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Abstract. We consider a model for representing infinite-state and pa-
rameterized systems, in which states are represented as strings over a
finite alphabet. Actions are transformations on strings, in which the
change can be characterized by an arbitrary finite-state transducer. This
program model is able to represent programs operating on a variety of
data structures, such as queues, stacks, integers, and systems with a pa-
rameterized linear topology. The main contribution of this paper is an
effective derivation of a general and powerful transitive closure opera-
tion for this model. The transitive closure of an action represents the
effect of executing the action an arbitrary number of times. For exam-
ple, the transitive closure of an action which transmits a single message
to a buffer will be an action which sends an arbitrarily long sequence of
messages to the buffer. Using this transitive closure operation, we show
how to model and automatically verify safety properties for several types
of infinite-state and parameterized systems.

1 Introduction

In recent years, substantial progress has been made regarding the automated
verification of finite-state systems. Fully automated techniques have now been
developed to the extent that they can routinely handle systems with millions
of states. Partial order techniques and symbolic representations, such as Binary
Decision Diagrams (BDDs) [BCM+90] have been important in this development.
There is also progress in the development of verification algorithms for infinite-
state systems (e.g., [ACD90,AH89,BS95,Sti96,Fin94,AJ96]), and for parameter-
ized systems, i.e., systems consisting of an arbitrary number of homogeneous
processes connected in a regular topology (e.g., [GS92,KMM+97,ABJN99]).

The problem of verifying that a system satisfies a certain correctness property
is usually reduced to checking some form of reachability problem on a transition
system model of the system. For example, verifying that a system never gets
into an “unsafe” state consists in checking that no “unsafe” state can be reached
(by a sequence of transitions) from the set of initial states. This problem is
often analyzed by symbolic or enumerative state-space exploration, starting from
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the set of initial states. However, naive reachability analysis is guaranteed to
terminate only when the reachable state-space has finite depth, meaning that
there is a uniform bound on the number of transitions needed to get to any
reachable state. Finite-state systems trivially have a state-space with finite depth
(bounded by the number of states), but the depth of the state-space of an infinite-
state system is in general infinite.

In this paper, we will consider infinite-state systems whose states can be
represented as finite strings over a finite alphabet. This includes parameterized
systems consisting of an arbitrary number of homogeneous finite-state processes
connected in a linear or ring-formed topology: take the (finite) set of local states
of each process as the alphabet, and let a string of process states represent a
system state (the length of the string is equal to the number of processes). Our
model also includes systems that operate on queues, stacks, integers, and other
data structures that can be represented as sequences of symbols. We represent
the transition relation of such a system by a finite set of actions; each action is a
regular relation between strings, which can be represented, e.g., by a finite-state
transducer.

For this class of systems, reachability analysis can be performed as follows.
Assume that a set of initial states and a set of “unsafe” states are both given as
regular sets. Using the transducer representation of actions, we can calculate the
set of successors of a regular set of states as a regular set. Explore the reachable
states by successive calculations of sets of successor states, starting from the set
of initial states. If the set of reachable states has finite depth, this exploration
is guaranteed to terminate. Dually, we can perform the exploration backwards,
starting from the unsafe states and taking predecessors, with guaranteed ter-
mination if the “backwards depth” of the state-space is finite. This approach
is pursued, e.g., by Kesten et al. [KMM+97], who illustrate their approach by
some examples with finite backwards depth.

In general, however, an infinite-state or parameterized system need neither
have a finite depth nor a finite backwards depth. To explore the entire state-
space, one must then be able to calculate the effect of arbitrarily long sequences
of transitions. This problem would be solved if we could calculate the transitive
closure of an action, and then adding this transitive closure to set of actions
that are explored during verification. Remember that an action can be seen as
a relation on states: therefore the transitive closure of an action represents the
effect of executing the action an arbitrary number of times. For example, the
transitive closure of an action which transmits a single message to a buffer will
be an action which sends an arbitrarily long sequence of messages to the buffer.
The transitive closure of an action in which a process in a parameterized system
passes a token to its neighbor, will be an action that passes the token through
an arbitrary sequence of neighbors to another process.

