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Abstract. An identity-based non-interactive public key distribution system is pre- 
sented that is based on a novel trapdoor one-way function allowing a trusted author- 
ity to compute the discrete logarithm of a given number modulo a publicly known 
composite number rn while this is infeasible for an adversary not knowing the factor- 
ization of m. Without interaction with a key distribution center or with the recipient 
of a given message a user can generate a mutual secure cipher key based solely on 
the recipient's identity and his own secret key and send the message, encrypted with 
the generated cipher key using a conventional cipher, over an insecure channel to 
the recipient. Unlike in previously proposed identity-based systems, no public keys, 
certificates for public keys or other information need to be exchanged and thus the 
system is suitable for many applications such as electronic mail that do not allow 
for interaction. 

1. Introduction 

Public-key dis+ribution systems and public-key cryptosystems suffer from the following well- 
known authentication problem. In order to prevent an adversary from fraudulently imperson- 
ating another user, it must be possible to verify that a received public key belongs to the user 
it is claimed to belong to. A commonly used solution to this authentication problem is the 
certification of public keys by a trusted authority which, after checking a user's identity, signs 
the concatenation of his name and public key using a digital signature scheme. Systems based 
on either the RSA [23] or the ElGamal [3] signature schemes have been proposed [5, 61. 

'A more detailed version of this paper has been submitted to the IEEE 'Jlansactions on Information Theory. 
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Shamir [25] suggested as a simple but ingenious method for solving the authentication problem 
in public-key cryptography to let each user’s public key be his (publicly-known) identification 
information. Because it must be infeasible for users to compute the secret key corresponding to  a 
given identity (including their own), the secret keys must be computed by a trusted authority who 
knows some secret trapdoor information. The security of such an identity-based system depends 
on the trusted authority in a more crucial way than the security of a public-key certification 
system because in the former the trusted authority knows all secret keys. 

Because a user’s identity can be assumed to be publicly known (the identity can be defined 
as that part of the identscation information that is publicly known), the public keys of an 
identity-based public-key cryptosystem need not be transmitted. Therefore an identity-based 
system can be used in a completely non-interactive manner. 

A simple way to set up an identity-based public-key cryptosystem would seem to be to  use 
the RSA-system with a universal modulus where each user’s public encryption exponent is his 
(odd, and relatively prime to cp(m)) identity and in which a trusted authority knowing the 
factorization of the modulus computes the secret decryption exponents for users. However, this 
system is insecure because knowledge of a matching (secret/public) key pair allows to easily 
factor the modulus. 

While Shamir presented an identity-based signature scheme, he left and proposed as an open 
problem to find an identity-based public-key cryptosystem or public-key distribution system [25]. 
In the context of signature schemes, however, an identity-based system is less advantageous than 
it would be in the context of public-key cryptmystems (which can be made non-interactive) 
because in a signature scheme, public keys can be certified by a trusted authority and a user’s 
certified public key can be disclosed together with the signature, thus requiring no additional 
protocol steps for the transmission of the public keys. 

Many previously proposed systems [5, 7, 19, 20, 271 have been called identity-based public- 
key distribution systems because they make use of Shamir’s idea for self-authentication of public 
keys. However, none of these (with the exception of the quite impractical and also insecure 
version of a scheme discussed in [27]) is an identity-based system in Shamir’s sense because 
the public key is a function not only of the identity but also of some random number selected 
either by the user or by the trusted authority. As a consequence, these systems are bound to be 
interactive. A major achievement of this paper is that it presents the first truly identity-based 
public-key distribution system. It should be mentioned that the key predistribution system 
of Matsumoto and Imai [13], which is based on a completely different approach, also achieves 
non-interactive key distribution. 

