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Abstract. The PHYSICA software was developed to enable multiphysics
modelling allowing for interaction between Computational Fluid Dynam-
ics (CFD) and Computational Solid Mechanics (CSM) and Computa-
tional Aeroacoustics (CAA). PHYSICA uses the finite volume method
with 3-D unstructured meshes to enable the modelling of complex geome-
tries. Many engineering applications involve significant computational
time which needs to be reduced by means of a faster solution method or
parallel and high performance algorithms. It is well known that multi-
grid methods serve as a fast iterative scheme for linear and nonlinear
diffusion problems. This papers attempts to address two major issues of
this iterative solver, including parallelisation of multigrid methods and
their applications to time dependent multiscale problems.

1 Introduction

The PHYSCIA software [6][15] was developed to enable multiphysics modelling
allowing for interaction between Computational Fluid Dynamics (CFD) and
Computational Solid Mechanics (CSM) and Computational Aeroacoustics (CAA).
PHYSICA uses the finite volume method with 3-D unstructured meshes to en-
able the modelling of complex geometries. Many engineering applications involve
significant computational time which needs to be reduced by means of a faster
solution method or parallel and high performance algorithms.

It is well known that multigrid methods serve as a fast iterative scheme for
linear and nonlinear diffusion problems. There are two major issues in this fast
iterative solver. First, multigrid methods are usually very difficult to parallelise
and the performance of the resulting algorithms are machine dependent. Early
work in parallelisation of multigrid methods include Barkai and Brandt [2], Chan
[5], Frederickson [10], Naik [14], etc. Methods developed by these authors con-
cerned the load balancing between processors and the full use of all co-existing
coarse level meshes in order to fit into the parallelism requirement. This paper
intends to address these issues with particular attention being paid to linear and
nonlinear diffusion type of problems in a distributed computing environment.
The method is then extended to time-dependent and multiscale problems.
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2 Classical Multigrid Methods for Linear Diffusion
Problems

The first article which describes a ’true’ multigrid technique was probably pub-
lished by Fedorenko [9]. He formulated a multigrid algorithm for the standard
five-point finite difference discretisation of the Poisson equation on a unit square
and showed the computational work is of O(N), where N is the number of un-
knowns. An extension of the concept to a general linear elliptic problem defined
in a unit square was given by Bachvalov [1]. Results shown in these articles
were not optimal and the method have not been adopted at that time. Practical
multigrid algorithms were first published by Brandt [3] in 1973 and, later, in a
revised article [4]. There are many excellent review articles and introductory lec-
tures, for examples [17], [16]. The authors do not intend to produce an exhaust
list, but related work can be easily found.

2.1 Defect Correction Principle

Suppose one wish to solve the elliptic problem as given below,

Lu = f ∈ Ω (1)

where L is a linear elliptic problem with suitable boundary conditions defined
on ∂Ω. The problem is usually discretised by means of a finite volume method,
which leads to the discretised system of linear equations,

Lhuh = fh ∈ Ωh (2)

where subscript h denotes a discretised approximation to the corresponding
quantity. Here h denotes a typical mesh size being used in the discretisation.
Usually smaller h leads to a larger system of linear equations and an iterative
method may be used to solve the system. Suppose u∗h is an approximation ob-
tained by means of an iterative method to the linear system (2), it is possible to
compute the defect or residual due to the approximation u∗h as

Rh = fh − Lhu
∗
h (3)

For linear operator such as Lh, one obtains the defect equation Lh(uh − u∗h) ≡
Lhuh − Lhu

∗
h = fh − Lhu

∗
h ≡ Rh, and an iterative scheme may be used to

obtain an iterative refinement or a correction vh, which may be used to correct
the approximation u∗h and compute a better approximation as u∗∗h = u∗h + vh.
However, such iterative refinement technique does not improve the convergence
rate of the iterative method used in the numerical solution process. In essence
the convergence rate deteriorates as h decreases.