The main contribution of this paper is a construction of the transitive closure
for a large class of actions in the system model described above. This transitive
closure is also representable as a finite-state transducer, and can therefore be used
in the state-space exploration in the same way as the original actions. Further-
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more, we show how this construction makes is possible to verify safety properties
of many parameterized and infinite-state systems fully automatically. We reduce
safety properties to reachability using standard techniques. To check reachability,
we first calculate the transitive closure of each action, if possible, and thereafter
perform reachability analysis with the extended set of actions. In many cases,
this analysis terminates even when the state space does not have finite depth.
We have implemented the technique, using the Mona package [HJJ+96a], and
present some examples.

In order to characterize the class of actions for which our transitive-closure
construction works, we define a notion of local depth. Intuitively, an action has
local depth k if each position in the string is transformed at most k times in any
sequence of executions of that action. For example, an action in a parameterized
system, in which a process passes a token to its right neighbor has local depth 2,
since in an arbitrary execution sequence, each process is affected at most twice:
once when receiving the token, and once when sending the token. Similarly, if
a queue is modeled by an unbounded array with a finite contiguous segment
of positions filled by messages, then an action which sends a message to the
channel, thus putting a message into an empty position, has local depth 1. The
main theorem of the paper shows that we can calculate the transitive closure of
any action with finite local depth, and represent it as a finite-state transducer.
We can also approximate the transitive closure of an action which does not
have finite local depth. For an arbitrary k, we can calculate, as a finite-state
transducer, the action which corresponds to executing the action an arbitrary
number of times, subject to the constraint that each position is transformed at
most k times.

A special case of the present paper is our earlier work [ABJN99]. There we
consider parameterized systems, whose state can be represented by a string,
and where each action is allowed to change the string in only one position. By
requiring this change to be idempotent, each action gets local depth 1, and we
could give a construction of its transitive closure. The restrictions limited the
applicability to certain classes of parameterized algorithms.

Related Work The use of regular sets as a symbolic state representation in
the verification of infinite-state systems has been proposed by e.g., Boigelot
and Wolper [WB98] and Kesten et al. [KMM+97]. Kesten et al. perform back-
wards reachability analysis on state spaces of finite depth or finite backward
depth. The decidability results for systems with unbounded lossy FIFO chan-
nels [AJ96] and for well-structured systems [AČJYK96] follow from the fact
that the considered verification problems have a finite backward depth. Other
researchers, e.g., [FO97], use regular sets in a deductive framework, where ba-
sic manipulations on regular sets are performed automatically, e.g., using the
Mona [HJJ+96a] or MoSel [KMMG97] packages. In [Sis97], parameterized sys-
tems are verified using induction on the number of processes, where the inductive
invariant is specified using automata on two dimensional strings.

A related technique for analyzing unbounded sequences of executions of an
action, called acceleration, has been developed for finite state processes that com-
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municate via unbounded FIFO channels [BG96,BGWW97,BH97,ABJ98] and for
systems that operate on integer variables [BW94]. An acceleration of an action
can be seen as the application of the transitive closure to a particular set of states.
By a suitable representation, we can model the operations considered in the
work on QDDs [BG96] as actions with finite local depth. Bouajjani and Haber-
mehl [BH97] also perform acceleration of actions with non-finite local depth,
sometimes resulting in non-regular sets of states. The acceleration operation is
related to the widening operation, used for computing fixpoints in abstract in-
terpretation [CC77], but aims at computing an exact fixpoint of a sequence of
approximations, each of which represents a bounded number of executions of an
action.