The original DiEe-Hellman public key distribution system [2] with a prime modulus p cannot 
be used as an identity-based system in Shamir’s sense because if the scheme is secure, that is 
when discrete logarithms modulo p are infeasible to compute, it is infeasible even for a trusted 
authority to compute the secret key corresponding to a given public key, i.e., a given identity. 
This comment applia to any public-key distribution system based on a oneway function without 
trapdoor. One of the major achievement of this paper is that a method for building a h p d o o r  
into the modular exponentiataon one-way function is proposed which allows a trusted authority 
to feasibly compute discrete logarithms whereas this is nevertheless completely infeasible for an 



adversary using present technology and algorithmic knowledge. This allows a trusted authority 
to set up a non-interactive public-key distribution system. Non-interactiveness is crucial in some 
applications (e.g. electronic mail, some military applications) and in some other applications 
allows at least to simphfy the protocols. The computational effort that the trusted authority 
must spend is considerable but the key distribution protocol is efficient. 

In Section 2, the preferred version of our system is presented. A security and feasibility 
analysis is given in Section 3 and some alternative implementation approaches are discussed in 
Section 4. The final section summarizes some conclusions. 

, 

2. A Non-interactive Public Key Distribution System 

From a protocol viewpoint, the difference between a public-key distribution system and a 
public-key cryptosystem is that in the former, both parties must receive the other party’s public 
key whereas in the latter, only the sending party must receive the public key of the receiving 
party. Therefore, a public-key distribution system, when combined with a conventional symmet- 
ric cryptosystem used for encryption, cannot be used as a public-key cryptosystem. In contrast, 
a non-interactive public-key distribution system can be used as a public-key cryptosystem by 
sending as one message the sender’s identity and the enciphered plaintext, where the cipher 
key is computed from the receiver’s identity and the sender’s secret key and where some agreed 
conventional cipher is used for encryption of the message. 

Our non-interactive public key distribution system is based on a variant of the Diffie-Hellman 
system with composite modulus m. By choosing the prime factors of m appropriately such that 
discrete logarithms modulo each prime factor can feasibly be computed but such that computing 
discrete logarithms modulo m is nevertheless infeasible, a trusted authority can set up a public 
key distribution system based on exponentiation modulo m. 

Two different ways of generating such a modulus m are presented below and in Section 4, 
respectively. To use a composite modulus m = pq with p and q prime in the Dif3ie-Hellman 
scheme has previously been proposed by Shmuely [26] and McCurley [15] in order to exhibit a 
system which to break requires the ability both to factor m and to compute discrete logarithms 
modulo p and q. 

Our approach to identity-based public key distribution differa in a crucial way from previoua 
approaches [5,6, 7, 19,20, 271 in that the public key consists entirely of public identity informa- 
tion (e.g. name, address, physical description), but does not depend on an additional random 
number selected either by the user or the trusted authority. This is the reason why our system 
can be used in a truly non-interactive manner. Clearly, the type and amount of information 
about a user that can be assumed to be publicly known depends on the application, but note 
that in most applications, at least part of the identscation information is indeed publicly known. 
For instance, the receiver’s address, which must be known in every communication system in 
order to send a message, can serve as his public key. 

One problem that arises in the proposed system is that the multiplicative group 2; is cyclic 
if and only if m is either 2, 4, a power of an odd prime or twice the power of an odd prime. 
When m is the product of distinct odd primes there hence exists no element that generates the 
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entire group 2:. Thus not every identity number that corresponds to some valid identification 
information is guaranteed to have a discrete logarithm with respect to some universal base a. 
This problem could be solved by adding the smallest ofbet to every identity number that makes 
the new number have a discrete logarithm. However, the resulting system would have to be 
interactive since the offsets must be exchanged between the users. Two different solutions to 
this problem are presented below and in Section 4, respectively. Both are computationally more 
efficient (for the trusted authority) than the ofbet method and at the same time allow to preserve 
the advantage of non-interactiveness of our scheme. 

