, u′).

The fair structures K1 and K2 are CTL-bisimilar if there is a CTL-bisimulation S
between K1 and K2 such that S(ŵ1, ŵ2). For Büchi or Streett constraints F1

and F2, the problem of checking if there is a CTL-bisimulation between K1 and
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K2 is known to be in PSPACE. No matching lower bound is known, but the best
known algorithm has a time complexity exponential in the number of states. Two
fair structures K1 and K2 are CTL-bisimilar iff for every formula ψ of Fair-CTL,
K1 satisfies ψ iff K2 satisfies ψ [ASB+94].

CTL∗-bisimulation [ASB+94,GL94]. A binary relation S ⊆ W1×W2 is a CTL∗-
bisimulation between K1 and K2 if the following three conditions hold:

1. If S(w1, w2), then L1(w1) = L2(w2).
2. If S(w1, w2), then for every fair w1-run w = u0 · u1 · u2 · · · of K1, there is a

fair w2-run w′ = u′
0 · u′

1 · u′
2 · · · of K2 such that w′ S-matches w; that is,

|w′| = |w| and S(ui, u′
i) for all 0 ≤ i ≤ |w|.

3. If S(w1, w2), then for every fair w2-run w′ = u′
0 · u′

1 · u′
2 · · · of K2, there is a

fair w1-run w = u0 · u1 · u2 · · · of K1 such that w′ S-matches w.

Every CTL∗-bisimulation between K1 and K2 is a bisimulation between K1

and K2. The fair structures K1 and K2 are CTL∗-bisimilar if there is a CTL∗-
bisimulation S between K1 and K2 such that S(ŵ1, ŵ2). For Büchi or Streett
constraints F1 and F2, the problem of checking if there is a CTL∗-bisimulation
between K1 and K2 is complete for PSPACE. In particular, the problem is
PSPACE-hard in the combined number |W1|+ |W2| of states [KV96]. Two fair
structures K1 and K2 are CTL∗-bisimilar iff for every formula ψ of Fair-CTL∗,
K1 satisfies ψ iff K2 satisfies ψ [ASB+94,GL94].

CTL∗-bisimilarity is strictly stronger than CTL-bisimilarity [ASB+94]. For-
mally, for all fair structuresK1 and K2, if K1 and K2 are CTL∗-bisimilar, then K1

and K2 are CTL-bisimilar. Moreover, there are two Büchi structures K1 and K2

such that K1 and K2 are CTL-bisimilar, but K1 and K2 are not CTL∗-bisimilar.
This is in contrast to the unfair case, where CTL and CTL∗ have the same
distinguishing power on Kripke structures.

Our Definition of Fair Bisimulation

Let K1 and K2 be fair structures. Recall the bisimulation game played between
the adversary and the protagonist. A strategy τ is a pair of functions, τ =
〈τ1, τ2〉, where τ1 is a partial function from (W1 × W2)∗ × W1 to W2, and τ2 is
a partial function from (W1 × W2)∗ × W2 to W1. The strategy is used by the
protagonist to play a game against the adversary. The game proceeds as follows.
The game starts at some position in W1 × W2. If the game so far has produced
the sequence π ∈ (W1 × W2)∗ of positions, and 〈u, u′〉 is the last position in π,
the adversary has two sets of choices. It can move either in K1 or in K2. If the
adversary moves to w in K1, such that R1(u, w), then the first component τ1 of
the strategy instructs the protagonist to move to w′ = τ1(π, w), where R2(u′, w′),
thus resulting in the new position 〈w, w′〉. If the adversary moves to w′ in K2,
such that R2(u′, w′) then the second component τ2 of the strategy instructs
the protagonist to move to w = τ2(π, w′), where R1(u, w), thus resulting in
the new position 〈w, w′〉. A finite or infinite sequence w is an outcome of the
strategy τ if w results from letting the adversary make an arbitrary move at
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each step, and making the protagonist respond using τ in each step. Formally,
w = 〈w0, w′

0〉 · 〈w1, w′
1〉 · · · ∈ (W1 × W2)∗ ∪ (W1 × W2)ω is an outcome of the

strategy τ if for all 0 ≤ i < |w|, either (1) w′
i+1 = τ1(〈w0, w′

0〉 · · · 〈wi, w′
i〉 ·wi+1),

or (2) wi+1 = τ2(〈w0, w′
0〉 · · · 〈wi, w′

i〉 · w′
i+1).