Outline In the next section, we define our model of systems and illustrate it by
modeling a parameterized termination detection algorithm intended for a ring
topology. In Section 3, we review the principles of symbolic reachability analysis
for verifying safety properties, and note that this analysis would be significantly
improved by taking the transitive closure of actions. Section 4 presents the main
result: a construction for computing the transitive closure of an action with local
depth k, for arbitrary k. Section 5 discusses two extra composition operations
which also augment the power of the analysis. In Section 6, we outline how
our results can be used for modeling and analysis of programs that operate
on unbounded FIFO channels and integers. An implementation of our method,
and the modeling and automated analysis of several infinite-state algorithms is
reported in Section 7. Section 8 contains conclusions.

2 Program Model

In this section, we introduce our model of programs. A global state (or a config-
uration) of a system is represented as a string over a finite alphabet C. As usual,
C∗ is the set of finite strings over C. The dynamic behavior of a system is de-
fined through a finite set of actions. Each action rewrites a certain portion of the
string that represents the state. The rewriting relation is given by a finite-state
transducer. The rewriting may furthermore be conditioned on the sequence of
symbols to the right and to the left of the rewritten portion of the string. We
use subclasses of regular languages, called left contexts and right contexts, to
represent such conditions.

Definition 1. A left context is a regular language which can be accepted by a
deterministic finite-state automaton with a unique accepting state, and where
all outgoing transitions from the accepting state are self-loops. (transitions with
identical source and target states). A right context is a language such that the
language of reversed strings is a left context. The tail of a left context is the
set of symbols that label self-loops from the accepting state. The tail of a right
context is the tail of the left context which is its reverse language.
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Examples of left contexts are a∗ (with tail {a}), and (a+b)∗b(a+b)∗ (with tail
{a, b}). An example of a regular language which is not a left context is (a+ b)∗b.
This language is, however, a right context with tail {a, b}.

We will represent (length-preserving) relations on C∗ by finite-state trans-
ducers. A finite-state transducer defines a regular language over C × C. It rep-
resents the relation on C∗ which contains the pair (c1c2 · · · cn , c′1c

′
2 · · · c′n) iff

the transducer accepts the string (c1, c
′
1) (c2, c

′
2) · · · (cn, c′n).

We are now ready to give the formal definition of our model.

Definition 2. A program is a triple P = 〈C, φI ,A〉 where
C is a finite alphabet, called the set of colors,
φI is a regular set over C, denoting a set of initial configurations, and
A is a finite set of actions. An action is a triple

φL τ φR

where φL is a left context, φR is a right context, and τ is a regular set over
C × C.

A configuration γ of a program P is a string γ[1] γ[2] · · · γ[n] over C. For a
regular expression φ, we use γ ∈ φ to denote that γ is a string in the language
denoted by φ. For i, j : 1 ≤ i ≤ j ≤ n, we use γ[i .. j] to denote the substring
γ[i] γ[i+ 1] · · · γ[j]. An action

α = φL τ φR

defines a relation α on configurations such that (γ, γ′) ∈ α if γ and γ′ are of
equal length n, there are i, j with 1 ≤ i ≤ j ≤ n such that

– (γ[i], γ′[i])(γ[i+ 1], γ′[i+ 1]) · · · (γ[j], γ′[j]) ∈ τ ,
– γ[1 .. i − 1] = γ′[1 .. i − 1] ∈ φL, and
– γ[j + 1 .. n] = γ′[j + 1 .. n] ∈ φR.

If these conditions hold, we say that α(γ, γ′) holds with active index pair (i, j).

The above program model is a generalization of the one in our earlier
work [ABJN99]. Our earlier model had the same structure, but the middle com-
ponent τ in an action was constrained to be a relation on C, instead of a (regular)
relation on C∗, implying that each action can only change one position in the
string. With the new definition, a much wider class of systems can be modeled.

Example To illustrate our program model, we will model an algorithm for ter-
mination detection in a ring-shaped network, due to Dijkstra, Feijen, and van
Gasteren [DFvG83]. The algorithm is intended to detect termination of an un-
derlying computation among a ring of N processes, numbered from 1 to N . Each
process can spontaneously change state from computing (non-idle) to idle, but
process i can change from idle to computing only if process i−1 (or N if i = 1) is
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computing. The system is terminated when all processes are idle. The detection
algorithm employs a token, which is sent around by process 1, when it is idle,
in increasing order of indices until it reaches process 1 again. When the token
is sent out, it is white. Each process passes the token on, and paints it black if
it is non-idle. If it comes back to process 1 and is still white, then termination
is signaled provided that process 1 was idle during the entire round. Otherwise
another round of termination detection will be started at a later moment.

