
Guard:
A Tool for Migrating Scientific Applications

to the .NET Framework

David Abramson, Greg Watson, Le Phu Dung

School of Computer Science & Software Engineering,
Monash University,

CLAYTON, VIC 3800,
Australia

Abstract. For many years, Unix has been the platform of choice for the
development and execution of large scientific programs. The new Microsoft
.NET Framework represents a major advance over previous runtime
environments available in Windows platforms, and offers a number of
architectural features that would be of value in scientific programs. However,
there are such major differences between Unix and .NET under Windows, that
the effort of migrating software is substantial. Accordingly, unless tools are
developed for supporting this process, software migration is unlikely to occur.
In this paper we discuss a ‘relative debugger’ called Guard, which provides
powerful support for debugging programs as they are ported from one platform
to another. We describe a prototype implementation developed for Microsoft’s
Visual Studio.NET, a rich interactive environment that supports code
development for the .NET Framework. The paper discusses the overall
architecture of Guard under VS.NET, and highlights some of the technical
challenges that were encountered.

1 Introduction

The new Microsoft .NET Framework is a major initiative that provides a uniform
multi-lingual platform for software development. It is based on a Common Language
Specification (CLS) that supports a wide range of programming languages and run
time environments. Further, it integrates web services in a way that facilitates the
development of flexible and powerful distributed applications. Clearly, this has
applicability in the commercial domain of e-commerce and P2P networks, which rely
on distributed applications.

On the other hand, software development for computational science and engineering
has traditionally been performed under the UNIX operating system on high
performance workstations. There are good reasons for this. FORTRAN, which is
available on all of these systems, is the defacto standard programming language for
scientific software. Not only is it efficient and expressive, but also a large amount of
software has already developed using the language. Unix has been the operating

P.M.A. Sloot et al. (Eds.): ICCS 2002, LNCS 2330, pp. 834−843, 2002.
 Springer-Verlag Berlin Heidelberg 2002

system of choice for scientific research because it is available on a wide variety of
hardware platforms including most high performance engineering workstations. In
recent times high performance PCs have also become a viable option for supporting
scientific computation. The availability of efficient FORTRAN compilers and the
Linux operating system have meant that the process of porting code to these machines
has been fairly easy. Consequently there has been a large increase in the range of
scientific software available on PC platforms in recent years. The rise of Beowulf
clusters consisting of networks of tightly coupled PCs running Linux has driven this
trend even faster.

An analysis of the features available in .NET suggests that the new architecture is
equally applicable to scientific computing as commercial applications. In particular
.NET provides efficient implementations of a wide range of programming languages,
including FORTRAN [11], because it makes use of just-in-time compilation
strategies. Further, the Visual Studio development environment is a rich platform for
performing software engineering as it supports integrated code development, testing
and debugging within one tool.

Some of the more advanced features of .NET, such as Web Services, could also have
interesting application in scientific code. For example it would be possible to source
libraries dynamically from the Web in the same way that systems like NetSolve [10]
and NEOS [9] provide scientific services remotely. This functionality could
potentially offer dramatic productivity gains for scientists and engineers, because they
can focus on the task at hand without the need to develop all of the support libraries.

Unfortunately the differences between UNIX and Windows are substantial and as a
result there is a significant impediment to porting codes from one environment to
another. Not only are the operating systems different functionally, but the libraries
and machine architectures may differ as well. It is well established that different
implementations of a programming language and its libraries can cause the same
program to behave erroneously. Because of this the task of moving code from one
environment to another can be error prone and expensive. Many of these applications
may also be used in mission critical situations like nuclear safety, aircraft design or
medicine, so the cost of incorrect software can potentially be enormous. Unless
software tools are developed that specifically help users in migrating software from
UNIX to the Windows based .NET Framework, it is likely that most scientists will
continue to use UNIX systems for their software development.

In this paper we describe a debugging tool called Guard, which specifically supports
the process of porting codes from one language, operating system or platform to
another. Guard has been available under UNIX for some time now, and we have
proven its applicability for assisting the porting of programs many times. We have
recently implemented a version of Guard that is integrated into the Microsoft Visual
Studio.NET development environment. In addition, we have also demonstrated the
ability to support cross-platform debugging between a UNIX platform and a Windows
platform from the .NET environment. This has shown that the tool is not only useful
for supporting software development on one platform, but also supports the porting of

835Guard: A Tool for Migrating Scientific Applications

codes between Windows and UNIX. As discussed above, this is a critical issue if
software is to be ported from UNIX to the new .NET Framework.