One purpose of using the concept of multigrid is to avoid the deterioration
of the convergence rate. A Fourier smoothing analysis was first introduced by
Brandt [4], which explains the role of an iterative method in the context of the
above defect correction principle. The smoothing analysis uses the amplification
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factor, g(λα), which involves the ratio of the error at the n-th iterative approxi-
mation to the error at the (n− 1)-th iterative approximation, in measuring the
growth or decay of a Fourier error mode during an iteration. Here α is the Fourier
mode and λα = πα/m is the wave number, where m is the typical number of grid
points along a characteristic length of Ωh and α = −m+1,−m+2, . . . ,m. When
α increases the wave number, λα, increases and the amplication factor, g(λα),
decreases. In other words Fourier error modes with long wavelengths (α close to
1) decay slowly and with short wavelengths decay rapidly. The smoothing factor
can now be easily defined as

ρ = max{|g(λα)| : λα = πα/m , α = −m+ 1,−m+ 2, . . . ,m} (4)

and ρ < 1 denotes that the iterative method is a smoother, i.e. all Fourier
error modes of short wave lengths have been damped out. The remaining part
consists of a smoothed part, which is of long wave lengths, should be dealt with
at a coarser mesh. This is because long wave lengths on a mesh of size h become
relatively shorter wave lengths on a mesh of size 2h.

Therefore based on Brandt’s smoothing analysis, one would like to handle
Fourier error modes of long wave lengths on a coarser mesh, say H . The above
iterative refinement can then be implemented as the following 2-level algorithm.

Iterate to obtain an approximation u∗h: #Lhuh = fh;
Compute defect: Rh := fh − Lhu

∗
h;

uH := IhHuh; fH := IhHRh;
Solve u∗H : LHuH = fH ∈ ΩH with suitable boundary conditions;
Apply correction: uh := u∗h + IHh u

∗
H ;

Usually H is taken as 2h and there exists a vast amount of literature in 2-level
algorithms. These algorithms are being used recursively to form a multigrid
algorithm.

2.2 Parallelisation Issues of Multigrid Methods

It is obvious that as the mesh size is doubled, the number of discrete unknowns
decreased by a half. This leads to dummy computation when multigrid methods
were implemented on SIMD or vector machines such as the DAP [11], Connec-
tion Machines and the CDC Cyber 205 [2]. Such dummy computation cannot
be avoided if dynamic data structure is not allowed in the programming lan-
guage, such as FORTRAN. An attempt to examine a possible parallel network
to circumvent the disadvantage was presented by Chan et al [5]. However only
theoretical performance analysis was given. The idea of using co-existing coarse
grids, such that the union of these coarse grids automatically forms the next finer
grid, was also discussed in [10]. Similar concept of using coarse grid correction in
conjunction with the finest grid on a unigrid was also examined by McCormick
and Ruge [13], and the method was shown to be equivalent to multigrid methods.

Many articles and research reports have been devoted to the implementation
of multigrid methods, such as [14] to name just one reference, for a distributed
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memory machine. The main techniques involve evenly distributing computa-
tional load and minimising communication costs. These techniques amount to
a data partitioning of the finest level problem being distributed evenly across
the processors in the computational system. The finest level problem must be
pre-defined making adaptivity extremely difficult in parallel processing.

In the case of using co-existing coarse grids, which may be solved concur-
rently, may lead to heavy data traffic because these co-existing grids involves
mesh points located further away. On the other hand, averaging procedure of all
the coarse grids leading to the correction at the fine grid cannot be compared
with the fast convergence rate of using the classical multigrid method.

3 Domain Decomposition Methods

The idea of domain decomposition has a long evolving history. Many litera-
tures may be found, and it is not intended to give a full list of these references,
but one [7], in this paper. Domain decomposition involves the subdivision of a
given problem into a number of subproblems. Each of these subproblems can
be solved separately before being combined to give the global solution of the
original problem. The subdivision can be done at either the physical problem
level or the discretised problem level. At the discretised problem level, the re-
sulting linear system of equations is rearranged as a collection of smaller linear
systems which may be solved independently. At the physical problem level, re-
gions governed by different mathematical models or different material properties
are identified and decomposed into different subdomains resulting in a number
of locally regular subproblems. It should be noted at this stage that the use of
a distributed environment is highly suitable for this class of methods [12].