A binary relation S ⊆ W1 × W2 is a fair bisimulation between K1 and K2 if
the following two conditions hold:

1. If S(w, w′), then L1(w) = L2(w′).
2. There exists a strategy τ such that, if S(u, u′), then every outcome w =

〈w0, w′
0〉 · 〈w1, w′

1〉 · · · of τ with w0 = u and w′
0 = u′ has the following

two properties: (1) for all 0 ≤ i ≤ |w|, we have S(wi, w′
i), and (2) the

projection w0 · w1 · · · of w to W1 is a fair w0-run of K1 iff the projection
w′

0 · w′
1 · · · of w to W2 is a fair w′

0-run of K2.

Every fair bisimulation between K1 and K2 is a bisimulation between K1 and K2.
The fair structures K1 and K2 are fairly bisimilar if there is a fair bisimulation S
between K1 and K2 such that S(ŵ1, ŵ2). In Section 3 we give an efficient (polyno-
mial in the combined number of states) algorithm to check if two fair structures
are fairly bisimilar. For two fair structures K1 and K2, we show in Section 4 that
K1 and K2 are fairly bisimilar iff for every formula ψ of Fair-AFMC, K1 satis-
fies ψ iff K2 satisfies ψ. The following propositions state that fair bisimilarity is
stronger than CTL∗-bisimilarity.

Proposition 1. For all fair structures K1 and K2, if K1 and K2 are fairly bisim-
ilar, then K1 and K2 are CTL∗-bisimilar.

Proposition 2. There are two Büchi structures K1 and K2 such that K1 and
K2 are CTL∗-bisimilar, but K1 and K2 are not fairly bisimilar.

Proof. Consider the Büchi structures K1 and K2 shown in Figure 1 (the Büchi
states are marked). Consider the relation S ⊆ W1 × W2, where S = {(w, w′) |
w ∈ W1, w′ ∈ W2, and L1(w) = L2(w′)}. It can be checked that S is a CTL∗-
bisimulation between K1 and K2. Consider the bisimulation game starting at
position 〈s1, t1〉. The adversary first chooses to move in K2 and moves to t′′2 . The
protagonist can respond by moving to either s2 or s′2. If the protagonist moves
to s2, then the adversary switches to K1 and moves to s3, forcing the protagonist
to move in K2 to t′′3 . If the protagonist moves to s′2, then the adversary switches
to K1 and moves to s′4, forcing the protagonist to move in K2 to t′′4 . In both cases,
the game goes back to the initial state 〈s1, t1〉 in the next round. By repeating
this sequence ad infinitum, the adversary ensures that the run produced in K1

is fair, while the run produced in K2 is not. Thus K1 and K2 are not fairly
bisimilar. ��

Our game-theoretic definition of fair bisimulation is inspired by the notion
of fair simulation from [HKR97]. It should be noted that, as in the unfair case,
fair bisimulation is stronger than mutual fair simulation. Consider again the two
structures in Figure 1. Then K1 fairly simulates K2 and K2 fairly simulates K1,
despite the fact that K1 and K2 are not fairly bisimilar. It should also be noted
that, in the example of Figure 1, the adversary needs to switch between K1 and
K2 infinitely often to win the fair-bisimulation game.
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Fig. 1. Fair bisimilarity is stronger than CTL∗-bisimilarity

3 Checking Fair Bisimilarity, Efficiently

We present an algorithm for checking if two fair structures are fairly bisimilar.
The time complexity of our algorithm is polynomial in the combined number of
states. The algorithm exploits properties of a weak version of fair bisimulation,
where the game is required to start at the initial states.