The paper begins with a discussion of the Guard debugger, followed by a description
of the .NET Framework. We then describe the architecture of Guard as implemented
under Visual Studio.NET, and illustrate its effectiveness in locating programming
errors in this environment.

2 Guard – a Relative debugger

Relative debugging was first proposed by Abramson and Sosic in 1994. It is a
powerful paradigm that enables a programmer to locate errors in programs by
observing the divergence in key data structures as the programs are executing [2], [3],
[4], [5], [6], [7], [8]. The relative debugging technique allows the programmer to
make comparisons of a suspect program against a reference code. It is particularly
valuable when a program is ported to, or rewritten for, another computer platform.
Relative debugging is effective because the user can concentrate on where two related
codes are producing different results, rather than being concerned with the actual
values in the data structures. Various case studies reporting the results of using
relative debugging have been published [2] [3], [5], [7], and these have demonstrated
the efficiency and effectiveness of the technique. The concept of relative debugging
is both language and machine independent. It allows a user to compare data
structures without concern for the implementation, and thus attention can be focussed
on the cause of the errors rather than implementation details.

To the user, a relative debugger appears as a traditional debugger, but also provides
additional commands that allow data from different processes to be compared. The
debugger is able to control more than one process at a time so that, once the processes
are halted at breakpoints, data comparison can be performed. There are a number of
methods of comparing data but the most powerful of these is facilitated by a user-
supplied declarative assertion. Such an assertion consists of a combination of data
structure names, process identifiers and breakpoint locations. Assertions are processed
by the debugger before program execution commences and an internal graph [8] is
built which describes when the two programs must pause, and which data structures
are to be compared. In the following example:

assert $reference::Var1@1000 = $suspect::Var2@2000

the assert statement compares data from Var1 in $reference at line 1000 with
Var2 in $suspect at line 2000. A user can formulate as many assertions as
necessary and can refine them after the programs have begun execution. This makes it
possible to locate an error by placing new assertions iteratively until the suspect
region of code is small enough to inspect manually. This process is incredibly
efficient. Even if the programs contain millions of lines of code, because the

836 D. Abramson, G. Watson, and L.P. Dung

debugging process refines the suspect region in a binary fashion, it only takes a few
iterations to reduce the region to a few lines of code.

Our implementation of relative debugging is embodied in a tool called Guard. We
have produced implementations of Guard for many varieties of UNIX, in particular
Linux, Solaris and AIX. A parallel variant is available for debugging applications on
shared memory machines, distributed memory machines and clusters. Currently this is
supported with UNIX System V shared memory primitives, the MPICH library, as
well as the experimental data parallel language ZPL [12].

The UNIX versions of Guard are controlled by a command line interface that is
similar in appearance to debuggers like GDB [16]. In this environment an assert
statement such as the one above is typed into the debug interpreter, and must include
the actual line numbers in the source as well as the correct spelling of the variables.
As discussed later in the paper Guard is now integrated into the Microsoft Visual
Studio environment and so is able to use the interactive nature of the user interface to
make the process of defining assertions easier.

3 Success Stories

Over the last few years we have used Guard to debug a number of scientific codes
that have been migrated from one platform to another or from one language to another
(or both). In one case study we used Guard to isolate some discrepancies that occurred
when a global climate model was ported from a vector architecture to a parallel
machine [7]. This study illustrated that it is possible to locate subtle errors that are
introduced when programs are parallelised. In this case both models were written in
the same language, but the target architecture was so different that many changes
were required in order to produce an efficient solution. Specifically, the mathematical
formulation needed to be altered to reduce the amount of message passing in the
parallel implementation, and other changes such as the order of the indexes on key
array data structures needed to be made to account for a RISC architecture as opposed
to a vector one.

In another case study we isolated errors that occurred when a photo-chemical
pollution model was ported from one sequential workstation to another [3]. In this
case the code was identical but the two machines produced different answers. The
errors were finally attributed to the different behaviour of a key library function,
which returned slightly divergent results on the two platforms.

In a more recent case study we isolated errors that occurred when a program was
rewritten from C into another language, ZPL, for execution on a parallel platform [5].
This case study was interesting because even though the two codes were producing
slightly different answers, the divergence was attributed to different floating point
precision. However by using Guard it was possible to show that there were actually

837Guard: A Tool for Migrating Scientific Applications

four independent coding errors – one in the original C code, and three in the new ZPL
program.

