
Differential Cryptanalysis of Feal and N-Hash 

Eli Biham Adi Shamir 

The Weizmann Indi tu te  of Science 
Department of Applied Mathematics and Computer  Science 

Rehovot 761 00, Israel 

Abstract 

In [1,2] we introduced the notion of differential cryptanalysis and described 
its application to DES[8] and several of its variants. In this paper we show 
the applicability of differential cryptanalysis to the Feal family of encryption 
algorithms and to the N-Hash hash function. 

1 Introduction 

Feal is a family of encryption algorithms, which are designed to have simple and 
efficient software implementations on 8-bit microprocessors. The original member 
of this family, called Feal-4[10], had four rounds. This version was broken by Den 
Boer[3] using a chosen plaintext attack with 100 to 10000 ciphertexts. 

The designers of Fed reacted by creating a second version, called Feal-8[9,7]. 
This version used the same F function as Feal-4, but increased the number of 
rounds to eight. 

Feal-8 was broken by the chosen plaintext differential cryptanalytic attack de- 
scribed in this paper. As a result, two new versions were added to the family: Feal- 
“41 with any evt n number N of rounds, and Feal-NX[5] with an extended 128-bit 
key. In addition, ‘The designers proposed a more complex eight-round version called 
N-Hash[G] as a cryptographically strong hash function which maps arbitrarily long 
inputs into 128-bit values. 

The main results reported in this paper are as follows: Feal-8 is breakable un- 
der a chosen plaintext attack with 2000 ciphertexts. Feal-N can be broken faster 
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than via exhaustive search for any N 5 31 rounds, and Feal-NX is just as easy to 
break as Feal-N for any value of N. The chosen plaintext differential c r y p t d y t i c  
attacks can be transformed into known plaintext attacks, and can be applied even 
in the CBC mode of operation, provided we have s&ciently many known plain- 
text/ciphertext pairs (about 2= in the case of Fed-8). Variants of N-Hash with up 
to 12 rounds can be broken faster than via the birthday paradox, but for technical 
reasons we can apply this attack only when the number of rounds is divisible by 
three. In the full paper we also show that Feal-4 is trivially breakable with eight 
chosen plaintexts or via a non-differential attack with about 100000 known plain- 
texts. 

2 Differential Cryptanalysis of Feal 

The notion of differential cryptanalysis and its application to DES-like cryptosys- 
terns are described in [1,2]. Due to space limitations, we can only give a high level 
description of such an attack in this extended abstract. 

The basic tool of differential cryptanalytic attacks is a pair of ciphertexts whose 
corresponding plaintexts have a particular difference. The method analyses many 
pairs with the same difference and locates the most probable key. For Fed the 
difference is chosen as a particular XORed value of the two plaintexts. 

The following notation is used in this paper: 

n,: An hexadecimal number is denoted by a subscript z (i.e., 10, = 16). 

X + ,  X': At any intermediate point during the encryption of pairs of messages, X 
and X' are the corresponding intermediate values of the two executions of the 
algorithm, and X' is defined to be X' = X @ X " .  

P: The plaintext. P' is the other plaintext in the pair and P' = P @ P' is the 
plaintexts XOR 

T: The ciphertexts of the corresponding plaintexts P, P' are denoted by T and T*. 
2'' = T @ T' is the ciphertexts XOR. 

(1, r): The left and right halves of the ciphertext T are denoted by I and r respec- 
tively. 

a, . . . , h: The 32 bit inputs of the F function in the various rounds. See figure 1. 

A, . . . , H: The 32 bit outputs of the F function in the various rounds. See figure 1. 

ROL2(X): Rotation of the byte X by two bits to the left. 
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Figure 1: The structure and the F function of Feal-8 

Si(z, y): The Feal S boxes: Si(z, y) = ROL2(1+ y + i 
q:: The value inside the F function, with input I (one of h, g ,  . . . ). Used as qi for 

(mod 256)). 

anonymous input and as g" for the 16-bit value. See f i v  1. 

Xi: The zth byte of X (for 16, 32 or 64bit X). 

Xi,,: The j* bit of Xi (where 0 is the least significant bit). 

#X: The number of bits set to 1 in the lower seven bits of byte X. 

