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Abstract. In this paper we describe the dproc (distributed /proc) kernel-
level mechanisms and abstractions, which provide the building blocks for
implementation of efficient, cluster-wide, and application-specific perfor-
mance monitoring. Such monitoring functionality may be constructed at
any time, both before and during application invocation, and can include
dynamic run-time extensions. This paper (i) presents dproc’s implemen-
tation in a Linux-based cluster of SMP-machines, and (ii) evaluates its
utility by construction of sample monitoring functionality. Full version of
this paper can be found at: http://www.cc.gatech.edu/systems/projects/dproc/

1 Introduction

Motivation. Run-time monitoring of large-scale cluster machines is critical to
the successful operation of cluster applications. This is because even a single high
performance application running on a cluster typically exhibits highly dynamic
computational behavior. Moreover, most applications do not run in isolation:
they conduct I/O, require real-time data from remote sensors[3], access large-
scale remote data contained in digital libraries or share files across the com-
putational grid, support scientific collaboration by remote visualization of their
data[18, 19], and interact with other computations via the Grid 1[1, 2]. Unless
run-time monitoring is used to determine the appropriate and dynamic alloca-
tion of cluster resources to applications[6, 10], high performance is unlikely to be
attained.

Run-time monitoring mechanisms are required to dynamically diagnose the
performance of cluster programs. The monitoring tools commonly available to
cluster programmers, however, are not only used for adjusting programs[22,11] at
runtime, but they are also used for diagnosing performance problems at the time
of program implementation, for program profiling[20], and even for debugging
them[16]. As a result, developers routinely impose a wide range of requirements
on such tools, including:

1 http://www.globus.org/
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Selective Monitoring of Multiple resources. For cluster machines, at minimum,
monitoring must capture usage and availability of both CPUs and network links.
Often, additional information is required, as evident from the rich performance
data routinely available from current monitoring tools for high performance ma-
chines[20, 21]. For large cluster programs, resulting overheads make it infeasible
to capture all such data about all nodes at all times. Thus, monitoring must be
performed selectively, applied dynamically to precisely the resources and pro-
gram components under investigation.

Variable granularity. Fine-grain monitoring data is needed for certain optimiza-
tions of applications, such as recognizing the precise arrival times of processes at
shared barriers, understanding the actual overlap in communication and com-
putation attained by a code[7], or diagnosing the degree of simultaneity in com-
munications and thus, the potential network loads being imposed.Therefore,
it should be possible to conduct monitoring at variable frequencies and rates,
thereby altering the precision vs. perturbation induced by monitoring.

Flexible and dynamic analysis. It is well-known that monitoring data should be
condensed and filtered as ‘close’ as possible to its points of capture, to reduce
monitoring overheads and perturbation[20, 6]. However, the actual analyses to
be performed typically depend on what monitoring is currently used for, and
such analyses vary in their behavior, some causing little perturbation, others
requiring substantial trace data before they may be applied. No single built-
in set of analysis routines will satisfy all applications. Furthermore,especially
for long running applications, it is not viable to install all monitoring support
once, then simply use it. Instead, monitoring should be installed at runtime[20],
analyses must be changed as needed[6], and its monitoring overheads should be
dynamically controlled.

The dproc approach to performance monitoring. This paper describes
kernel-level mechanisms and abstractions that are the building blocks for cluster-
wide performance monitoring. Their realizations in a Linux-based cluster of SMP
machines are evaluated by construction of dynamically extensible and changeable
monitoring functionality. Cluster resources monitored include both node and
network attributes, including CPU loads, memory and swap usage, achieved
communication bandwidth, loss rate and message round-trip times. The API the
tool presents to programmers is an extension of the standard /proc performance
interface offered by Linux systems, hence motivating the use of the term dproc
for our facilities.

Dproc offers the following functionality:

Selective monitoring via kernel-level publish/subscribe channels. The basic oper-
ating system construct offered by dproc is that of monitoring channel (monchan-
nel). A single monchannel can capture monitoring information from any number
of sources, and it can distribute it to any number of interested parties (sinks).
Sources or sinks may reside at user- or at kernel-level. In this fashion, a mon-
channel can capture monitoring data from multiple resources, and the results of
such monitoring can be distributed to whomever requires such data (e.g., per-
formance displays, data storage engines). Standard API. Applications need not
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explicitly handle monchannels. An application accesses dproc entries, which are
physically represented by underlying monchannels, through the standard /proc
pseudo-file system interface. Kernel modules perform monitoring by publishing
data described as monitoring attributes (monattributes) on channels and by lis-
tening for attribute updates. Applications simply access the dproc entries that
correspond to such attributes.