Let m = pl . p z . .  ' p ,  where the primes p l , . .  . ,& are in the following assumed to be odd 
and distinct. The maximal order of an element of the multiplicative group 2: is given by 
A(m) = lcm(p1 - 1 , .  . . , p ,  - l), which is at most 2-'+l times the group order cp(m). A(m) is 
strictly less than cp(m)/2'-' unless the numbers (pl - 1)/2,. . . , (p, - 1)/2 are pairwise relatively 
prime. Let a be an element of 2: that is primitive in each of the prime fields GF(pl) ,  . . . , GF(p,), 
i.e., such that for 1 5 i 5 t, pi - 1 is the smallest exponent ti for which afi 1 (mod p i ) .  Then 
Q has maximal order A(m) in 2;. The discrete logarithm of a number y modulo m to the 
base a is defined as the smallest non-negative integer x such that aZ = y (mod m) (if such an 
x exists) and can, when the complete factorization of m is given, be obtained by computing 
for i = 1,. . . , r  the discrete logarithm xi of y to the base a modulo p , ,  i.e., by computing x, 
satisfying azd = y (mod p i ) ,  and solving the system 

x E 21 (modp, - l ) ,  

x T x, (modp, - 1) 

of r congruences for x by the Chinese remainder technique. As mentioned above, this system 
need not have a solution because the numbers p1 - 1, . . . , p ,  - 1 are not pairwise relatively prime. 
In particular, the system has no solution unless either all z; are odd or all xi are even. 

The following Lemma is a special case of a more general result proved in the journal version of 
this paper. It suggests an easy to compute publicly-known function that transforms, without use 
of the secret trapdoor, any identity number into a modified identity number that is guaranteed 
to have a discrete logarithm. 

Lemma. Let m and a be as defined above where the numbers (pi - 1)/2, .  . . , (p ,  - 1)/2 are 
paarwise relatively prime. Then every square modulo m has a discrete logarithm modulo m to 
the base a. 

A complete description of the preferred version of the proposed non-interactive public key 
distribution system follows. The following three paragraphs describe the system set up by a 
trusted authority, the user registration phase and the user communication phase, respectively. 

To set up the system we suggest that a trusted authority choose the primes pi such that 
the numbers ( p ,  - 1)/2 are odd and pairwise relatively prime [14]. Preferably, (pi - 1)/2 are 
chosen to be primes themselves. The primes p ,  are chosen small enough such that computing 
discrete logarithms modulo each prime is feasible (though not trivial) using for instance the 
algorithm of [I] but such that factoring the product, even with the best known method for 
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finding relatively small.prime factors [lo] of a number, is completely infeasible. The trusted 
authority then computes the product 

of the selected primes, determines an element a of 2; that is primitive in every of the prime 
fields GF(p;) and publishes rn and a as system parameters. We refer to Section 3 for an analysis 
of the security versus the feasibility for different sizes of parameters. To choose 3 to 4 primes 
of between 60 and 70 decimal digits seems at present to be appropriate, but these figures can 
vary according to future progress in computer technology and number-theoretic algorithms. An 
alternative approach to making the discrete logarithm problem feasible other than by choosing 
the prime factors of m su5ciently small is described in Section 4. 

When a user A wants to join the system she visits the trusted authority, presents her identifi- 
cation information IDA together with an appropriate proof of her identity (e.g. a passport) and 
receives the secret key S A  corresponding to IDA. The secret key S A  is computed by the trusted 
authority as the discrete logarithm of IDAZ modulo m to the base a: 

SA log,(IDA2) (mod m). 

Due to the squaring of IDA, sA  is guaranteed to exist as a consequence of the above lemma. 

In order to send a message M securely to a user B without interaction, user A establishes 
the mutual secure cipher key KAB shared with user B by computing 

KAB = (IDB)'"^ (mod m). 

Xote that KAB aS*'S (mod m). She then uses a conventional symmetric cryptosystem (e.g. 
DES) to encipher the message M using the cipher key K A B ,  which results in the ciphertext C. 
User A then sends C together with her identity number IDA to user B. In order to decipher 
the received ciphertext C, user B proceeds symmetrically and computes 

KBA = (IDA)2sE = aSEaA = KAB (mod m). 