Init-fair Bisimulation

A binary relation S ⊆ W1 × W2 is an init-fair bisimulation between K1 and K2

if the following three conditions hold:

1. S(ŵ1, ŵ2).
2. If S(s, t), then L1(s) = L2(t).
3. There exists a strategy τ such that every outcome w = 〈w0, w′

0〉 · 〈w1, w′
1〉 · · ·

of τ with w0 = ŵ1 and w′
0 = ŵ2 has the following two properties: (1) for all

0 ≤ i ≤ |w|, we have S(wi, w′
i), and (2) the projection w0 ·w1 · · · of w to W1

is a fair run of K1 iff the projection w′
0 ·w′

1 · · · of w to W2 is a fair run of K2.

The fair structures K1 and K2 are init-fairly bisimilar if there is an init-fair
bisimulation S between K1 and K2. Every fair bisimulation S between K1 and K2

with S(ŵ1, ŵ2) is also an init-fair bisimulation between K1 and K2, but not every
init-fair bisimulation is necessarily a fair bisimulation. Init-fair bisimulations are
useful to us because of the following monotonicity property.
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Proposition 3. For all fair structures K1 = 〈K1, F1〉 and K2 = 〈K2, F2〉, if S
is an init-fair bisimulation between K1 and K2, and S′ ⊇ S is a bisimulation
between K1 and K2, then S′ is also an init-fair bisimulation between K1 and K2.

Moreover, checking for the existence of a fair bisimulation can be reduced to
checking for the existence of an init-fair bisimulation.

Proposition 4. For all fair structures K1 = 〈K1, F1〉 and K2 = 〈K2, F2〉, K1

and K2 are init-fairly bisimilar iff K1 and K2 are fairly bisimilar.

The proofs of both propositions are similar to the simulation case [HKR97].

The Algorithm

Given two structures K1 = 〈Σ, W1, ŵ1, R1, L1〉 and K2 = 〈Σ, W2, ŵ2, R2, L2〉,
and two fair structures K1 = 〈K1, F1〉 and K2 = 〈K2, F2〉, we present an
automata-based algorithm that checks, in time polynomial in K1 and K2,
whether there is a fair bisimulation between K1 and K2.

A coarsest bisimulation between K1 and K2 is a binary relation Ŝ ⊆ W1 ×
W2 such that (1) Ŝ is a bisimulation between K1 and K2, and (2) for every
bisimulation S between K1 and K2, we have S ⊆ Ŝ. The following proposition,
which follows from Propositions 3 and 4, reduces the problem of checking if there
is a fair bisimulation between K1 and K2 to checking if the (unique) coarsest
bisimulation between K1 and K2 is an init-fair bisimulation between K1 and K2.

Proposition 5. For all fair structures K1 = 〈K1, F1〉 and K2 = 〈K2, F2〉, if
Ŝ is the coarsest bisimulation between K1 and K2, then K1 and K2 are fairly
bisimilar iff Ŝ is an init-fair bisimulation between K1 and K2.

The coarsest bisimulation between K1 and K2 can be constructed in time
O((|R1| + |R2|) · log(|W1| + |W2|)) using the Paige-Tarjan algorithm [PT87].
Hence, we are left to find an algorithm that efficiently checks, given a relation
S ⊆ W1 × W2, if S is an init-fair bisimulation between K1 and K2. For this
purpose, consider the structure KS = 〈ΣS , W, ŵ, R, L〉 with the following com-
ponents:

– ΣS = W1 ∪ W2. Thus, each state of KS is labeled by a state of K1 or K2.
– W = (S×{a})∪(W1×W2×{1, 2}×{p}). Thus, there are two types of states:

adversary-states, in which the W1-component is related by S to the W2-
component, and protagonist-states, which are not restricted. We regard the
states of KS as positions in a game, with the adversary moving in adversary-
states and the protagonist moving in protagonist-states. Since the adversary
can choose to move either in K1 or in K2, we record this choice in the
protagonist states. If the third component of a protagonist state is 1 (2),
then the protagonist needs to make a move in K2 (K1).