Differential control. Dproc offers simple ways of dynamically varying certain pa-
rameters of monitoring actions, such as monitoring rates or frequencies. Specif-
ically, with each monchannel is associated an implicitly defined control channel
via which control commands are propagated from monchannel sinks to sources.
The dproc interface gives applications access to selected control commands via
control attributes also maintained with dproc entries.

Flexible analysis and filtering. In order to permit monitoring data to be filtered
and analyzed when captured at its sources, monchannel creators can define anal-
ysis functions, termed monhandlers. These handlers are applied to monitoring
data at the sources of channels, thus enabling data filtering and condensation.
A monhandler is executed every time an information item is submitted to the
channel. A simple but nontrivial example of a monhandler is one that provides
window-based running averages rather than raw data. To deploy monhandler
functions at kernel level, dproc offers a simplified way of linking an appropri-
ate handler function into the local kernel. For deployment across machines, the
remote dynamic code generation facility provided by KECho is used.

Runtime configuration. Monchannels, handlers, and control attributes may be
created, changed, and deleted at any time during the operation of dproc. In
this fashion, new monitoring functionality can be added on the fly, and existing
functionality can be altered or removed.

Related work. Cluster monitoring tools typically rely on the use of daemon
processes installed on participating cluster nodes[14, 13]. As a result, they can-
not capture data with the overheads and granularity offered by dproc. Similarly,
when monitoring data is collected and maintained by single (or multiple, hierar-
chically arranged[6]) monitoring ‘master’ processes, data may be captured and
analyzed efficiently and with high throughput, but such monitoring structures
suffer from high latency in data access. This is important when monitoring is
used for online program tuning or steering[6, 22].

Dproc could benefit from additional performance information captured at
the network or switch levels[5, 23]. At this time, we are implementing network
monitoring by inspection of kernel-resident protocol stacks using the kernel-
resident libpcap portion of the well-known tcpdump facility.

Higher level services that interpret or analyze monitoring data[15, 21] are
not the subject of this research, but would be useful when using monitoring
data for runtime program steering[22] or to help programmers tune their cluster
applications[21].

Dproc uses the open source nature of the Linux kernel and its ability to dy-
namically link new modules into the kernel. For other platforms, instrumentation
might be performed with runtime binary editing, as described in [20]. Martin et
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al. [9] demonstrated reduced overheads by embedding monitoring functions into
network co-processors rather than operating system kernels. We are experiment-
ing with that approach in a related project [17].
Overview. The remainder of this paper first outlines the software architecture,
API, and implementation of dproc. Section 3 evaluates dproc with microbench-
marks and by applying it to improve application performance. Conclusions and
future work are outlined in Section 4.

2 Dproc Architecture and Implementation

Overview. Procfs is a standard component of a Linux file system structure,
which offers performance characteristics of the local system. For instance, /proc/
meminfo provides statistics about memory and swap usage, buffer and cache sizes 
and utilization, etc. Unlike standard Unix file systems, viewing files in procfs es-
sentially executes a piece of code that collects this information dynamically, on-
demand. Such information is extracted from the kernel data structures, and is 
updated by the kernel.

Dproc is a distributed extension of /proc that provides hierarchically orga-
nized, application-specific views of monitoring information about both local and
remote cluster nodes. For instance, viewing /proc/cluster/node1/meminfo will
provide information about memory statitistics on node1. Thus, through calls to
the local dproc API, an application can view the current values of monitoring
attributes about remote nodes. For each such attribute, an application can also
specify the attribute’s update rate and ranges of values of interest, thereby re-
sulting in fine grain control over the performance vs. overheads of monitoring
experienced by applications.