We model the state of the algorithm by a string, where the ith element
represents the state of process i. The state of process i is defined by a boolean
variable qi which is true iff process i is idle, and a variable ti ranging over
{black,white,none}, which has value none when process i does not have the
token, and otherwise denotes the color of the token. In addition, process 1 has
a boolean variable wasq (w for short), which is true if it has stayed idle during
the current round. Thus, the set of colors is the set of triples of form 〈q, t, w〉
where q and w are boolean, and t ∈ {black,white,none}. The value of w is
relevant only in position 1.

The set of initial states of the system, in which process 1 has a black token,
is described by the regular expression

(t = black) (t = none)∗

where we use predicates to denote sets of colors, e.g., (t = black) denotes the set
of triples 〈q, t, w〉 such that (t = black). An undesired state, in which detection is
signaled although the system is not terminated is given by the regular expression
[
(t = white ∧ w) true∗ ¬q true∗

] ∪ [
(¬q ∧ t = white ∧ w) true∗]

which states that the condition t = white ∧ w for process 1 to signal detection
is satisfied, but some process is not idle.

Let us then give examples of actions. An action in which some process i with
1 < i < N passes the token to its next neighbor, possibly after painting it black,
is described by the action (t = none)+ τ (t = none)∗ where τ is the relation
between strings of length two such that

τ
( 〈q1, t1, w1〉 〈q2, t2, w2〉 , 〈q′1, t′1, w′

1〉 〈q′2, t′2, w′
2〉

)

iff q′1 = q1, q′2 = q2, t2 = t′1 = none, and t2′ = if q1 then t1 else black.
We also need an action which models the passing of the token from process N to
process 1. This is the action {ε} τ {ε} where τ is the relation between strings
of length at least two such that

τ
( 〈q1, t1, w1〉 γ 〈q2, t2, w2〉 , 〈q′1, t′1, w′

1〉 γ 〈q′2, t′2, w′
2〉

)

where γ is any string in (t = none)∗, where q′2 = q2, q′1 = q1, t1 = t′2 =
none,, and where t′1 = if q2 then t2 else black. In addition, we need an action
for passing the token from process 1 to process 2, which is given in an analogous
way. In Section 4, we will see that the first action has local depth 2, and that



226 Bengt Jonsson and Marcus Nilsson

its transitive closure represents an action which passes the token from position i
to position j for arbitrary 1 < i < j < N . However, it is not meaningful to
take the transitive closure of the second action, since it disables itself after being
executed.

Summarizing, we see that the passing of a token from one process to the next
is modeled by one action for the “standard” case 1 < i < N and by separate
actions for special cases, such as passing from N to 1, and passing from 1 to 2.
The changes to q, modeling the underlying computation, can be modeled in a
similar way.

The above algorithm is an example of a parameterized distributed algorithm
which assumes a linear or ring topology. In our earlier work [ABJN99], we were
able to model a restricted class of parameterized algorithms where only one
process changed its local state in each transition. In the above algorithm, two
processes change their state simultaneously. In Section 6, we will describe how
we can also model and analyze programs that operate on unbounded queues,
and unbounded integers.

3 The Reachability Problem

We write γ1 −→ γ2 to denote that α(γ1, γ2) for some action α ∈ A. We use ∗−→
to denote the transitive closure of −→. A configuration γ is said to be reachable
if there is a configuration γI ∈ φI such that γI

∗−→ γ.
The reachability problem is defined as follows.
Instance A program P and a set of configurations of P represented by a

regular expression φF .
Question Is any γ ∈ φF reachable?
It is well-known (e.g., [VW86]) that the problem of verifying linear-time

safety properties can be transformed into the problem of checking that a set of
“bad” states is not reachable.