– ŵ = 〈ŵ1, ŵ2, a〉. This is the initial game position.
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– R = {(〈w1, w2, a〉, 〈w′
1, w2, 1, p〉) | R1(w1, w′

1)}∪ {(〈w1, w2, a〉, 〈w1, w′
2, 2, p〉)

| R2(w2, w′
2)} ∪ {(〈w1, w2, 2, p〉, 〈w′

1, w2, a〉) | R1(w1, w′
1)} ∪{(〈w1, w2, 1, p〉,

〈w1, w′
2, a〉) | R2(w2, w′

2)}. Thus, the adversary and the protagonist alternate
moves. The adversary moves along transitions that correspond to transitions
of either K1 or K2. If the adversary makes a move along a transition of K1

(K2), the protagonist must reply with a move along a transition of K2 (K1).
Since adversary-states consist only of pairs in S, the protagonist must reply
to each move of the adversary with a move to a state 〈w1, w2, a〉 for which
S(w1, w2).

– We label an adversary-state by its W1-component and we label a protagonist-
state by its W2-component: L(〈w1, w2, a〉) = {w1}, and L(〈w1, w2, ·, p〉) =
{w2}.

We say that a run w of KS satisfies a fairness constraint F if F (L(w)) = fair .
The protagonist wins the game on KS if (1) whenever the game position is a
protagonist-state, the protagonist can proceed with a move, and (2) whenever
the game produces an infinite run of KS, the run satisfies F1 iff it satisfies F2.
Then, the protagonist has a winning strategy in this game iff S is an init-fair
bisimulation between K1 and K2.

The problem of checking the existence of a winning strategy (and the syn-
thesis of such a strategy) can be reduced to the nonemptiness problem for tree
automata. We construct two tree automata:

1. The tree automaton AS accepts all infinite (W1 ∪W2)-labeled trees that can
be obtained by unrolling KS and pruning it such that every adversary-state
retains all its successors, and every protagonist-state retains exactly one of
its successors. The intuition is that each tree accepted by AS corresponds to
a strategy of the protagonist. The automaton AS has O(|W1| · |W2|) states,
and it has a vacuous acceptance condition.

2. The tree automaton AF accepts all (W1 ∪ W2)-labeled trees in which all
paths have the following property: F1 is satisfied iff F2 is satisfied. When K1

and K2 are Büchi structures, the automaton AF can be defined as a Streett
automaton with two states and two pairs in the Streett constraint. When K1

and K2 are Streett structures, the automaton AF can be defined as a Streett
automaton with 3(|F1|+|F2|) · |F1| · |F2| states, and 3 · (|F1|+ |F2|) pairs in the
Streett constraint.

The protagonist has a winning strategy iff the intersection of the Streett au-
tomata AS and AF is nonempty. To check this, we define and check the
nonemptiness of the product automaton AS × AF . Since AS has a vacuous
acceptance condition, the product automaton is a Streett automaton with the
same number of pairs asAF . Finally, since checking the nonemptiness of a Streett
tree automaton with n states and f pairs requires time O(n(2f+1) · f !) [KV98],
the theorem below follows.

Theorem 1. Given two fair structures K1 and K2 with state sets W1 and W2,
transition relations R1 and R2, and fairness constraints F1 and F2, we can check
whether K1 and K2 are fairly bisimilar in time:
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– O((|W1| · |W2|)5), for Büchi structures.
– O(n(2f+1) ·3(2f2+f)/3 ·f !), where n = |W1| · |W2| · |F1| · |F2| and f = 3 ·(|F1|+

|F2|), for Streett structures.

4 Characterizing Fair Bisimilarity, Logically

We show that fair bisimilarity characterizes precisely the distinguishing power
of the fair alternation-free µ-calculus (Fair-AFMC). A formula of the µ-calculus
(MC) is one of the following:

– true, false, p, or ¬p, for a proposition p ∈ P .
– y, for a propositional variable y ∈ V .
– ϕ1 ∨ ϕ2 or ϕ1 ∧ ϕ2, where ϕ1 and ϕ2 are MC formulas.
– ∃ ❢ϕ or ∀ ❢ϕ, where ϕ is a MC formula.
– µy.f(y) or νy.f(y), where f(y) is a MC formula. All free occurrences of the

variable y in µy.f(y) and νy.f(y) are bound by the initial fixpoint quantifier.