I: The logical-or operator. 

The structure of Feal (see figure 1) is similar to the structure of DES with a 
new F function and modified initial and final transformations. The F function of 
Feal contains two new operations: byte rotation which is XOR-linear and byte 
addition which is not XOR-linear. The byte addition operation is the only non 
linear operation in Fed and therefore the strength of Fed crucially depends on 
its non-linearity. At the beginning and at the end of the encryption process the 
right half of the data is XORed with the left half of the data and the whole data 
is XORed with additional subkeys, rather than permuted as in DES. Due to their 
linearity, these XORs pose only minor difficulty to our attacks. 
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The addition operations in the S boxes are not XOR-linear. However, there is 
still a statistical relationship between the input XORS of pairs and their output 
XORs. A table which shows the distribution of the input XORS and the output 
XORs of an S box is called the pairu X O R  daathbution table of the S box, Such a 
table has an entry for each combination of input XOR and output XOR, and the 
value of an entry is the number of possible pairs with the corresponding input XOR 
and output XOR. Usually several output XORs are possible for each input XOR. 
A special caae arises when the input XOR is zero, in which case the output XOR 
must be zero as well. We say that X may c a w e  Y (denoted by X --+ Y) if there 
is a pair in which the input XOR is X and the output XOR is Y. We say that X 
m a y  c a w e  Y with probability p if for a fraction p of the pairs with input XOR X, 
the output XOR is Y. 

Since each S box has 16 input bits and only eight output bits it is not recom- 
mended to use the pairs XOR distribution tables directly. Instead, in the first stage 
of the analysis we use the joint distribution table of the two middle S boxes in the F 
function (inside the gray rectangle in figure 1). This combination has 16 input bits 
and 16 output bits, and the table has many interesting entries. For example, there 
are two entries with probability 1 which are 00 00, + 00 00, and 80 80, --+ 00 02,. 
About 98% of the entries are impossible (contain value 0). The average value of all 
the entries is 1, but the average value of the possible entries is about 50. In the full 
paper we describe how we can easily decide if X + Y or not for given XOR values 
X and Y without consulting the table. 

The S boxes also have the following properties with respect to pairs: Let 2 = 
S ; ( X ,  Y). If X'  = 80, and Y' = 80, then 2' = 00, always. If X' = 80, and Y' = 00, 
then 2' = 02, always. For any input XORS X' and Y' of the S boxes the resultant 
output XOR 2' = ROLB(X'@ Y )  is obtained with probability about py(: , ,y , ) .  This 
happens because each bit which is different in the pairs (X and X', or Y and Y*) 
gives rise to a different carry with probability close to 3 .  If all the carries happen 
at the same bits in the pair then the equation is satisfied. 

The final XOR of the subkeys with the ciphertexts is significant when we look 
for the subkeys. The input of the F function in the last round is a function of 
the ciphertext XORed with rn additional subkey of the final transformation rather 
than just a function of the ciphertext (as in DES). Therefore, the counting scheme 
finds a XOR combination of the subkey of the last round and the additional subkey, 
rather than the subkey of the last round itself. 

Definition 1 The actual XOR combinatiow of uubkeyu which tare found by the 
attack are called actual subkeys. The actual subkey of round i + 1 i u  denoted 
by AKi .  The 16-bit XOR combinatiom (AKio 63 AKil ,AKiz  @ AKi3) are called 
16-bit actual subkeys. The actual Jubkey of the l a d  round of a cryptoayutem ia 
called the last actual subkey. 
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Example 1 The actual uubkeyu of Fed-8 in the even roundu i + 1 are the 32 bit 
value3 

AKi = Kcd @I K e f  @I am(Ki) 

where am(Ki) i 5  the ,!?&-bit value (O,Kio,Kil ,O).  
rounds are the 32 bit values 

The actual avbkeyu in the odd 

AKi  = Kcd  @ am(Ki). 