The reachability problem can be analyzed using standard symbolic reachabil-
ity analysis to explore the state-space. The analysis maintains a set of reachable
configurations, which is initially the set of initial configurations. At each step
of the algorithm the set of reachable configurations is extended with the config-
urations that can be reached by executing some action in the program from a
configuration in the current set

We use regular sets of strings to represent (in general infinite) sets of config-
urations. A regular set is represented by an automaton. The effect of executing
an action, which is represented by a finite-state transducer, can be calculated by
computing, in the usual way, the product of the automaton and the transducer,
and then projecting on the second component in the alphabet of the transducer.
This approach is proposed and described in more detail in [KMM+97].

A limitation of the above approach is that it can only explore state spaces
of finite depth1. After k iterations, one can only explore configurations at a
1 the depth of a state space is the maximal distance (measured in computation steps)
from the set of initial states to any reachable state
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distance at most k from the set of initial configurations. For instance, in the above
algorithm one can only explore the effect of passing a token through a sequence
of k processes. To explore the entire state-space, one must in general be able to
calculate the effect of executing arbitrarily long sequences of computation steps.
This can be done by augmenting verification by adding the transitive closure of
an action, i.e., the effect of executing an action an arbitrary number of times. For
example, the transitive closure of the first token-passing action in the previous
example, is an action in which the token is passed through an arbitrary sequence
of neighbors to another process. In the next section we show how to compute
the transitive closure of a large class of actions.

4 Computing the Transitive Closure

In the previous section, we showed how to use actions in the symbolic reachability
analysis by representing the effect of executing an action in terms of a finite-state
transducer. For a subclass of actions, we will now show how to represent the effect
of an unbounded number of executions in terms of a finite-state transducer. We
will classify actions according to a local depth, which is the maximum number of
rewritings of a symbol in a configuration, defined more precisely below.

As usual, let α∗ denote the relation on strings, which is the reflexive and
transitive closure of α. Let α+ denote the transitive closure of α. For an action
α, we say that a sequence of configurations γ0, · · · , γm is a configuration sequence
of α with active index pairs (l1, l′1) · · · (lm, l′m) iff for each p with 1 ≤ p ≤ m we
have that α(γp−1, γp) holds with active index pair (lp, l′p).

Definition 3. A configuration sequence γ0, · · · , γm of α has local depth k if
each position i ≥ 1 satisfies |{p : lp ≤ i ≤ l′p}| ≤ k. An action α has local
depth k if whenever (γ, γ′) ∈ α∗ then there is a configuration sequence γ0, · · · , γm

of α with local depth k such that γ = γ0 and γm = γ′.

For an action α with local depth k for some k, we can represent α+ by a finite-
state transducer, due to the following theorem.

Theorem 1. Let α = φL τ φR be an action with local depth k for some k.
Then α+ is a regular relation on strings, which can be represented by a finite-
state transducer with no more than 7k+1 · (|τ | + 1)k + |φL|+ |φR| states, where
|R| is the number of states in the automaton representing R.

Proof. (Sketch) Let α = φL τ φR be an action as above. For each pair of
configurations (γ, γ′) in α+, we can establish matrix of the form:

t10
〈c0

1,c1
1〉−→ t11

〈c0
2,c1

2〉−→ t12 · · · t1n−1

〈c0
n,c1

n〉−→ t1n

t20
〈c1

1,c2
1〉−→ t21

〈c1
2,c2

2〉−→ t22 · · · t2n−1

〈c1
n,c2

n〉−→ t2n
...

tm0
〈cm−1

1 ,cm
1 〉−→ tm1

〈cm−1
2 ,cm

2 〉−→ tm2 · · · tmn−1

〈cm−1
n ,cm

n 〉−→ tmn
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where

– tji is a state in the transducer for α, for every i, j.
– tj0 is a starting state and tjn is an accepting state of the transducer for α, for
every j.

