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Abstract 
On the linear complexity A(Z) of a periodically repeated random 

bit sequence 2, R. Rueppel proved that, for two extreme cases of the 
period T, the expected linear complexity E[A(Z)] is almost equal to T, 
and suggested that E[A(Z)] would be close to T in general [6, pp. 33- 
521 [7, 81. In this note we obtain bounds of E[A(Z)], as well as bounds 
of the variance Var[A(Z)], both for the general case of T, and we 
estimate the probability distribution of A(Z). Our results on E[A(Z)] 
quantify the closeness of E[A(Z)] and T, in particular, formally confirm 
R. Rueppel's suggestion. 
Keywords: Linear Complexity, Random Sequences. 

1 Introduction 
The linear complexity [S, p. 321 (or linear equivalence [l, p.1991) of a sequence 
is the length of the shortest linear shift register (LFSR) by which the given 
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sequence could be generated. Since there exists an efficient algorithm for 
finding the shortest LFSR which generates a given sequence (the Berlekamp- 
Massey LFSR synthesis algorithm [ 5 ] ) ,  the linear complexity is particularly 
important as a measure of the unpredictability of sequences. The statisti- 
cal properties of the linear complexity of a periodically repeated random bit 
string are of considerable practical interest [6, pp. 33-52] [i', 81, since de- 
terministically generated key streams in cipher systems must be ultimately 
periodic. 

Given T ,  let tT = zo , z1 , .  . . , Z T - ~  be a binary sequence where zi (0 5 i 5 
T - 1) is selected according to a fair coin tossing experiment, and let z' be the 
semi-infinite sequence by periodically repeating the random bit string zT. Let 
2 be the sample space consisting of all the possible semi-infinite periodically 
repeated random sequences Z. The elements in 2 are equiprobable. Since 
(21 = 2T,  where 121 denote the size of 2, so the probability of the occurrence 
of each 5 is equal to 1/121 = 2-T.  Let A(Z) denote the linear complexity of 
5 ,  then A(5) is a random variable on the sample space 2. Let E[A(Z)] be 
the expected linear complexity of 2, and Var(A(Z)] the variance of the linear 
complexity A(?). 

R. Rueppel computed E[A(Z)] in two extreme cases: when T = 2" - 1 
(any prime n)  and when T = 2" (any rn) [6 ,  pp. 33-52] "7, 81. In both cases 
he proved that E[A(Z)] is almost equal to T ,  or more precisely, E[A(Z)]  2- 
e-'/"(2" - 3 / 2 )  when T = 2" - 1, and 

I 

E[A(Z)] = 2"' - 1 + 2-2m (1) 

when T = 2", and suggested that in the general case E[A(Z)] would be close 
to T .  

D. Gollmann [2] proved that, when T = p", p > 2 prime, and p 2  is not a 
factor of 2p-l - 1, 

where np is the degree of the irreducible polynomials with period p over 
G F ( 2 ) .  

In this note we consider E[A(Z)], as well as Var[A(Z)],  both for the 
general case. We obtain expressions for E[A(Z)] and for Var[A(2)] ,  and 
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we bound E[A(Z)] and Var[A(Z)] in terms of the arithmetic function d(T), 
and then we bound E[A(Z)] and Var[A(Z)] in terms of analytic functions, 
or more precisely, we show that for any e > 0, (i) E[A(Z)] > T - T' 
and Var[A(Z)] < T', provided T is large enough, (ii) E[A(Z)] > T - 

enough, and (iii) E[A(Z)]  > T - (logT)(1+C)10g2 and Var[h( z ) ]  < 10g2(l + 
T)(log T)(1+')10g2 for almost all T (see Remark 1 in section 4 ) .  We also es- 
timate the probability distribution of A(?), for any c > 6 > 0 we get that 
Prob.(A(Z) > T - T') > 1 - T-2c+6 for large enough T .  Our results on 
E[A(Z)]  quantify the closeness of E[A(.Z)] and T ,  and in particular formally 
confirm R. Rueppel's suggestion. 

In this paper the base of the logarithms is e, i .e.,  log = log,, unless 
indicated otherwise. 