A tool which pushes the knowledge of the X0R.a of pairs as many rounds as 
possible is called a charucteristic. An n-round characteristic R starts with an input 
XOR value RZp and assigns a probability in which the data XOR after R rounds 
becomes RT. Two characteristics R1 and R2 can be concatenated to form a longer 
characteristic whenever Rk equals the swapped value of the two halves of 0%' and 
the probability of R is the product of the probabilities of R' and R'. A pair whose 
intermediate XORs equal the values specified by a characteristic is c d e d  a right pair 
with respect to the characteristic. Any other pair is called a wrong pair with respect 
to the characteristic. Note that in Fed, the plaintext XOR P' is different from the 
input XOR of the characteristic f 2 p  due to the initial and final transformations. 

Given a sufficiently long characteristic and a right pair w e  can calculate the 
output XOR of F function in the last round. The inputs themselves of this F 
function are known from the ciphertexts up to a XOR with subkeys. For any 
possible value of the last actual subkey, we count the number of possible pairs 
for which the output XOR is as expected. Every right pair suggests the right 
value of the actual subkey. Since the 
right pairs occur with the characteristic's probability, the right value of the actual 
subkey should be counted more often than any other value. Therefore, it can be 
identified. 

The wrong pairs suggest random values. 

The simplest example of a one-round characteristic with probability 1 is: 

There are three other one-round characteristics with probability 1. A typical 
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a' = 80 80 80 80, F 

one is: 

always 

np = (L', 80 80 80 80,) 
I 

I I 
1 

(&. = (L' @ 02 00 00 02,, 80 80 80 80,;) 

Three non trivial three-round characteristics with probability 1 also exist. 

A five-round characteristic with probability A, a six-round characteristic with 
probability and an iterative characteristic with probability per round are 
described later in this extended abstract. 

3 Cryptanalysis of Feal-8 

In this section we describe a differential cryptanalytic attack on Feal-8 which uses 
about 1000 pairs of ciphertexts whose corresponding plaintexts are chosen at random 
satisfying 

P' = A2 00 80 00 22 80 80 00,. 
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The plaintext XOR is motivated by the following six round characteristic whose 
probability is 1/128: 

52p = A2 00 80 00 80 80 00 00, 

I . I 

always 

with probability 

always 

with probability 

always 

with probability 1/8 

( QT = WY 08 20 82 A2 00 80 00, 1 
where X, Y, 2 and W are not fixed and can range (for Merent right pairs) over 
X E ( 5 , 6 , 7 , 9 , A , B , D , E , F } ,  Y E { 9 , A , B } ,  2 E {0,1,3} and W = X @ 8 .  

In order to fmd the last actual subkey we do the following. Given the ciphertexts 
T and T’ of a right pair, we can deduce: 

g‘ = WY 08 20 82, 
h‘ = l ‘ @  r‘ 
G’ = f’ fl3 h’ = A2 00 80 00, @ I’ @ r’ 
H‘ = I‘ @ g’ = l ‘ @  W Y  08 20 82,. 

Therefore, all the bits of h’ and G’ and 24 bits of each of g’ and H’ are known. 
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The counting method is used to find the 16-bit last actual subkey. Filtering can 
be done by the knowledge of bits in the other two bytes of H' and in the seventh 
round. Assuming g1 G' we can reverse calculate the values of gi,o from GI by 

sb.0 = Gb,z @ c:,o 
s i o  = G . 2  @ G , O  

s;,o = G:,2 @ G , o  @ 9;,0 

s:,o = q z  @ 9A.o @ s:,o @ g;,o 

and verify that the two known bits gi,o and gi,o from the characteristic are the same. 
About 3 of the wrong pairs are discarded by this verification. We can also discard 
about $ of the other wrong pairs for which g1 $, G'. Assuming h' 4 H' we can 
verify the four bits of H,!2 by 

G , 2  = H:,o EB hb,o 
q 2  = hb,o @ h:,o @ %,o @ hS,o 
G . 2  = Hi.0 @ h;,o 03 hL,o 

G , 2  = H;,o (3 G o -  

This verification discards about : of the remaining wrong pairs. 

All the right pairs must be verified correctly. Only +-$& = & of the wrong pairs 
should pass the three filters. Since the right pairs occur with the characteristic's 
probability of A, most of the remaining pairs are right pairs. 