All of these case studies have highlighted the power of relative debugging in the
process of developing scientific code. We believe that many of the same issues will
arise when migrating scientific software from UNIX to Windows under the new .NET
Framework and that Guard will be able to play an important role in assisting this
process.

4 The .NET Framework

The Microsoft .NET Framework represents a significant change to the underlying
platform on which Windows applications run [1]. The .NET Framework defines a
runtime environment that is common across all languages. This means that it is
possible to write applications in a range of languages, from experimental research
ones to standard production ones, with the expectation that similar levels of
performance and efficiency will be achieved. An individual program can also be
composed of modules that are written in different languages, but that interoperate
seamlessly. All compilers that target the .NET environment generate code in an
Intermediate Language (IL) that conforms to a Common Language Specification
(CLS). The IL is in turn compiled into native code using a just-in-time compilation
strategy. These features mean that the .NET Framework should provide an efficient
platform for developing computational models.

The Web Services features of .NET also offer significant scope for scientific
applications. At present most computational models are built as single monolithic
codes that call library modules using a local procedure call. More recent
developments such as the NetSolve and NEOS application servers have provided an
exception to this strategy. These services provide complex functions such as matrix
algebra and optimisation algorithms using calls to external servers. When an
application uses NetSolve, it calls a local “stub” module that communicates with the
NetSolve server to perform some computation. Parameters are sent via messages to
the server, and results are returned the same way. The advantage of this approach is
that application programmers can benefit by using ‘state of the art’ algorithms on
external high performance computers, without the need to run the codes locally.
Further, the load balancing features of the systems are able to allocate the work to
servers that are most lightly loaded. The major drawback of external services like this
is that the application must be able to access the required server and so network
connectivity becomes a central point of failure. Also, building new server libraries is
not easy and requires the construction of complex web hosted applications. The .NET
Framework has simplified the task of building such servers using its Web Services
technology. Application of Web Services to science and engineering programs is an
area of interest that requires further examination.

Visual Studio.NET (VS.NET) is the preferred code development environment for the
.NET Framework. The VS.NET environment represents a substantial change to

838 D. Abramson, G. Watson, and L.P. Dung

previous versions of Visual Studio. Older versions of Visual Studio behaved
differently depending on the language being supported – thus Visual Basic used a
different set of technologies for building applications to Visual C++. The new
VS.NET platform has been substantially re-engineered and as a consequence
languages are now supported in a much more consistent manner.

VS.NET also differs from previous versions by exposing many key functions via a set
of remote APIs known as ‘automation’. This means that it is possible to write a third
party package that interacts with VS.NET. For example, an external application can
set breakpoints in a program and start the execution without user interaction. A
separate Software Development Kit (SDK) called VSIP makes it possible to embed
new functions directly into the environment. This allows a programmer to augment
VS.NET with new functionality that is consistent with other functions that are already
available. This feature has allowed us to integrate a version of Guard with Visual
Studio as discussed in the next section.

5 Architecture of Guard

Fig. 1 shows a simplified schematic view of the architecture of Guard under Visual
Studio.NET. VS.NET is built around a core ‘shell’ with functionality being provided
by commands that are implemented by a set of ‘packages’ These packages are
conventional COM objects that are activated as a result of user interaction (such as
menu selection) within VS.NET, and also when various asynchronous events occur.
This component architecture makes it possible to integrate new functionality into the
environment by loading additional packages.

Debugging within the VS.NET environment is supported by three main components.
The Debugger package provides the traditional user interface commands such as
‘Go’, ‘Step’, ‘Set Breakpoint’, etc. that appear in the user interface. This module
communicates with the Session Debug Manager, which in turn provides a multiplexed
interface into one or more per-process Debug Engines. The Debug Engines
implement low-level debug functions such as starting and stopping a process and
setting breakpoints, and providing access to the state of the process. Debug Engines
can cause events to occur in response to conditions such as a breakpoint being
reached, and these are passed back through the Session Debug Manager to registered
event handlers. Each Debug Engine is responsible for controlling the execution of a
single process. However the VS.NET architecture supports the concept of remote
debugging, so this process may be running on a remote Windows system.