– t
〈c,c′〉−→ t′ iff the transducer for α can make a transition from t to t′ on 〈c, c′〉.

– c0
i = γ[i] and cm

i = γ′[i], for every i.

In the transducer for α, let qL be the accepting state of φL and qR be the starting
state of φR. From the definition of contexts, it follows that each column in the
above picture is either 1) a sequence of identical states in the transducer that
copies φL, 2)a sequence of identical states in the transducer that copies φR, or 3)
a sequence consisting of occurrences of qL, qR, and states inside the transducer
for τ .

The main step of the proof is now to show that if we can construct a matrix
as above, then we can construct a matrix in which all columns of the third form
are sequences of form

w0 r1 w1 r2 w2 · · · wl−1 rl wl

where l is at most the local depth of α, where each rj is a state in the transducer
for τ , and where each wj is in one of the seven sets (this is where the number 7
in the theorem comes from)

{ε} q+
L q+

R q+
L q+

R q+
Rq+

L q+
Rq+

L q+
R q+

L q+
Rq+

L

This can be proven by starting from an arbitrary matrix as above and permuting
its rows when some column has too many consecutive alternations of qR and qL

until it is on the just described regular form. If the permutation of rows is done
carefully, the initial and final configurations (γ and γ′) are not affected.

We finally observe that the number of consecutive qL’s in a column is unim-
portant for the effect to the left of that column, and vice versa for the number
of consecutive qR’s. By disregarding the number of repetitions of qL’s and qR’s,
we get a finite number of different possible columns. Each such column will be a
state of the transducer for α+, and we build a transition relation which emulates
the effect of the above matrix.

As a corollary, we note that we can also approximate the transitive closure of
an action which does not have a finite local depth. More precisely, for an action
α, define the approximation to local depth k of α∗ as the set of pairs (γ, γ′) such
that there is a configuration sequence γ0, · · · , γm of α with local depth k where
γ = γ0 and γm = γ′. From the construction in Theorem 1 it follows that we
can compute the approximation to local depth k of the transitive closure of any
action, represented as a transducer.

5 Compositions of Actions

For some algorithms, we need to add actions representing the composition of
two or more actions. In combination with the transitive closure operation, this
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makes it possible to compute the effect of an unbounded number of executions
of a sequence, e.g. a loop, or a choice, e.g. modeling an if-statement, consisting
of the actions in the composition.

Let α = φL τ φR and α′ = φ′
L τ ′ φ′

R be two actions. Their sequential
composition can be defined as

φL ∩ φ′
L τ ◦ τ ′ φR ∩ φ′

R

where τ ◦ τ ′ is the transducer corresponding to the relational composition of the
relations given by τ and τ ′. Their union can be similarly defined as

φL ∩ φ′
L τ ∪ τ ′ φR ∩ φ′

R

where τ ∪ τ ′ is the union of τ and τ ′. We note that the intersection of two left
contexts is always a left context, and similarly for right contexts.

As an isolated operation, composition does not add to the power of reach-
ability analysis. If, however, used in combination with the transitive closure
operation, i.e., using the transitive closure of composed actions, it can often give
extra power to the reachability algorithm.

An important observation is that, in an action which is the result of a com-
position operation, it is sometimes possible to extend the left or right context
by including a part of the string which is transformed by τ , if τ leaves that part
unchanged. As a concrete example, if τ1 changes the first position from a to b
and τ2 changes the first position from b to a, then the left context of the se-
quential composition of these two actions may be extended by an extra symbol,
which then has to be a. After having the context in this way, the local depth of
the action may decrease, thus giving even more power to the transitive closure
operation.

6 Modeling Different Classes of Infinite-State Algorithms

In Section 2, we showed how to model a parameterized algorithm in which each
computation step changes the state of 2 processes. In this section, we will show
how our framework can also be applied to programs operating on unbounded
FIFO channels, and to certain programs that use unbounded sequence numbers.
In Section 7, we show how algorithms in these classes can be verified automati-
cally, thanks to our transitive closure operation.