3.1 Block Iterative Methods

Figure 1 shows a rectangular domain which is subdivided into 16 subdomains.
Assuming that the subdomains are nonoverlapped and done at the level of the
physical problem, then

⋃
Ωi = Ω and

⋂
Ωi = ∅, and the interior boundary or

interface, γ, is defined as γ = (
⋃
∂Ωi)\∂Ω. Let Liui = fi be the subproblem

defined in the subdomain Ωi, i = 1, . . . , Ns. A simultaneous update to each of
the subdomains may be achieved by means of the block Jacobi algorithm as
given below.

loop
for i := 1 . . .Ns do
Solve #Liui = fi subject to suitable boundary conditions along ∂Ωi;
end-do
Update: Interior boundary conditions along γ;

Until solution converged;

This block iterative method may be implemented in parallel but the convergence
rate of this method is very slow. There is also a need to update the interior
boundary conditions.
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A similar technique may be applied to overlapped subdomains. Assuming
each of the subdomains in Figure 1 is extended across the interior boundary
into its neighbouring subdomains where an overlapped region of thickness of the
mesh size h is included into the subdomain Ωi. Suppose N(i) denotes the num-
bering of the neighbouring subdomains of Ωi. It is obvious that Ωi ∩ΩN(i) (= ∅
and that ∂Ωi lies inside ΩN(i). Therefore an exchange of information between
neighbouring subdomains is sufficient to act as an update to the interior bound-
aries.

loop
for i := 1 . . .Ns do
Solve #Liui = fi subject to suitable boundary conditions along ∂Ωi;
end-do
Exchange information: Interior boundary conditions along γ;

Until solution converged;

This block iterative method may be implemented in parallel but the convergence
rate of this method is, again, very slow. The update of the interior boundary
conditions is achieved by means of exchanging information in neighbouring sub-
domains.

3.2 A Parallel Multigrid Algorithm

Since the classical multigrid algorithm experiences partitioning issues for parallel
or distributed computing environment, the aim here is to seek for an alternative.
The concept here is to employ the above block iterative algorithms, either over-
lapped and nonoverlapped. For the present purpose, only the overlapped version
has been studied because the implementation is straight forward. The algorithm
sees the subdomains as shown in Figure 1 as a natural set up for the coarsest
mesh H . Since each subdomain may be executed autonomously, one natural idea
is to use the defect correction principle as discussed above with H not necessarily
equal to 2h. In fact it is purely up to individual subdomain to determine the
finest mesh h.

The coarsest level using the classical multigrid method is equivlant to solve
the system,

LHuH = fH ≡ I
H/2
H . . . Ih2hRh−

(I
H/2
H . . . I2h

4hL2hu
∗
2h + I

H/2
H . . . I4h

8hL4hu
∗
4h + . . .+ I

H/2
H LH/2u

∗
H/2) (5)

Note that in the present parallel multigrid algorithms it is not possible to evalu-
ate the linear combination of the corrections at all intermediate level. However,
it should be clear that the dominant source of error comes from the finest level
which is projected onto the coarsest level according to I

H/2
H . . . Ih2hRh. Here the

projection can be done by means of a sequence of linear interpolation.
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4 Numerical Examples

The numerical example is to find u(x, y) such that ∇2u(x, y) = 0 ∈ (0, 20) ×
(0, 20) subject to u(x, 0) = 0, u(x, 10) = 0, u(0, y) = 0, and u(20, y) = 100. A
cell centre finite volume technique is used to discretise the problem, which is
implemented in PHYSICA. Numerical results are obtained using 2-level correc-
tion schemes, one based on classical 2-level algorithm and the other based on
the parallel multigrid algorithm. The next coarser level for the classical 2-level
algorithm is chosen to be 2h. The coarsest level of the parallel multigrid algo-
rithm is chosen to be H = 1.25 in the new parallel algorithm. For demonstration
purposes, a V-cycle multigrid iteration is adopted such that the number of itera-
tions on the coarsest level is chosen to be 6 and that on the finest level is chosen
to be 3.