A MC formula is alternation-free if for all variables y ∈ V , there are respectively
no occurrences of ν (µ) in any syntactic path from a binding occurrence µy (νy)
to a corresponding bound occurrence of y. For example, the formula µx.(p ∨
µy.(x∨∃ ❢y)) is alternation-free; the formula µx.(p∨νy.(x∧∃ ❢y)) is not. The
AFMC formulas are the MC formulas that are alternation-free.

The semantics of AFMC is defined for formulas without free occurrences
of variables. We interpret the closed AFMC formulas over fair structures, thus
obtaining the logic Fair-AFMC. Unlike in Fair-CTL and Fair-CTL∗, where the
path quantifiers are restricted to fair runs, the µ-calculus does not explicitly
refer to paths, and the definition of the satisfaction relation for Fair-AFMC is
more involved. An AFMC formula can be thought of being evaluated by “un-
rolling” the fixpoint quantifiers; for example, νy.f(y) is unrolled to f(νy.f(y)).
Least-fixpoint (µ) quantifiers are unrolled a finite number of times, but greatest-
fixpoint (ν) quantifiers are unrolled ad infinitum. In Fair-AFMC, we need to
ensure that all ν-unrollings are fair. This is done formally using the notion of
sat-trees.

The closure cl(ψ) of a Fair-AFMC formula ψ is the least set of formulas that
satisfies the following conditions:

– true ∈ cl(ψ) and false ∈ cl(ψ).
– ψ ∈ cl(ψ).
– If ϕ1 ∧ ϕ2 or ϕ1 ∨ ϕ2 is in cl(ψ), then ϕ1 ∈ cl(ψ) and ϕ2 ∈ cl(ψ).
– If ∃ ❢ϕ or ∀ ❢ϕ is in cl(ψ), then ϕ ∈ cl(ψ).
– If µy.f(y) ∈ cl(ψ), then f(µy.f(y)) ∈ cl(ψ).
– If νy.f(y) ∈ cl(ψ), then f(νy.f(y)) ∈ cl(ψ).

Each Fair-AFMC formula ψ specifies a set of “obligations” —a subset of formulas
in cl(ψ)— that need to be satisfied. The witness to the satisfaction of a formula
is a tree called a sat-tree.
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We first define labeled trees formally. A (finite or infinite) tree is a set t ⊆ IN∗

such that if xn ∈ t, for x ∈ IN∗ and n ∈ IN, then x ∈ t and xm ∈ t for all
0 ≤ m < n. The elements of t represent nodes: the empty word ε is the root of t,
and for each node x, the nodes of the form xn, for n ∈ IN, are the children of x.
The number of children of the node x is denoted by deg(x). A path ρ of t is a
finite or infinite set ρ ⊆ t of nodes that satisfies the following three conditions:
(1) ε ∈ ρ, (2) for each node x ∈ ρ, there exists at most one n ∈ IN with xn ∈ ρ,
and (3) if xn ∈ ρ, then x ∈ ρ. Given a set A, an A-labeled tree is a pair 〈t, λ〉,
where t is a tree and λ : t → A is a labeling function that maps each node of t to
an element in A. Then, every path ρ = {ε, n0, n0n1, n0n1n2, . . .} of t generates
a sequence λ(ρ) = λ(ε) · λ(n0) · λ(n0n1) · · · of elements in A.

Given a fair structure K = 〈K, F 〉 with K = 〈Σ, W, w, R, L〉, and a Fair-
AFMC formula ψ, a sat-tree 〈t, λ〉 of K for ψ is a (W × cl(ψ))-labeled tree 〈t, λ〉
that satisfies the following conditions:

– λ(ε) = 〈ŵ, ψ〉. Thus, the root of the tree, which corresponds to the initial
obligation, is labeled by the initial state of K and ψ itself.