Monitoring attributes are updated via kernel-level monitoring channels that
‘push’ update events from the sources being monitored (i.e., certain cluster
nodes) to their sinks (i.e., other cluster nodes), much like it is done in the object-
based model of monitoring for distributed systems described in our earlier re-
search [8]. By providing a separate underlying ‘monchannel’ for each information
item captured and distributed, dproc permits its distribution to be performed
at a unique rate and/or its filtering or analysis to be performed in a  unique
manner.
Prototype. Dproc is not a complete monitoring system. Instead, it provides
basic building blocks for constructing customized monitoring functionality for
target systems and applications. The dproc prototype used in this paper employs
a predefined set of monchannels across cluster nodes. If interested in certain
monitoring information, a node subscribes to a monchannel as both a source and
a sink, and is thereby able to provide information of this type and also receive it.
We have implemented two approaches to monitoring: user- and kernel-level. Both
approaches use monchannels to distribute monitoring information. The channels
are implemented in user and kernel space, respectively. Dproc reads and writes
in user-level are performed through standard read() and write() system calls. In
the kernel, dproc entries are accessed directly through a special interface.
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Software Architecture. A sample use of dproc monitoring is one in which
the current cpu and memory usage is noted for some set of cluster nodes used
by an application program. Such information is captured in the kernels of all
’server’ nodes and transported to a single dproc subscriber for this information,
located on a ’coordinator’ node. This is achieved by using a KECho channel
created by the ’coordinator’ node, which is registered as a ‘consumer’. All server
nodes are subscribed as ‘producers’. Monchannel handler functions comprise the
instrumentation resident in the servers’ OS kernels. They are executed at rates
determined by the monchannel’s control attributes. Each time such a function
executes, a monitoring event labeled by node id is submitted to the KECho
channel. Upon its receipt, ‘coordinator’ node updates the attribute value for the
appropriate node, resident in its local dproc structure.

The dproc API is accessible from any process running on the local machine
via a simple system call. A dproc call operates just like a /proc system call, with
its resulting overheads corresponding to that of other Linux system calls. Figure
1 shows dproc architecture.

Fig. 1. Dproc Architecture

Runtime monitoring for large-scale cluster machines must provide ways of
reducing the potentially large amounts of monitoring data exchanged between
cluster nodes. dproc provides multiple ways of reducing monitoring data, in-
cluding the placement of application-specific filters of monitoring information in
data sources. A simple example of this concept is one where such filters dynami-
cally trade off monitoring granularity vs. perturbation by changing the frequency
with which certain monitoring attributes are updated. Another example is an
extension of remote nodes to compute a specific composite performance measure
needed by a parallel graphics application. By computing measures like these re-
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motely rather than locally, reductions in monitoring traffic are realized. This
not only reduces traffic, but allows for dynamic load distribution in the system
based on resource availability of different nodes.

3 Experimental Evaluation

All experimental results described in this paper are attained on a group of Pen-
tium II quad-processor machines, interconnected via switched Fast Ethernet,
and running the Linux version 2.4.0 kernel. We achieve a fine-grained control of
the machine loads by running multiple instances of a CPU intensive application.
Microbenchmarks are used to evaluate the basic performance of dproc’s mech-
anisms, such as its KECho kernel-kernel communication channels, its runtime
API, and its ability to update an API entry in response to the remote update
of its value.

3.1 Microbenchmarks

Since information in cluster dproc is collected from remote nodes, the following
issues need to be addressed:

- Total monitoring latency, in terms of the minimum delay experienced for
updating a remote dproc API in response to a change of some monitored at-
tribute.

- Ability to provide timely access to monitored information, especially during
periods of high system load, as monitoring is crucial in such cases. In addition
to low access latency, low deviation in access time is also required. These two
conditions ensure that monitoring information can be treated as timely data
with reasonable confidence.

Fig. 2. Dproc Throughput

Figure 2 shows the throughput of dproc, i.e. the time to update a dproc entry
as a function of the amount of data. The throughput of dproc is compared to
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Fig. 3. RTT Variance

Fig. 4. Read Request Latency

memory throughput. Independent of data size, dproc throughput is comparable
to that of memory. Both throughputs decline for data sizes over 4K, as this is
the page size, and memory writes now take longer to complete.