T(l+')log2/loglogT and Var[A(Z)] < T(1+')h2/loglogT, provided T is large 

2 Expressions for E[A(z)] and v ~ r [ A ( z " ) ]  
We identify the sequence f with its generating function f ( z ) ,  defined over 
the binary field GF(2), as Z(z) = CZ,, z jz j .  It is known that f ( z )  is equal to 
a rational fraction Z(z) = z*(z)/(l - zT) = P ( Z , z ) / C ( Z , z ) ,  where z*(z)  = 
CTzt zjzj, P( 2, z) and C(Z, z) are coprime to each other. It is also known 
that C(E,z)  is the minimal polynomial [l, p.201][8, p. 261 of Z, and A(Z) = 
degC(Z, z), where degC(f, z) is the degree of C(Z, z). 

The range of C(Z, z) depends on the factorization of 1 - zT. If T = 2"TI, 

where for any given d, Cd,j(z) ( 0  5 j 5 # ( d ) / n d )  are all the distinct monic 
irreducible polynomials with period d over GF(2), and of the same degree 
nd, where nd is the order of 2 modulo d, ( i . e . ,  the least positive integer such 
that 2"d = 1 (mod d)) ,  #(d) is the Euler's function, (z.e., the number of the 
integers i, 1 5 i 5 d, coprime to d).  As a factor of 1 - x T ,  C( f , z )  must be of 
the form C(Z, z) = ndlTl n$:)/nd C ~ ~ ( ' ) ( z ) ,  0 5 ed,j(Z) 5 2m. The exponent 
ed,j(Z) is a random variable defined on 2 with range [0, 2"]. Now we have 
~ ( 2 )  = ~ d l T ,  @)'nd nded,j(Z). 

gcd(2, TI) = 1, it is known [4,  pp. 64-65] that 1 - zT = nj,, O(d)/nr C 2 7 ) ,  d,, 
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Lemma1 . 
1. The random variable ed,,(Z) has the following probability density function 

2. 
independent. 

All the random variables ed,,(Z), d I TI, 1 5 j 5 4 ( d ) / n d ,  are mutually 

Observe that the probability density function of e d , j ( Z )  is not dependent 
on the parameter j, we denote by Ed the expected value of ed,j(Z), and by 
Vd the variance of ed,j(Z). 

Lemma 2 

Theorem 1 (Expressions) Let T = 2"T1, gcd(2, TI) = 1. Then 

and 

Theorem 1 gives a way to calculate E[A(Z)]  and V a r [ A ( Z ) ]  based on the 
factorization of T case by case. In the special case when T = 2" this is 
straightforward. Both of the summations in Theorem 1 contain only one 
term with d = 1 ,  from which one obtains (l), as well as 
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For another exampe, when T = p", p > 2 prime, and p2  is not a factor of 
2P-' - 1, from E[A(Z)]'s expression, in which the summation contains n + 1 
terms with d = p',O 5 i 5 n ,  and npi = nPpi-l ,  1 5 i 5 n ,  one obtains (2). 
But the real significance of Theorem 1 is that from it one may bound E[A(.Z)] 
and Var[A(Z)] in terms of the arithmetic function d ( n ) ,  which is defined to 
be the number of all possible positive factors of n,  i e . ,  d ( n )  = &In 1. 

3 Bounds for E [ A ( t ) ]  and v ~ [ A ( t ) ]  by d ( n )  

Theorem 2 Let T = 29'1, gcd(2,Tl) = 1. Then 

E[h(Z)] > T - d(T1) 2 T - d(T),  

and 

With Theorem 2 and the factorization of T ,  the evaluation for both of 
E[A(.Z)] and Var[A(Z)] becomes easier. In fact, if TI = p ; i ,  where pi, 1 5 
i 5 s, are distinct prime factors, then d(T,) = n:=, (1 + e ; )  [2, p. 2381. Hence 
E[A(Z)]  > T - &( 1 + e;) and Var[A(.Z)] < (1 +log,( 1 +TI))  n:==, (1 + e;). 
What is more interesting is that from Theorem 2 we shall get analytic bounds 
for E[A(Z)]  and Var[h( f ) ]  based on the orders of d ( n ) .  