By using a 2-level correction scheme with domain decompsotion method, the
present parallel multigrid method, it shows similar computational work to the
sequential 2-level multigrid method. When the finest mesh becomes increasingly
smaller in its mesh, the computational work seems to be smaller as compare
to the sequential 2-level multigrid method. An addition property of the present
method is that it is intrinsic parallel, in which each subdomain may be com-
puted simultaneously. Table 1 shows a comparison of the total computational
work for the sequential and the parallel multigrid. It should be note that as the
parallel multigrid is to be run on distributed computing environment, the pro-
jected parallel computational work when all the 16 subdomains are computed
simultaneously. The dramatic decrease in the timing can be easily observed.

Two-Level Correction Scheme: Comparison of Computational Work.

Finest mesh 16×16 32×32 64 × 64 128 × 128
h = 1.25 h = 0.625 h = 0.3125 h = 0.15625

Sequential 2-Level 48 151.5 484.5 1533
Multigrid

Mesh 8× 8 16 × 16 32 × 32 64× 64

Parallel: Sequential run 61.5 120.8 314.5 933.8
Multigrid: Parallel run 10.8 11.2 22 60

Mesh 4× 4 4 × 4 4 × 4 4× 4

Table 1. Comparison of computational work units. 1 Computational work unit is the
computational work required to perform 1 iteration on the finest level.

5 An Extension to Multi-Scale Problems

The concept of defect correction is being extended to the problem of sound
generation due to fluid motion. This is a multi-scale problem not relating to the
size of the subdomains but to the size of the flow variables. The aim here is to
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solve the non-linear equation

∂U

∂t
+ L{U}U ≡ ∂(ū+ u)

∂t
+ L{ū+ u}(ū+ u) := 0 , (6)

where L{U} is a non-linear operator depending on U . Here L{U} is the Navier-
Stokes operator and u is certain noise signal such that u% ū. For a 2-D problem,

ū =


 ρ̄
v̄1
v̄2


 u =


 ρ
v1
v2


 ,

where ρ is the density of fluid and v1 and v2 are the velocity components along
the two spatial axes. Using the summation notation of subscripts, the 2-D Navier-
Stokes problem ∂u

∂t + L{u}u = 0 may be written as

∂ρ

∂t
+
∂(ρvj)

∂xj
= 0,

∂vi
∂t

+ vj
∂vi
∂xj

+
1

ρ

∂P

∂xi
− µ

ρ
∇2vi = 0,

Expanding ∂(ū+u)
∂t + L{ū+ u}(ū+ u) and re-arranging the resulting terms, one

obtains

∂ρ

∂t
+ v̄j

∂ρ

∂xj
+ ρ̄

∂vj
∂xj

+ [vj
∂(ρ̄+ ρ)

∂xj
+ ρ

∂(v̄j + vj)

∂xj
] = −[

∂ρ̄

∂t
+ v̄j

∂ρ̄

∂xj
+ ρ̄

∂v̄j
∂xj

],

and
∂vi
∂t

+ v̄j
∂vi
∂xj

+
1

ρ̄

∂P

∂xi
− µ

ρ̄
∇2vi (7)

+[
ρ

ρ̄

∂(v̄i + vi)

∂t
+(vj+

ρ

ρ̄
(v̄j +vj))

∂(v̄i + vi)

∂xj
] = −[

∂v̄i
∂t

+ v̄j
∂v̄i
∂xj

+
1

ρ̄

∂P̄

∂xi
− µ∇2v̄i

ρ̄
].