The counting scheme counts the number of pairs for which each value of the 
16-bit last actual subkey is possible. Our calculations show that the right value is 
about Z1' times more likely to be counted than a random value. This ratio is so 
high that only eight right pairs are typically needed for the attack, and thus the 
total number of pairs we have to examine is about 8 - 128 w 1000. Note that we 
cannot distinguish between the right value of the actual subkey and the same value 
XORed with 80 80,. Therefore, we fhd two possibilities for the 16-bit actual subkey. 

Given the last 16-bit actual subkey it is possible to extend it to the full last actual 
subkey and then find the previous actual subkeys using similar approaches with 
shorter characteristics whose probabilities are much higher. Once the last actual 
subkey is found, we can partially decrypt the ciphertexts and proceed to find the 
previous five actual subkeys from which we can derive the following values: 

K5 63 K7 
K463 K6 
K3 @ K5 
K2 @ K4 
K103 K3. 
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Using these values we c81l easily derive the value of the key itself by analyzing the 
structure of the key processing algorithm. 

This attack was implemented on a COMPAQ personal computer. It h d s  the 
key in less than two minutes using 1000 pairs with more than 95% success rate. 
Using 2000 pairs it finds the key with almost 100% success rate. The program uses 
280K bytes of memory. 

4 Cryptanalysis of Feal-N and Feal-NX with N 5 
31 rounds 

Feal-N[4] was suggested as an N-round extension of Fed-8 after our attack on Feal-8 
was announced. Feal-NX[Ei] is similar to Feal-N but uses a longer 128-bit key and a 
different key processing algorithm. Since our attack ignores the key processing and 
finds the actual subkeys, we can apply it to both Feal-N and Feal-NX with identical 
complexity and performance. 

The attack on Fed with an arbitrary number of rounds is based on the following 
iterative characteristic: 

f2p  = 80 60 80 00 80 60 80 00, 

I 4 1 

a' = 80 60 80 00, m F - A' = 00 80 00 00, th proba ility 1/ 

with probability 1/4 

with probability 1/4 

wit;i probability 1/4 

I 
4 

i-2~ = 80 60 80 00 80 60 80 00,. 
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The probability of each round of this characteristic is 1/4, and it can be concatenated 
to itself any number of times since the swapped value of the two halves of Szp equals 
Q T .  Thus, an n-round characteristic with probability & = 2-'" can be obtained. 

An attack based on a characteristic which is shorter by two rounds than the 
cryptosystem is called a 2R-attack. In this case, we know the ciphertext XOR 2" 
and the input XOR of the last round (w.1.g. we employ the notation of an eight- 
round cryptosystem) h' by the ciphertext, and f' and g' by the characteristic. Thus, 
G' = f' @ h' and H' = 9' @ 1'. Each pair is verified to have g' t G' and h' + H' and 
the resultant pairs are used in the process of counting the possibilities in order to 
find the last actual subkey. The counting is done in two steps. In the first step we 
find the 16-bit last actual subkey. In the second step we find the two other eight- 
bit values of the last actual subkey. Two of the bits of the last actual subkey are 
indistinguishable. Therefore, we must try the following steps in parallel for the four 
possibilities of these two bits. The verification of g' -+ G' leaves only 2-lg of the 
pairs (since for either g' = 80 60 80 00, or g' = 80 EO 80 00, there are only about 
213 possible output XORS G'). The verification of h' + H' leaves 2-" of the pairs 
(the fraction of the possible entries in the pairs XORS distribution table of the F 
function). Our calculations show that the right value of the last subkey is counted 
with a detectably higher probability than a random value up to N 5 28 rounds, 
and thus we can break Feal-N with 2R-attacks for any N 5 28 rounds, faster than 
via exhaustive search, as shown in table 1. 

An attack based on a characteristic which is shorter by one round than the 
cryptosystem is called a 18-attack. Using lR-attacks (w.1.g. we employ the notation 
of an eight-round cryptosystem), we know T' and h' from the ciphertext and 9' and 
h' from the characteristic. Also, H' = g ' e l ' .  We can verig that h' calculated by the 
ciphertext equals the h' of the characteristic, and that h' -+ H'. The successfully 
filtered pairs are used in the process of counting the number of times each possible 
value of the last actual subkey is suggested, and finding the most popular value. 
Complicating factors are the small number of bits set in h' (which is a constant 
defined by the characteristic), and the fact that many values of H' suggest many 
common values of the last actual subkey. Our calculations show that the right value 
of the last subkey is counted with detectably higher probability than a random value 
up to N 5 31 rounds. A s u m m a r y  of the 1R-attacks on Fed-N appears in table 1, 
and shows that the differential cryptanalysis is faster than exhaustive search up to 
N 5 31. 