4 Bounds for E[A(2>] and v a r [ A ( t ) ]  by 
Analytic Functions 

Lemma 3 [2, pp. 259-261, p. 3611 If E > 0 ,  then we have 

I .  d ( n )  < nc for all n > n,, where n, depends on E .  

2. d ( n )  < n(1+")10g2/10g10gn for all n > n,, where n, depends on E .  

3. d ( n )  < (logn)('+,)log2 for almost all numbers n .  
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Remark 1 A property P of positive integers n is said to be true for almost 
all numbers if lim=+= N ( s ) / s  = 1, where N ( z )  is the number of positive 
integers less than s which satisfy P. 
Remark 2 Lemma 3 provides three kinds of bounds for d ( n ) .  The bounds 
given in item I and item 2 hold for large enough n .  The bound given in 
item2, a kind of power of n with the exponent tending slowly to zero when 
n goes to infinity, is tighter than the bound given in item I ,  but the latter 
looks much simpler. The bound given in item 3 is the tightest one, but it 
holds only for almost all n .  

From Theorem 2 and Lemma 3 we may obtain immediately three kinds 
of bounds for E[A(Z)].  

Theorem 3 (Bounds for E [ A ( 2 ) ] )  Ifc > 0 ,  then we have 

I .  E[A(Z)] > T - T' for all T > T,, where T, depends on c .  

2. E[A(Z)] > T - T(1+c)10g2/10g10gT for all T > T,, where T, depends on c .  

3. E[A(Z)]  > T - (logT)('+')'"g2 for almost-all T .  

Remark 3 The bounds on E[A(2)] shown in Theorem 3 quantify the 
closeness of E[A(Z)] and T ,  and in particular, the expected linear com- 
plexity E[A(Z)] and the period T are of the same asymptotical order, i.e., 
limT,, E [ A ( 2 ) ] / T  = 1, hence formally confirm R. Rueppel's suggestion. 

Theorem 4 (Bounds for Var[A(Z)]) Ife > 0 ,  then we have 

I .  Var[h(Z)] < T", for all T > T,, where T, depends on c .  

2. Vur[A(2)] < T(1+E)10g2/10g10gT, for all T > T,, where T, depends on c .  

3. Var[A(2) ]  < (log T)(l+')log2 10g2(l + T ) ,  for almost-all T .  

5 Probability Distribution of A(;) 
Based on the knowlege on E[A(Z)] and Var[A(Z)] ,  we prove that the linear 
complexity A(2) distributes very close to the length T with a probability 
almost equal to 1, provided T is large enough, as shown in the following 

I 
I theorem. 
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Theorem 5 If& > 6 > 0, then for large enough T we have 

Prob.(A(Z) > T - 2'') > 1 - T-2c+6 

6 From GF(2) to GF(q) 
With the same arguments the results above can be generalized to the semi- 
infinite periodically repeated random sequences over any given finite field 

Given T ,  let zT = zO,zl,. . . , z ~ - 1  be a random sequence of length T over 
GF(q) ,  and Z the semi-infinite sequence by periodically repeating zT. Let 2 
be the sample space consisting of all the possible semi-infinite periodically 
repeated random sequences Z, then 121 = qT. We assume the elements in 2 
are equiprobable, i.e., the probability of the occurrence of each .Z is equal to 
q-T.  Now let nd denote the order of q modulo d, then Theorem 1 extends to 

Theorem 6 Let T = pmT1 , gcd(p, TI) = 1 .  Then 

GF(q) ,  q = Prn, P prime, 

and 

And Theorem 2 extends to 

Theorem 7 Let T = prnT1, gcd(p,Tl) = 1.  Then 

E[A(Z)] > T - d(T1) 2 T - d(T),  

and 

Var[A(Z)] < d(T1)(1 + log,(l +TI)) I d(T)(l + log,(l + T ) ) .  

Hence all the other theorems over GF(2)  above can be extended to over 
GF(q).  
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