The VS.NET implementation of Guard consists of three main components. A package
is loaded into the VS.NET shell that incorporates logic to respond to specific menu
selections and handle debugger events. This package executes in the main thread of
the shell, and therefore has had to be designed to avoid blocking for any extended
time period. The main relative debugging logic is built into a local COM component
called the Guard Controller. This is a separate process that provides a user interface

839Guard: A Tool for Migrating Scientific Applications

for managing assertions and a dataflow interpreter that is necessary to implement the
relative debugging process. Because the Guard Controller runs as a separate process it
does not affect the response of the main VS.NET thread. The Guard Controller
controls the programs being debugged using the VS.NET Automation Interface, a
public API that provides functions like set-breakpoint, evaluate expression, etc. We
have also built a Debug Engine that is able to control a process running on an external
UNIX platform. This works by communicating with the remote debug server
developed for the original UNIX version of Guard. The UNIX debug server is based
on the GNU GDB debugger and is available for most variants of UNIX. We have
modified GDB to provide support for an Architecture Independent Form (AIF) [5] for
data structures, which means it is possible to move data between machines with
different architectural characteristics, such as word size, endian’ness, etc. AIF also
facilitates machine independent comparison of data structures. It is the addition of this
Debug Engine that allows us to compare programs executing on Windows and UNIX
platforms.

GUARD
PACKAGE

GUARD
PACKAGE

OTHER
PACKAGE
OTHER

PACKAGE
OTHER

PACKAGE
OTHER

PACKAGE

DEBUGGER

SESSION
DEBUG

MANAGER

GUARD
CONTROLLER

DEBUG
ENGINE

DEBUG
ENGINE

GUARD
DEBUG API

GUARD
DEBUG
SERVER

UNIX SYSTEM

debugger automation

COM

EVENTS

VS debug
interfaces

WINDOWS
PROCESS

UNIX
PROCESS

VISUAL STUDIO .NET

(local component)

SOCKET

Fig. 1. Architecture of Guard for VS.NET

Fig. 2 shows the Guard control panel when running under VS.NET. When a user
wishes to compare two running programs they must first be loaded into a VS.NET
“solution” as separate “projects”. The solution is then configured to start both
programs running at the same time under the control of individual Debug Engines.
The source windows of each project can then be tiled to allow both to be displayed at
once.

840 D. Abramson, G. Watson, and L.P. Dung

Fig. 2. Guard control panel

A user creates an assertion between the two programs using the Guard Controller,
which is started by selecting the “GUARD” item from the “Tools” menu. The Guard
Controller has a separate window as shown. An assertion is created in a few simple
steps. A new, empty, assertion is created by selecting the “Add” button. Guard
displays the dialog box shown in Fig. 3, which allows the user to enter the
information necessary to create an assertion. The left hand side of the assertion can be
automatically populated with the variable name, line number, source file and program
information by selecting the required variable in the appropriate source window and
then using a single right-mouse click. The right hand side of the assertion can be filled
in using the same technique in the other source window. Finally the user is able to
specify properties about the assertion such as the error value at which output is
generated, when the debugger should be stopped and the type of output to display.
The user can create any number of assertions by repeating this process and then
launch the programs using the “Start” button.

Fig. 3. New assertion dialog

Before commencing execution Guard automatically sets breakpoints at the locations
in the source files specified by the assertions. During execution Guard will extract the
contents of a variable when its corresponding breakpoint is reached and then perform
a comparison once data from each half of the assertion has been obtained. Once the
appropriate error threshold has been reached (as specified in each assertion), Guard
will either display the results in a separate window or stop the debugger to allow
interactive examination of the programs’ state. Guard currently supports a number of

841Guard: A Tool for Migrating Scientific Applications

display types include text, bitmaps and the ability to export data into a visualisation
package.

6 Future Work and Conclusions

It is far too early to claim that .NET is a suitable platform for scientific computation
since .NET is only currently available in Beta form and there are few commercially
oriented codes available now, let alone scientific ones. As discussed in the
introduction, we believe that .NET offers a number of potential benefits for large
numeric models. However, the execution environment is very different from a
traditional UNIX platform and so it is critical that as many tools as possible are
available to facilitate the transition of existing legacy software. Guard is one such tool
because it allows a user to compare two executing programs on two different
platforms.

