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Abstract: In this paper, a number of output sequences is proposed as 
a characteristic of binary sequence generators for cryptographic 
applications. Sufficient conditions for a variable-memory binary 
sequence generator to produce maximum possible number of output 
sequences are derived. 

I. INTRODUCTION 

An important characteristic of every binary sequence generator 
(BSG) for cryptographic or spread-spectrum applications is the number 
of output sequences i t  can produce f o r  all the permitted initial 
states. A natural requirement is that different initial states give 

rise to different output sequences. For almost all the BSG's known in 
the cryptographic literature, this property has not been analyzed. 

In this paper, we analyze the number of output sequences of a 

recently proposed [ l ]  nonlinear BSG consisting of three linear 

feedback shift registers (LFSR's) and a variable memory (MEM-BSC). It 
is shown in [ l ]  that MEM-BSG is suitable for generating fast binary 
sequences of large period and linear complexity and with good 
correlation properties. A number of  output sequences o f  a well-known 
nonlinear BSG [ Z ]  with two LFSR's and ?. multiplexer (MUX-BSG) is also 

determined. 

11. IEI-BSG 

In this section we provide a short description o f  a MEM-BSG [ l ] .  

shown in Fig. 1.  
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LFSRi of length mi has a primitive characteristic polynomial 

fi(x). i=1.2.3. All the LFSR's are clocked by the same clock and have 

nonnull initial states, thus generating maximum-length pseudonoise 

(PN) sequences of periods P =2 -1. iz1.2.3. respectively. The initial 

content o f  the pk bit memory is arbitrary. The read and write 
addresses are the binary k-tuples taken from any k stages of LFSRZ and 

LFSR3. respectively. whereas the binary output of LFSRl is used to 

load the memory. A t  any time t=0.1.2. . . .  the following two operations 
are carried out. First, the output bit b(t) i s  read out of the memory 
location addressed by the read address X(t). Second, the output bit 

a(t) of LFSRl is written into the memory location addressed by the 

write address Y(t). The BSG just described will be referred to as a 

MEM-BSC. It implements a time-varying nonlinear function of the phase 
shifts of a maximum-length sequence. 

m i 
i 

The output sequences of a MEM-BSG need not b e  periodic. because 
of the initial memory content. To make them periodic and independent 
of the initial memory content, in all that follows we assume t=P3 is 

the initial time. that is, we set t - P  +t. 3 

111. ANALYSIS 

In order to establish large enough lower bounds on the linear 
complexity and period of the output sequences o f  a MEM-BSG. i t  was 

assumed in [ l ]  that 

1 <k ( min{m2. m3}, 
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that in l ,  rn2 ,  and rn3 are pairwise coprime, and that the k address 

stages of LFSR2 are equidistant i f  3<k<m2-2. Hovever, our objective 

here is to obtain the sufficient conditions, as general as possible. 

f o r  a MEM-BSG to generate the maximum possible number of output 

sequences, for all the nonnull initial states of the LFSR’s. To this 
end, instead of the four conditions given above, we shall here 

maintain only the first two, (1) and ( Z ) ,  generalize the third one. 

and drop the fourth one. 

We start from a suitable expression for the MEM-BSG output 

sequence [b]. derived in [ l ] :  

P3- 1 
b(t) = Z Cs(t) Vs(t), t=0,1.2. . . .  

s =o 

where 

1 ,  t-s=O mod P 

0, t-s#O mod P3 
. s=0,1.. . . , P3-1 c (t)  = 

(3) 

( 4 )  

( 5 )  v (t )  = a(t-+,(xt)). t=0,1.2. . . . .  s=O.l. . . . .  P3-l, 

X t ,  t=O, 1.2,. . . . is the read address sequence, of period P2, taking 

values in the set K = {O.l}k, and for each s=O.l,. . . . P3-l. $,(J). 

jsK, , . . . ,  P3} which is defined in [I] 

,v 

is an injective mapping K + ( 1  
* *  ,v 

in terms of the write address sequence. This definition is not needed 

here, but only the fact that 

where f o r  each jeK, M denotes the period of the periodic extension - -  .l - 
sequence $t(J)~$tmodP ( J ) .  t=0.1,2. . . .  . Note that ( 3 )  actually means 

3 
that [b] consists of Pj interleaved sequences [V (P t+s)], s=O.1, . . . .  s 3  
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Pg- 1 

cond 

which are the decimated versions of [V (t+s)], s;0,1. . . . ,  p - 1 .  3 

We now state and prove a theorem that gives the sufficient 

tions for a MEM-BSG to produce the maximum possible number of 
output sequences. 