Note that in both the 1R-attacks sad the 2R-attacks we use eight-message octets 
with four characteristics (this is a special case in which an octet can have four 
characteristics since Sl; = S25 @ @ a;). These four characteristics are the four 
possible rotations of the given characteristic. Thus, each octet gives rise to 16 pairs 
which greatly reduces the required number of chosen plaintexts. In both kinds of 
attacks there are two indistinguishable bits at each of the last two subkeys. The 
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10 
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12 
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26 
27 
28 
29 
30 
31 
32 
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2R-attack - 
Prob v 
2-14 

2-18 
2-16 

2-20 
2-22 

2-24 

2-26 

2-28 

2-30 

2-34 
2-3s 
2-= 

2-32 

2-40 
2-42 
2-44 
2-46 
2-48 
2-50 
2-52 
2-54 
2-56 
2-58 
2-60 

pairs 
7 
216 
218 
220 
222 

226 

228 

230 

234 
2" 
238 

224 

232 

240 
242 
244 
246 
249 
252 
255 
258 

- 
Data 
273 
215 
217 
219 

223 
225 
227 
229 
231 

235 
237 

239 
241 

245 
248 
251 
254 
257 

221 

233 

243 

- 

lR-attack - 
Prob 2--14 
2-16 
2-18 
2-20 
2-22 
2-24 
2-26 

2-28 
2-30 

2-34 
2-" 
2-38 

2-32 

2-40 
2-42 
2-44 
2-46 
2-48 
2-50 
2-52 
2-54 
2-56 

2-58 
2-69 
2-62 - 

pairs 
T- 
219 
221 
2= 
225 
227 
229 
231 

235 
237 

241 
243 
245 
247 
249 
251 
253 
255 
257 
259 

261 
2 a  
267 

233 

F9 

- 

Data 
215 

220 
222 

226 
228 
230 

234 
236 
238 

$8 

224 

232 

240 

242 

244 

246 
248 
250 
252 
254 
256 
258 
260 
- 253 
- 2- - 

Table 1: Attacks on Fed-N 
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attacking program should try all the 16 possible values of these bits when analyzing 
the earlier subkeys. 

5 Known Plaintext Differential Cryptanalytic At- 
tacks 

Differential cryptanalytic attacks are chosen plaintext attacks in which the plaintext 
pairs can be chosen at random as long as they satisfy the plaintext XOR condition. 
Unlike other chosen plaintext attacks, differential cryptanalytic attacks can be easily 
converted to known plaintext attacks by the following observation. 

Assume that the chosen plaintext differential cryptanalytic attack needs rn pairs, 
and that we are given 232 . random known plaintexts and their corresponding 

ciphertexts. Consider all the = 2&L rn possible pairs of plaintexts they 
can form. Each pair has a plaintext XOR which can be easily calculated. Since 
the block size is 64 bits, there are only 2a possible plaintext XOR values, and thus 
there are about = rn pairs creating each plaintext XOR value. In particular, 
with high probability there are about rn pairs with each one of the several plaintext 
XOR values needed for differential cryptanalysis. 

P a  

The known plaintext attack is not limited to the electronic code book (ECB) 
mode of operation. In particular, the cipher block chaining (CBC) mode can also 
be broken by this attack since when the plaintexts and the ciphertexts are known, 
it is easy to calculate the real input of the encryption function. 

Table 2 summarizes the resultant known plaintext differential cryptanalytic at- 
tacks on Fed and DES. For each of the listed cryptosystems with the listed number 
of rounds, the table describea the number of pairs of each characteristic and the to- 
tal number of random plaintexts needed for the chosen plaintext attack and for the 
known plaintext attack. These results hold even for the variants with independent 
subkeys. 