Whilst the implementation of Guard under UNIX is mature and has been used on
many case studies, the current version under Visual Studio.NET is still a research
prototype. We are planning a number of extensions that will be required if Guard is to
be of practical use in supporting migration to .NET. The current user interface is
fairly simple and must be made more powerful if it is to be applied to large programs.
At present only simple data types and arrays are supported. We need to extend this to
encompass the range of types found in scientific codes, such as structures and
complex numbers. Assertions need to be able to be saved and restored when the
environment is restarted, and line numbers should be replaced by symbolic markers
which are independent of the actual numeric line number. We are also planning to
integrate Guard into Source Safe [13], Microsoft’s equivalent of SCCS [14] or RCS
[15] making it possible to compare one version of a program with previous versions
automatically. Finally, we plan to enhance the support for multi-process programs to
make it feasible to debug programs running on a cluster of Windows machines.

In spite of these shortcomings we have shown that the prototype implementation
works and that the technique of relative debugging is feasible in the .NET
environment. We have tested this by debugging a number of small .NET programs
using Guard.

Acknowledgments

This work has been funded by grants from the Australian Research Council and
Microsoft Corporation. We wish to acknowledge the support of a number of
individuals at Microsoft for their assistance on various issues related to Visual Studio
and .NET. Particular thanks go to Todd Needham, Dan Fay and Frank Gocinski. We
also wish to acknowledge our colleagues, A/Professor Christine Mingins, Professor
Bertrand Meyer and Dr Damien Watkins for many helpful discussions.

842 D. Abramson, G. Watson, and L.P. Dung

References

1. Meyer, B. “.NET is coming”, IEEE Computer, Vol. 34, No. 8; AUGUST 2001, pp. 92-97.
2. Abramson, D.A. and Sosic, R. "A Debugging and Testing Tool for Supporting Software

Evolution", Journal of Automated Software Engineering, 3 (1996), pp 369 - 390.
3. Abramson D., Foster, I., Michalakes, J. and Sosic R., "Relative Debugging: A new

paradigm for debugging scientific applications", the Communications of the Association
for Computing Machinery (CACM), Vol 39, No 11, pp 67 - 77, Nov 1996.

4. Sosic, R. and Abramson, D. A. "Guard: A Relative Debugger", Software Practice and
Experience, Vol 27(2), pp 185 – 206 (Feb 1997).

5. Watson, G. and Abramson, D. “Relative Debugging For Data Parallel Programs: A ZPL
Case Study”, IEEE Concurrency, Vol 8, No 4, October 2000, pp 42 – 52.

6. Abramson, D.A. and Sosic, R. "A Debugging Tool for Software Evolution", CASE-95, 7th
International Workshop on Computer-Aided Software Engineering, Toronto, Ontario,
Canada, July 1995, pp 206 - 214. Also appeared in proceedings of 2nd Working
Conference on Reverse Engineering, Toronto, Ontario, Canada, July 1995.

7. Abramson D., Foster, I., Michalakes, J. and Sosic R., "Relative Debugging and its
Application to the Development of Large Numerical Models", Proceedings of IEEE
Supercomputing 1995, San Diego, December 95.

8. Abramson, D.A., Sosic, R. and Watson, G. "Implementation Techniques for a Parallel
Relative Debugger ", International Conference on Parallel Architectures and Compilation
Techniques - PACT '96, October 20-23, 1996, Boston, Massachusetts, USA

9. Czyzyk, J, Owen, J. and Wright, S. “Optimization on the Internet”, OR/MS Today,
October 1997.

10. Casanova, H. and Dongarra, J. “NetSolve: A Network Server for Solving Computational
Science Problems”, The International Journal of Supercomputing Applications and High
Performance Computing, Vol 11, Number 3, pp 212-223, 1997.

11. http://www.lahey.com/netwtpr1.htm
12. L. Snyder, A Programmer’s Guide to ZPL, MIT Press, Cambridge, Mass., 1999.
13. http://msdn.microsoft.com/ssafe/
14. Programming Utilities and Libraries', Sun Release 4.1, Sun Microsystems, 1988.
15. Walter F. Tichy, "RCS-A System for Version Control", Software-Practice &

Experience 15, 7 (July 1985), 637-654.
16. Stallman, R. Debugging with GDB – The GNU Source Level Debugger, Edition 4.12, Free

Software Foundation, January 1994.

843Guard: A Tool for Migrating Scientific Applications

	1 Introduction
	2 Guard – a Relative debugger
	3 Success Stories
	4 The.NETFramework
	5 Architecture of Guard
	6 Future Work and Conclusions
	References