It can be seen that (6) may be written as

∂(ū+ u)

∂t
+ L{ū+ u}(ū+ u) ≡ ∂ū

∂t
+ L{ū}ū+

∂u

∂t
+E{ū}u+K[∂t, ū, u], (8)

where L{ū} and E{ū} are operators depending on the knowledge of ū and
K[∂t, ū, u] is a functional depending on the knowledge of both ū and its derivative
and u. Here

E{ū}u =

[
v̄j

∂ρ
∂xj

+ ρ̄
∂vj
∂xj

v̄j
∂vi
∂xj

+ 1
ρ̄
∂P
∂xi

− µ
ρ̄∇2vi

]
, (9)

K[∂t, ū, u] =

[
vj

∂(ρ̄+ρ)
∂xj

+ ρ
∂(v̄j+vj)

∂xj
ρ
ρ̄
∂(v̄i+vi)

∂t + (vj + ρ
ρ̄(v̄j + vj))

∂(v̄i+vi)
∂xj

]
. (10)
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In order to simulate accurately the approximate solution, ū, to the original prob-
lem,

∂(ū+ u)

∂t
+ L{ū+ u}(ū+ u) = 0 ,

Let h denote the mesh size and δt be a difference approximation to ∂
∂t being

used in the Reynolds averaged Navier-Stokes solver within PHYSICA. Instead
of evaluating ū(n), one would solve the discretised approximation

δtū
(n)
h + Lh{ū(n)

h }ū(n)
h = 0

to obtain ū∗h. The residue, Rh, on the fine mesh h may be computed by using a
higher order approximation [8] to −[δtū

∗
h + Lh{ū∗h}ū∗h]. Let H denote the mesh

size for the linearised Euler equations solver, where the linearised Euler operator
is given by (9), and is chosen to include as many sound signals with a specified
long wavelength as possible. Hence H (= 2h. Again instead of evaluating u, one
would solve the discretised approximation

δtu
(n)
H +EH{ū(n)

H }u(n)
H = R

(n)
H

to obtain u
(n)
H . Here R

(n)
H is the projection of R onto the mesh H . Let I{h,H}

be a restriction operator to restrict the residue computed on the fine mesh h to
the coarser mesh H . The restricted residue can then be used in the numerical
solutions of linearised Euler equations. Therefore the two-level numerical scheme
is (for non-resonance problems):

n := 0;
Do n := n+ 1

Solve δtū
(n)
h + Lh{ū(n)

h }ū(n)
h = 0

R
(n)
H := −I{h,H}[δtū∗h + L{ū∗h}ū∗h

ū
(n)
H := I{h,H}ū

(n)
h

Solve δtū
(n)
h +EH{ū(n)

H }u(n)
H = R

(n)
H

U
(n)
H := ū

(n)
H + u

(n)
H (Corrected results do not need to be used in u

(n+1)
h

Untilÿn = ÿnmax

HereÿU
(n)
H denotes the discretised approximation of the resultant solution on

mesh H . Note that R
(n)
H cannot be computed as δtū

(n)
h + L{ū(n)

h }I{h,H}ū
(n)
h

because L is a non-linear operator. Note also that δtu
(n)
H involves a number of

smaller time steps, each of )T , starting from u
(n−1)
H such that u

(n)
H defines at

the same time level as ū
(n)
h .

6 Conclusion

This paper provides some earlier experiments of a parallel multigrid algorithm
based on the combination of domain decomposition methods and a coarse level
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correction technique. The convergence of a block Jacobi iterative method in the
classical Schwarz iterative scheme is greatly accelerated with the idea of a coarse
grid correction. Furthermore, it is found that the coarse grid with mesh size
H does not require to be the next coarser level of the finest grid. Due to this
property, the finest level in different subdomains may be different from each
other. This would enable local refinement to be done in an efficient manner and
also enable subproblems to be solved in machines located geographically apart.
The technique is also extended to handle a multi-scale problem invovling sound
signal propagation.

Ω1 Ω2 Ω3 Ω4

Ω5 Ω6 Ω7 Ω8

Ω9 Ω10 Ω11 Ω12

Ω13 Ω14 Ω15 Ω16

Figure 1: Illustration of a nonoverlapped domain decomposition,

which consists of 16 subdomains. Each subdomain is denoted

as Ωi where i = 1, . . . , 16.
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