He then deciphers C using the conventional cryptosystem with the secret key KAB, which results 
in the plaintext message M .  

Note that the trusted authority is only required for the initial system set up and for user 
registration, but not in the user communication phase described above. In fact, the trusted 
authority could close itself down if no additional users need to be registered, thereby irreversibly 
erasing the factorization of m. 

In the described system the secret key shared by two users is the same when the protocol 
is repeated several times. This in many applications undesirable property can easily be r e  
moved without losing non-interactiveness by having user A choose a random number R and use 
~ ( K A B ,  R)  as the mutual cipher key, where f is a cryptographically secure hash function. R is 
sent to B together with the ciphertext C. In order to prevent an adversary knowing a previously 
cipher key from impersonating at a later time, a time stamp can be used as an additional argu- 
ment of the hash function. It is possible to build a dynamic key distribution system using no 
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hash function, that is provably as hard (on the average) to break against a disruptive adversary 
as factoring the modulus [28]. 

Although in the proposed trapdoor one-way function the trapdoor is the factorization of 
the modulus as in the MA trapdoor one-way function [23], the two functions are nevertheless 
entirely different. In the RSA function, the argument is the base and the exponent e is a constant 
whereas in our exponentiation trapdoor one-way function the argument is the exponent and the 
base a is a constant. Accordingly, the inverse operations are the extraction of the e-th root 
and the discrete logarithm to the base a, respectively, and are infeasible to compute without 
knowledge of the trapdoor. 

3. Security and Feasibility Analysis 

The following fact has previously been observed but is not widely known nor published. A 
proof is given in the journal version of this paper. 

Proposition. Let m be the product of distinct odd primes pl, . . . , p ,  and let a be primitive in 
each of the prime fields GF(p;)  for 1 5 i 5 r.  Then computing discrete logarithms modulo m to 
the base a is at least as dificult as factoring m completely. 

The function 
L&, b)  = e b ( l o ~ z ) ~ ( ~ o g l o ~ ~ ) ' - '  

is commonly used to express the conjectured asymptotic running time of number-theoretic al- 
gorithms. The fastest known algorithm for computing discrete logarithms in GF(p)  [l] has 
asymptotic running time Lp(1/2, 1). The largest primes for which this algorithm is at present 
feasible with massively parallel computation have between 90 and 100 decimal digits. For primes 
of up to 65-70 decimal digits the algorithm is feasible on a small to medium size computer. An 
important feature of this algorithm is that most of the running time is spent in a precomputation 
phase that is independent of actual elements for which the logarithm is to be computed. After 
the precomputation, individual logarithms can be computed much faster in asymptotic running 
time Lp(1/2,  1/2). The algorithm is well suited for a parallel implementation. 

The largest general integers that can at present feasibly be factored using massively parallel 
computation have on the order of 110 decimal digits [9]. The factoring algorithm with the best 
conjectured asymptotic running time Lm(1/3,c) for some constant c < 2 is the number field 
sieve [HI, but for the size of general integers m that can be factored within reasonable time 
a xiriant of the quadratic sieve with asymptotic running time L,(1/2,1) is more efficient [9]. 
The running time of both these algorithms is independent of the size of the factor that is found. 
The best known algorithm for finding factors of moderate size is the elliptic curve algorithm 
[lo] which is with massively parallel computation successful for factors with up to 40 decimal 
digits [8, 181. Its asymptotic running time is Lp(1/2, f i )  where p is the factor to be found. It 
is the ratio L p ( 1 / 2 ,  f i ) / L p ( l / Z ,  1) = L,(1/2, fi - 1) of the running times of the elliptic curve 
factoring algorithm and the discrete logarithm algorithm [I] that provides a range for the size 
of the primes for which our public-key distribution system is both practical and secure. 