– If λ(x) = 〈w, false〉 or λ(x) = 〈w, true〉, then deg(x) = 0.
– If λ(x) = 〈w, p〉, where p ∈ P , then deg(x) = 1. If p ∈ L(w), then λ(x0) =

〈w, true〉; otherwise λ(x0) = 〈w, false〉.
– If λ(x) = 〈w,¬p〉, where p ∈ P , then deg(x) = 1. If p ∈ L(w), then λ(x0) =

〈w, false〉; otherwise λ(x0) = 〈w, true〉.
– If λ(x) = 〈w, ϕ1 ∨ ϕ2〉, then deg(x) = 1 and λ(x0) ∈ {〈w, ϕ1〉, 〈w, ϕ2〉}.
– If λ(x) = 〈w, ϕ1 ∧ ϕ2〉, then deg(x) = 2, λ(x0) = 〈w, ϕ1〉, and λ(x1) =

〈w, ϕ2〉.
– If λ(x) = 〈w, ∃ ❢ϕ〉, then deg(x) = 1 and λ(x0) ∈ {〈w′, ϕ〉 | R(w, w′)}.
– If λ(x) = 〈w, ∀ ❢ϕ〉, and {w0, w1, . . . , wn} are the successors of w in K, in

some arbitrary (but fixed) order, then deg(x) = n+1, and for 0 ≤ i ≤ n, we
have λ(xi) = 〈wi, ϕ〉.

– If λ(x) = 〈w, νy.f(y)〉, then deg(x) = 1 and λ(x0) = 〈w, f(νy.f(y))〉.
– If λ(x) = 〈w, µy.f(y)〉, then deg(x) = 1 and λ(x0) = 〈w, f(µy.f(y))〉.

Consider a sat-tree 〈t, λ〉 of K for ψ. If 〈t, λ〉 contains no node labeled 〈w, false〉,
then it provides a witness to the satisfaction of all local obligations induced
by ψ. In addition, we have to make sure that least-fixpoint obligations are not
propagated forever, and that greatest-fixpoint obligations are satisfied along fair
runs of K. Formally, the sat-tree 〈t, λ〉 of K for ψ is convincing if the following
three conditions hold:

1. The sat-tree 〈t, λ〉 contains no node labeled 〈w, false〉. Thus, all local obli-
gations induced by ψ are satisfied.

2. For all infinite paths ρ of 〈t, λ〉, the projection of λ(ρ) on the cl(ψ)-component
contains only finitely many occurrences of formulas of the form µy.f(y).
Thus, no least-fixpoint obligation is propagated forever.

3. For all infinite paths ρ of 〈t, λ〉, the projection of λ(ρ) on the W -component
satisfies the fairness constraint F of K.
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The fair structure K satisfies the Fair-AFMC formula ψ if there is a convincing
sat-tree 〈t, λ〉 of K for ψ.

If K1 and K2 are not fairly bisimilar, we can construct a Fair-AFMC formula
ψ such that K1 satisfies ψ and K2 does not satisfy ψ. Consider the structures
from Figure 1. The formula νz.∀ ❢ (∃ ❢ (c∧∃ ❢ z)∨∃ ❢ (d∧∃ ❢ z)) is satisfied
in K1 and not satisfied in K2. Conversely, if K1 and K2 are bisimilar, and K1

satisifes a Fair-AFMC formula ψ, we can use the convincing sat-tree of K1 for
ψ and the winning strategy of the bisimulation game, to construct a convincing
sat-tree of K2 for ψ.

Theorem 2. For all fair structures K1 and K2, the following two statements
are equivalent:

1. K1 and K2 are fairly bisimilar.
2. For every formula ψ of Fair-AFMC, K1 satisfies ψ iff K2 satisfies ψ.

It is an open problem if the full µ-calculus over fair structures (Fair-MC) can
be defined in a meaningful way, and to characterize its distinguishing power. In
particular, condition 2 in the definition of convincing sat-trees for Fair-AFMC
is no longer appropriate in the presence of alternating fixpoint quantifiers.