Theorem: If the conditions ( 1 )  and ( 2 )  are satisfied and 

= 1  
p1 

gcd ('2' gcd(P1. P2) 

then the MEM-BSG generates P1P2P3 different output sequences, 

the nonnull initial states of  LFSRi. i=1,2,3. 

for all 

P r o o f :  First note that ( 1 )  and (2) imply that m2, m3 2 2 and 

m1>3. Since each LFSRi generates cyclic shifts o f  the corresponding 

maximum-lengrh sequence, the s e t  of all the output sequences of the 
BEM-BSG is determined by: 

for i=O. . . . ,  P -1. j = O  . . . . .  P -1. n=O. . . . .  Pg-l, where the sequences 

[ao( t ) ] ,  [Xy], and [$:( j)], jeK* correspond to arbitrarily chosen 

initial states o f  LFSRi. i=1.2,3. respectively. We should prove that 

bijn(t)=bi,j,n,(t). t=0,1,2. . . . .  which is equivalent to 

1 2 

.., - 5  

s = o .  . . . .  P - 1 .  t=0.1.2 . . . .  ( 1 1 )  3 

implies that (i',j',n')=(i,j,n), f o r  all admitted (i,j,n) and 
(i'.j',n'). Since the periods of the sequences [X ] and [ao(t)] are  P2 

and P1, respectively, the periods of  [a,( t+s+i-@s+n(Xt+s+j 

0 
t 

11 and 
0 0  
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0 [ao( t+s+i'- @:+n,(Xt+,+j,)] both divide PIP2. f o r  each s=O . . . . .  P3-L, 
In view of (9) i t  then follows that (11) involves a proper decimation 
by P3 of the corresponding sequences. Employing the fact that a proper 

decimation is an one-to-one correspondence ( 5 e e  [ Z ] ,  for example). we 
obtain that ( 1 1 )  is equivalent t o  

Further. setting t+PZt+r, (12) becomes 

0 0  0 0 
a. ( p2 t+r + s +  i -$ s+n(Xr+s+j)) = a0(P2t+'+s+i'-4)s+n. (Xr+s+j.))* 

r=O, . . . .  P - 1 .  s=O.  . . . .  P3-1. t=0.1,2, . . . ,  (13) 2 

0 
2 O f  

because [X,] has period P2. 

the corresponding cyclic shifts of [a,]. This decimation need not be 

proper. Nevertheless. on the condition (7). the decimation does not 
change the linear complexity [2, Lemma 2.2.83. and, hence. is an 
one-to-one correspondence o f  all the cyclic shifts of [ao(t)]. 

Accordingly, (13) is equivalent to 

In (13) we deal with a decimation by P 
0 

) = i '  - @:+n.(Xr+s+j.)] 0 [i - @s+n(Xr+s+j mod P1, 

r=O, . . . .  P2-l. s=O . . . . .  P3-l. (14) 

0 0 
t * * w  

Considering the periodicity of 

(14) reduces to 

the sequences [X J and [$,(j)]. jeK , 

[@?s+n-n')modP ('(r+j-j' 0 )modP2)=4s(Xr) +I,-i] . mod PI, 
3 

(15) r r O  , . _ . .  P -1. s=O . . _ . ,  P -1. 2 3 

With the notation Pi=Pl/gcd(P1. (i'-i)modP1). (15) gives rise to 

0 
":s+( n-n * )Pi)modP,(x( r + (  j- j ' )Pi )modPq) = 
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0 0  0 0  
= @S(Xr)+lcm(Pl.(i'-i)modP1) = 4,(Xr)l mod P 1' 

r=O, . . . ,  Pz-l, s=O. . . . ,  P3-1. 