6.1 Programs Operating on Unbounded FIFO Channels

In this subsection, we outline how our framework can model and analyze pro-
tocols in which a set of finite-state processes communicate by sending messages
over a set of unbounded FIFO channels. The verification of such protocols has
been considered by Boigelot and Godefroid, [BG96,BGWW97], who propose to
use a representation called QDDs (Queue Decision Diagrams) to represent sets
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of states of such a system. QDDs are essentially automata which recognize the
contents of the channels. In the paper [BG96] it is shown how to calculate the
effect of exploring the acceleration of certain actions from a given set of states
represented as a QDD. We will here show how transitive closure of corresponding
operations can be calculated in our framework.

For this presentation, consider a system of two finite-state processes that
communicate via one unbounded FIFO channel in each direction. Assume that
the control state of each process belongs to a set Q of control states, and that
each channel contains a sequence of messages in some finite set M. A state of
the system, where the processes are in control states q1 and q2, respectively, and
the channels contain the sequences w1 and w2, respectively, can be represented
by a string in the set given by the regular expression

q1 q2 ⊥∗ w1 ⊥∗ ‖ ⊥∗ w2 ⊥∗

where the symbol ⊥ represents an empty position in a channel, and ‖ is used
to separate the syntactic representations of the channels from each other. Thus,
the representation of each channel is surrounded by “padding” with an arbitrary
number of ⊥ symbols. This allows each the contents of a channel to expand to the
right when messages are inserted, and to shrink from the left when messages are
removed. Of course, each particular representation of a system state allows only
a finite number of insertions into a channel before all the ⊥ symbols are “used
up”. However, since the padding can be arbitrarily long, we can capture the
effect of arbitrarily long but finite sequences of insertions and removals, which
is sufficient for analyzing safety properties.

An operation in which the first process changes control state from q1 to
q′1 and sends message m to the first channel, is modeled by an action which
changes q1 to q′1 and changes any sequence of form ⊥n1 w1 ⊥n2 ‖ with n2 ≥ 1
into ⊥n1 w1 m ⊥n2−1 ‖. If q1 �= q′1, the action is idempotent, and it is thus not
interesting to compute its transitive closure. If q1 = q′1, then we can calculate its
transitive closure. We must then first represent the action with contexts as

q1 Q ⊥∗ M∗ τ ⊥∗ ‖ ⊥∗ M∗ ⊥∗

where τ changes the one-symbol string ⊥ into m. This action has local depth 1,
and we can compute its transitive closure. The transmission of a sequence of
messages to a channel, or the reception of a sequence of messages from a channel,
can be represented in an analogous way.

A more challenging operation is one in which the first process in control state
q1 receives message m from the second channel and transmits it to the first. For
the special case that our state representation has no padding symbols ⊥ around
the separator ‖, we can model the operation by the action

q1 Q ⊥∗ M∗ τ M∗ ⊥∗

where τ transforms strings of length 2 of form ‖ m into m ‖ . This action
has local depth 2, and we can therefore calculate its transitive closure. However,
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this transitive closure results only in states without padding symbols ⊥ around
the separator ‖. After applying the transitive closure, we must therefore “renor-
malize” the representation by a non length-preserving transformation which in-
serts an arbitrary amount of padding around the separator ‖. This representation
can be performed directly on the regular expression or automaton. As with the
previous operation, we can generalize this treatment to operations that receive
a sequence of message from one channel and transmit a sequence to another. In
Section 7, we describe how the above method has been used to generate the set
of reachable states of a version of the alternating-bit protocol with unbounded
FIFO channels.