5 Discussion

An important topic that we have not addressed in this paper is the construction
of fair abstractions. Here, we discuss some issues and difficulties in doing this. Let
K = 〈Σ, W, ŵ, R, L〉 be a structure. Let E ⊆ W × W be an equivalence relation
that is observation-preserving, i.e., if E(s, t), then L(s) = L(t). We define the
quotient of K with respect of E, denoted K/E = 〈Σ, W ′, ŵ′, R′, L′〉, as follows:
– The state set is W ′ = W/E , the set of equivalence classes of W with respect

to E. We denote the equivalence class of state w ∈ W by [w]E .
– The initial state is ŵ′ = [ŵ]E .
– The transition relation is R′ = {([w]E , [w′]E) | R(w, w′)}.
– The labeling function L′ is given by L′([w]E) = L(w). Note that L′ is well-

defined, because E is observation-preserving.

If S is the coarsest bisimulation between K and K, then K/S is called the bisim-
ilarity quotient of K. It is not difficult to check that K and K/S are bisimilar,
and that K/S is the smallest structure that is bisimilar to K. Since the construc-
tion of K/S is efficient, it may be a useful preprocessing step for model checking
CTL, CTL∗, and the µ-calculus.

Let K = 〈K, F 〉 be a fair structure. We are interested in finding a fair struc-
ture K′ which (1) is fairly bisimilar to K, and (2) has fewer states than K. Such
a K′ is an abstraction of K which preserves all Fair-AFMC properties, and by
Proposition 1, also all Fair-CTL∗ properties. If the construction of K′ is efficient,
then it may be a useful preprocessing step for Fair-AFMC and Fair-CTL∗ model
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Fig. 2. Constructing minimal fairly bisimilar abstractions

checking. We present two attempts at defining K′ and point out why neither
attempt is satisfactory.

The first attempt makes the fair states observable before constructing a mini-
mal quotient. This attempt produces a fairly bisimilar abstraction, but not neces-
sarily a minimal one. Define the binary relation H ⊆ W ×W such that H(w, w′)
iff (1) L(w) = L(w′), and (2) the fairness constraint F treats w and w′ identically
(i.e, if F is a Büchi constraint, then w ∈ F iff w′ ∈ F ; if F is a Streett constraint,
then for every Streett pair 〈l, r〉, we have w ∈ l iff w′ ∈ l, and w ∈ r iff w′ ∈ r).
Clearly, H is an equivalence relation. Let Ĥ ⊆ W × W be the coarsest bisimu-
lation between K and K that refines H . Let abs(K) = 〈K/Ĥ , F ′〉, where F ′ is
obtained by lifting the fairness constraint F to K/Ĥ . Formally, given a set A ⊆ W
of states, define α(A) = {[w]Ĥ | [w]Ĥ ∩ A �= ∅}. If F is a Büchi constraint, let
F ′ = α(F ); if F is a Streett constraint, let F ′ = {〈α(l), α(r)〉 | 〈l, r〉 ∈ F}. It
can be checked that K and abs(K) are fairly bisimilar. However, abs(K) is, in
general, not the minimal fair structure which is fairly bisimilar to K. For exam-
ple, consider the Büchi structure K3 of Figure 2(a). In this example, abs(K3)
is isomorphic to K3. But we can merge the states i1 and i4 to produce a fairly
bisimilar abstraction which has only 5 states, and thus is smaller.

The second attempt constructs a minimal fair quotient, which is then
equipped with a fairness constraint. However, there are cases where the straight-
forward way of equipping the fair quotient with a fairness constraint does not
result in a fairly bisimilar system. Let S ⊆ W × W be the coarsest fair bisim-
ulation between K and K. Define the relation J ⊆ W × W such that J(w, w′)
iff (1) S(w, w′), and (2) the fairness constraint F treats w and w′ identically.
Clearly, J is an equivalence relation. Let fabs(K) = 〈K/J , F ′〉, where F ′ is ob-
tained by lifting the fairness constraint F to K/J . Returning to the structure
K3 of Figure 2(a), we find that fabs(K3) indeed merges i1 and i4 and produces
a fairly bisimilar abstraction with 5 states. However, for the Büchi structure K4

of Figure 2(b), fabs(K4) and K4 are not fairly bisimilar.
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It therefore remains an open problem to construct, in general, a minimal
structure which is fairly bisimilar to K (where minimality is measured in the
number of states).
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