i.e., 

0 0 0  
C~~s+(n-n')Pit)modPg(x(r+(j-j')Pit)modP2) = 4s(xr)3 mod ' I '  

r=O. . . . .  Pa-1. s = O .  . . . .  P -1, t=0.1,2. . . .  . (17) 3 

Setting t=PZ, (17) becomes 

where in (19). instead of the equality modulo P I .  we have the  ordinary 

m 0 equality, because (2) implies that l<@,(  j)<P3<m1(2 '-l=P1, for any 

m1>3. jsK, and s=O , . . . .  P3-l. Further, recalling that the period of 

- 
- 5  

[@y(j)] denoted by M satisfies MjlP3. for each jsK, from (19) we 
- *  

Y 

j 
Y 

Y 

obtain 

Mjl[(n-n')PiPZ]modP3. jaK. 
Y Y  

Y 

which in view of (6) leads to 

p1p2 
'3 I C(n-n' gcd( P 1 ,  ( i '-i)modP ) 1modP3' 1 

i.e 

]modP3 = 0. (22) 
'lP2 

C(n-n') gcd(P1, (i'-i)modP1) 

Finally, (9) and (22) imply that n'=n. 
Having proved that ( 1 1 )  results in n'=n, we now turn back to 

(15). With n'=n i t  becomes 
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0 0  ) = @s(Xr)+i'-i] 0 0  mod P I ,  
['s('(r+( j-j'))modP2 

r=O . . . . .  P - I .  s=0 . . . . .  P3-1. 2 

which yields 

where P = P  /gcd(P1.P2). In a similar way as (15) implies (16). (24) 

implies 
1 

0 0  0 0  
[$,('( r+( j- j ' ) p ' )modP2) = @s (xr 11 mod ' *  

(25) r=O, . . . .  P2-l. s=O, . . . .  P - 1 .  3 

where P'=P/gcd(P. (i'-i)modP). On the other hand, from (7) we obtain 

" m. m. 
P =  =1 2 ' -1  2'-1 - 

gcd(P1.P2) - gcd(ml.m2) ' m1/2 
- 

2 - 1  2 - 1  

which together with (2) yields l<$s(j)<P,<ml(P. 0 

period of [$,(Xt)] 0 0  is P2 since aS(j), 0 

m1)3. for each jrK and .., _ _  
s=O . . . . .  P3-1. Consequently, (25) remains true i f  the modulo P 

equality is replaced by the ordinary one. For  each s = O . .  . . , P3-l. the 

jeK. is an injection. Therefore, 
-. *.., 

from (25) i t  follows that 

which in view of ( 8 )  results in j'=j. 
Now we turn to (23). With j'=j i t  reduces to [i'=i]modP1, that 

is. t o  i ' = i .  We have thus proved that from (11) i t  follows that 
(i',j',n')=(i,j,n), for all admitted (i,j,n) and (i',j',n'). Q.E.D. 
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Note that the  case gcd(ml.m2)=l. which was considered in [ l ] .  is 

a special case of (7) and ( 8 ) .  meaning that the theorem remains true 
i f  (7) and (8) are replaced by gcd(ml,m2)=l. 

Finally. w e  analyze a well-known B S G  [ Z ]  with two LFSR's and a 
multiplexer (MUX-BSG). Consider a MUX-BSG obtained from a MEM-BSG by 
substituting a k-bit address multiplexer for a 2 -bit memory and 
LFSR3. The multiplexer k-bit address is generated in the same way as 

the read address in the MEM-BSG. while the gk multiplexer inputs are 
taken from any 2k stages of  LFSR1. I t  is shown in [ l ]  that there is a 

strong connection between the MEM-BSG and the so-defined MUX-BSG. 
Accordingly, in a similar way one can prove that on the conditions (7) 
and ( 8 )  the MUX-BSG generates P1P2 different output sequences for all 

the nonnull initial states o f  LFSRl and LFSR2. This fact was not 

revealed in [Z]. 

k 

IV. CONCLUSION 

As a characteristic of binary sequence generators (BSG's) for 

cryptographic applications, the number of output sequences they can 
generate f o r  all the permitted initial states is proposed. A natural 
cryptographic criterion is that this number be maximum possible. It is 
shown that this property can be analyzed f o r  some types of the BSG's. 
I t  is proved that under certain conditions the recently defined 
MEM-BSG [ l ]  and the well-knovn MUX-BSG [2] both produce maximum 
possible number of  output sequences. 
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