6 Cryptanalysis of N-Hash 

N-Hash[G] is a cryptographically strong hash function which hasnes messages of 
arbitrary length to 128-bit values. The messages are divided into 128-bit blocks, 
and each block is mixed with the hashed value computed so far by a randomizing 
function g. The new haehed value is the XOR of the output of the g-function 
with the block itself and with the old hashed value. The g-function contains eight 
randomizing rounds, and each one of them calls the F function (similar to the one 



13 

Crypt osy st e m  

Fed-4 
Fed-8 
Feal- 16 
Fed-24 
Fed-30 
Feal-31 

DES-8 
DES-13 
DES-14 
DES-15 

DES-6 

DES-16 

Number of 

one char 
pairs of 

4 
1000 
2’8 
P 

2 6 2  

120 
25000 

259 

243 
250 

251 

257 

Number of 
chosen 

‘plaintexts 
8 

2000 
229 

245 

260 
263 
240 

50000 

251 

252 

261 

244 

Number of 
h0Wn 

plaintexts 
233.5 
237.5 
246.5 

254.5 

262 

236 
263.5 

240 
254 

258 

257.5 

261 

Table 2: Known plaintext attacks on Fed and DES 

Figure 2: Outline of N-Hash 

of Feal) four times. A graphic description of N-Hash is given in figures 2, 3, and 4. 

Breaking a cryptographically strong hash f‘unction means finding two different 
messages which hash to the same value. In particular, we break N-Hash by finding 
two different 128-bit messages which are hashed to the same 128-bit value. Since 
the output of the g-function is X O W  with its input in order to form the hashed 
value, it sufEces to find a right pair for a characteristic of the g-function in which 
i2p = RT. After XORing the input with the output of the g-function, the hashed 
value XOR becomes zero and thus the two messages have the same hashed value. 

The following characteristic is a three round iterative characteristic with prob- 
ability 2-16 (N-Hash does not swap the two halves after each round since the swap 
operation is part of the round itself. Therefore, the concatenation of the character- 
istic 52l with the characteristic a2 is possible whenever without swapping). 
In the description of this characteristic we refer to the value 80 60 80 00, as $ and 

= 
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Mi 

u 
Figure 3: The function H and one round (PS) of N-Hash 

Figure 4: The F function of N-Hash 
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12 256 

15 272 

Table 3: Results of the attack on N-Hash 

to the value 80 EO 80 00, as 'p. Note that both II, + ($ @'p) and 9 + (II, @ 'p) with 
probability f by the F function. The behavior of the XORS in the F function in 
this characteristic is similar to their behavior in the iterative characteristic of Fed. 
The characteristic itself is based on the input X O R  

Q P  = ($, $ 9  0901. 

With probability the data XOR after the h t  round is 

(O,O, 'p, cp). 

With probability & the data XOR after the second round is 

The data after the third round is always 

StT = Q P  = ( + 9  II,, 0,O). 

Therefore, the probability of the characteristic is 2-16. 

A pair of messages whose XOR equals Q p  has probability (2-'6)2 = 2-32 to have 
RT as its output XOR after the sixth round of the g-function, and thus to have 
the same hashed value after their inputs and outputs are XORed by the six-round 
variant of N-Hash. Instead of trying about p2 random pairs of messages we can 
choose only pairs from a smaller set in which the characteristic is guaranteed to be 
satided in the four F functions in the &st round. The probability in this set is 
increased by a factor of 256, and thus only about 224 such pairs have to be tested 
in order to find a pair of messages which hash to the same value. 

This specific attack works only for variants of N-Hash whose number of rounds 
is divisible by three. Table 3 describes the results of this attack. We can see from 
the table that this attack is faster than the birthday attack (whose complexity is 
P4) for variants of N-Hash with up to 12 rounds. 

The attack on N-Hash with six rounds was implemented on a personal computer 
and the following pairs of messages were found within about two hours: 
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- CAECE595 127ABF3C lADEO9C8 lF9AD8C2 
- 4A8C6595 92lA3F3C lADEOSC8 lF9AD8C2 
- Common hash value: 12B931A6 399776B7 640B9289 36C2EFlD 

- 5878BE49 F2962D67 30661E17 OC38F35E 
- D8183E49 72F6AD67 30661E17 OC38F35E 
- common hash d u e :  29BOFE97 3Dl79EOE 5B147598 137D28CF. 
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