It seems at present to be appropriate to choose 3 to 4 prime factors of between 60 and 
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70 decimal digits. To factor such a modulus is for all presently known factoring algorithms 
completely infeasible. The largest factor that has been found by the elliptic curve algorithm has 
38 decimal digits [8]. Odlyzko [18] estimated that with the same computational effort that was 
spent on the factorization of the 106-digit number of [12], one could compute discrete logarithms 
for 92-digit prime moduli. To find a 70 digit factor with the elliptic curve factoring algorithm 
takes about Llo.r0(l/Z, f i ) /L10~(1/2,  fi) = 270.000 times more time than to find a 38 digit 
factor. On the other hand, computing discrete logarithms for a 70-digit prime modulus is about 
Llosa(1/2, 1)/Ll07o(1/2, 1) x 157 times faster than for a 92-digit prime modulus. An asymptotic 
analysis of the work factor of our system is given in the journal version of the paper. 

4. Alternative Implementations 

There exists a discrete logarithm algorithm for GF(p) due to Pohlig and Hellman [21] whose 
running time is proportional to the square root of the largest prime factor of p - 1, if the 
factorization of p - 1 is known. Hence the primes p, can be chosen such that (p, - 1)/2 is 
the product of some primes of a certain relatively s m d  size. Unfortunately, there also exists a 
special purpose factoring algorithm due to Pollard [22] that is particularly efficient for finding 
prime factors p for which p - 1 has only relatively small prime factors. However, the running 
time of Pollard’s algorithm is proportional to the largest prime factor of p - 1 rather than its 
square root. Therefore there may exist a range for the size of the largest prime factors of pi - 1 
for which a system based on this idea is both practical and secure. A possible choice could be 
to let m be the product of 2 primes pl and pz of about 100 decimal digits each, where ( P I -  1)/2 
and (pz - 1)/2 both are the product of several 13- to 15-digit primes. 

When the computational effort spent by the trusted authority is increased by a factor k, this 
forces an adversary to increase his computational effort by a factor k2. Thus when k-fold faster 
computer hardware becomes available this system’s security can also be increased by a factor of 
k.  This system is asymptotically superior to the system of Section 2 for which the work factor 
could be increased only by a factor kfi-l  = k414. 

The lemma in the previous section suggests a way to derive an identity number from a 
user’s identity such that the discrete logarithm of this number modulo m to the base a is 
guaranteed to exists. In the case where m is the product of only two prime factors there exists an 
alternative though less practical approach which is mentioned here for the sake of completeness. 
Let m = plpz and let gcd(p1 - l,p? - 1) = 2. The (without knowledge of the factorization of 
m) easi’v computable Jacobi symbol (zlm) is equal to 1 if and only if z is a quadratic residue 
either for both GF(p1) and GF(p2) or for none of them. Equivalently, (zlm) = 1 if and only 
if the discrete logarithms in GF(p1) and GF(p2) are congruent modulo 2, i.e., if and only if x 
possesses a discrete logarithm modulo m. Hence a user’s identity number can be defined a~ the 
smallest integer z greater or equal to the number representing his name and such that (zlm) = 1. 
No interaction is required for transmitting the offset since it can easily be determined without 
knowing the factorization of m. 
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5. Conclusions 

A remarkable property of the presented systems is that not only the cryptanalyst, but also 
the trusted authority must spend time super-polynomial in the input size. However, because the 
system is used for an appropriate fixed size of parameters, the trusted authority's computation is 
nevertheless feasible. Progress in computer technology can be exploited to increase the security 
of the system. 

There may exist other approaches than those presented to making the discrete logarithm 
problem feasible only when given the factorization of the modulus. Any progress in the discrete 
logarithm problem not leading to a comparable progress in the factorization problem, especially 
when applicable to primes of a certain special form, has the potential of leading to an improve- 
ment of the presented system. An interesting open question is whether it is possible to construct 
primes p of a special form containing a trapdoor such that computing discrete logarithms modulo 
p is feasible if and only if the trapdoor is known. 
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