6.2 Programs Operating on Integers

We will also give a sketchy presentation of how systems that operate with inte-
gers, e.g., as counters or sequence numbers, can be modeled. The state of such
a system can be modeled by letting the string represent the number line with
the values “laid out” at the position corresponding to their value. Thus, the set
of colors has a bit for each variable, which is true if the variable has the value
corresponding to that position. The number line is infinite, but it suffices that we
represent an arbitrary finite segment which contains the values of all variables.
Thus, the predicate x+ 2 = y is modeled by the regular expression

(¬x ∧ ¬y)∗ x ∧ ¬y (¬x ∧ ¬y) ¬x ∧ y (¬x ∧ ¬y)∗

It should not be difficult to see that we can represent, e.g., incrementation of a
variable by a constant under some conditions, and compute the transitive closure
of such an action. In Section 7, we describe how the above method has been used
to generate the set of reachable states of a version of a sliding window protocol
with unbounded sequence numbers.

7 Experiments

We have implemented a special case of the method described in this paper, for
actions that have a local depth of 2 and where the sequence of active index pairs
in a configuration sequence is either increasing or decreasing. The implementa-
tion builds a transducer for the transitive closure of each action and converts
the union of these transducers into the DFA library of MONA[KM98,HJJ+96b]
which is implemented using BDDs[Bry86] to represent the transitions. Using the
implementation, we have modeled and generated the set of reachable states of
the following algorithms:

Parameterized Mutual Exclusion Algorithms We have analyzed idealized
versions of parameterized algorithms for mutual exclusion, including Szy-
manski’s algorithm, Burns’s and Dijkstra’s mutual exclusion algorithms, and
the bakery and ticket algorithms by Lamport. Several of these could be han-
dled by the limited framework in our earlier work [ABJN99].
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Parameterized Distributed Algorithms As an example of a parameterized
distributed algorithm operating on a ring, we have considered the termina-
tion detection of Dijkstra, Feijen, and van Gasteren [DFvG83], presented in
Section 2.

Algorithms operating on unbounded FIFO channels . We have modeled
and analyzed the Alternating Bit Protocol with unbounded FIFO channels.
We have used the model of [AJ96].

Algorithms with unbounded sequence numbers . We have modeled and
analyzed a sliding window protocol, in which the maximal sequence number
is a parameter n. The sender window has size n and the receiver window
size 1. We use a version where the channel from the sender to receiver has
a capacity of 3 messages, and the channel from the receiver to the sender is
synchronous. The length of the channels can of course be changed. However,
we have not figured out how to model and analyze the case where both the
channels and the sequence numbers are unbounded

In Table 7, we show for each algorithm the domains of the variables that are
infinite, the number of steps required to generate the set of reachable configura-
tions, the size of the transducer, the maximum number of states among automata
generated during analysis, and the maximum number of BDD nodes among au-
tomata generated during analysis. Note that all automata are deterministic.

8 Conclusions

We have presented techniques for reachability analysis of parameterized and
infinite-state systems whose state can be represented as a string over a finite al-
phabet. Since naive symbolic reachability analysis does not in general converge
for such systems, we propose to use acceleration of actions to obtain termination.
The main contribution is the definition of a notion of local depth of an action,
and the construction of the transitive closure of an action with finite local depth,
in the form of a finite-state transducer. We have shown that with this frame-
work, we are able to model and verify a variety parameterized algorithms, and

Table 1. Experiments

Algorithm Domains Steps Size
Max
states

Max
BDD

Szymanski process id 8 26 144 3574
Dijkstra process id 15 22 2503 81487
Bakery process id, integers 5 10 32 163
Ticket process id, integers 3 12 30 338
Burns process id 5 14 111 2445
Termination detection process id 7 29 133 1497
Alternating bit protocol queues 15 67 4000 66149
Sliding Window: queue length 3 integers 21 45 339 4788
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infinite-state systems operating on queues and integers. In comparison with our
earlier work [ABJN99], we are able to cover a much broader class of systems. For
instance, we can model systems of finite-state processes that communicate over
unbounded FIFO channels, and perform transitive closure operations that are
analogous to the meta-transitions presented by Boigelot and Godefroid [BG96],
using QDDs. Our work is not more powerful, but shows how the techniques can
be seen as part of a uniform framework.

Future work includes the treatment of liveness properties.
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