Figure 3 compares the total message/event round-trip times in our user and
kernel level implementation, respectively. The RTTs are calculated as a function
of (symmetric) system load. The results include handler execution times on both
the source and the sink. Results from multiple runs are presented to demonstrate
the variability of RTT in user and kernel level. Note that we use a logarithmic
scale. The results show that a user-level approach to monitoring is especially
succeptible to changes in system load, due to the delays experienced on the
run queue as user-level threads compete for CPU cycles. In contrast, kernel-
level threads are scheduled more frequently, and with much lower variation.
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Our experiments also confirm that the RTTs in the user-level approach have a
significantly higher standard deviation compared to the kernel-level approach.

Figure 4 shows the delays experienced in accessing monitored information
for a daemon-based approach and our user-level implementation as a function of
system load. The daemon-based approach is simulated by a server and a client
communicating over a socket. This setup approximates a typical monitoring
approach which uses a central site to collect, process and distribute monitoring
information. We refer to this as a ’pull’ based approach, because each interested
party has to pull the information from a remote node. In our setup, the client
and the server run on the same machine, which is the best-case scenario with
the lowest possible network delay. It can be seen that accessing a dproc entry
is much more efficient than pulling such information from a remote server via
sockets. The access times for dproc are nearly independent on the machine loads,
and entirely independent of the network loads.

Preliminary results also show that the perturbation imposed by kernel-level
monitoring is negligible for simple monitoring mechanisms used in our experi-
ments (less than 1 percent). We intend to experiment with larger clusters, and
quantify the overhead and perturbation imposed by dproc used at both user-
and kernel-level.

Microbenchmarks demonstrate that dproc’s monitoring overheads and laten-
cies are far better than those experienced by approaches to cluster monitoring
that use replicated daemon processes and/or ‘pull’ monitoring data from remote
nodes on demand. In addition to lower latencies, the results demonstrate that
monitoring in the kernel provides significantly lower variation in update/access
times. This is emphasized when the system is under heavy loads, which implies
that user-level daemons experience delays when placed on the run queue. In
the kernel approach, those delays are reduced, since monitoring functions are
executed by kernel threads.

One advantage of the dproc approach to monitoring is that updates of mon-
itoring attributes are performed asynchronously with application programs’ in-
spections of attribute values. In other words, dproc separates the capture and
distribution of monitoring attributes from their inspection by applications. The
resulting performance improvements attained by dproc are similar to those at-
tained for parallel programs in which communication is overlapped with compu-
tation.

4 Conclusions and Future Work

Our approach to monitoring is based on three principles:(1) monitoring should
be reliable during periods of heavy system load, as this is the right time to
utilize monitored information and make appropriate changes in the system, (2)
monitoring should be dynamically extensible and customizable since no single
approach to monitoring will satisfy the needs of all applications, and (3) monitor-
ing overhead and perturbation should be minimized and adjustable. To address
the first issue, we built dproc as a kernel-level facility, thereby ensuring that
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reaction time of the monitoring system, and its variation are minimized. The
other two issues are addressed by the extended dproc functionality: filtering and
dynamic configuration/extension of the system allow for scaling, reducing and
controlling perturbation. Experimental results demonstrate that the dproc ap-
proach to monitoring benefits from (1) the fact that information is available
locally on the requesting node, essentially implementing a form of caching of
remote data, and consequently reducing access time compared to daemon-based
(pull) approaches, (2) the richness of information available in the kernel and (3)
the immediate thread scheduling in the kernel.

The future development directions of dproc include several extensions to the
interface, as well as implementing several guiding examples of how application-
specific monitoring can improve performance.

The ‘pull’-based model of performance monitoring currently implemented
by dproc offers high performance, but does not satisfy uses of monitoring for
actions like program steering or adaptation, where an application change may
be indicated as soon as some condition has become true. Toward this end, we
are currently generalizing the call interface offered to dproc to one that supports
both the common ‘pull’ model and a model in which an application can register
its interests in certain values and is signaled when these values meet certain
conditions.

We are also interested in developing large-scale parallel codes that exploit
customized monitoring tools. One project under way takes a large-scale parallel
password cracking algorithm and develops a customized monitoring infrastruc-
ture. Utilizing dproc allows the master in this master-worker program to asyn-
chronously determine the progress and performance of the workers (through
remote cache miss statistics) and thereby optimize work allocation.
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