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Abstract. In this paper, we present first results from EliAD, a new
automatic differentiation tool. EliAD uses the Elimination approach for
Automatic Differentation first advocated by Griewank and Reese [Auto-
matic Differentiation of Algorithms, SIAM (1991), 126–135]. EliAD im-
plements this technique via source-transformation, writing new Fortran
code for the Jacobians of functions defined by existing Fortran code. Our
results are from applying EliAD to the Roe flux routine commonly used
in computational fluid dynamics. We show that we can produce code
that calculates the associated flux Jacobian approaching or in excess of
twice the speed of current state-of-the-art automatic differentiation tools.
However, in order to do so we must take into account the architecture
on which we are running our code. In particular, on processors that do
not support out-of-order execution, we must reorder our derivative code
so that values may be reused while in arithmetic registers in order that
the floating point arithmetic pipeline may be kept full.

1 Introduction

In scientific computation, there is a frequent need to compute first derivatives
of a function represented by a computer program. One way to achieve this is to
use Automatic Differentiation (AD) [1–3], which allows for the computation of
derivatives of a function represented by a computer program. The most efficient
way to implement AD in terms of run-time speed is usually source transforma-
tion; here the original code is augmented by statements that calculate the needed
derivatives. Adifor [4], Odyssée [5], and TAMC [6] are well-established tools
for this which make use of the standard forward and reverse modes of AD.

We have developed a new AD tool EliAD [7, 8] which also uses source trans-
formation. EliAD is written in Java and uses a parsing front-end generated by
the ANTLR tool [9]. In contrast to the AD tools listed above, EliAD uses the
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vertex elimination approach of Griewank and Reese [2, 10], later generalised to
edge and face eliminations by Naumann [11, 12]. Here, we consider only the ver-
tex elimination approach, which typically needs less floating point operations
to calculate a Jacobian than the traditional forward and reverse methods im-
plemented by Adifor, Odyssée or TAMC. We introduce the vertex elimination
approach in Sect. 2.

In Sect. 3 we present results of applying our tool to the Roe flux [13] com-
putation which is a central part of many computational fluid dynamics codes.
We used various ways to sequence the elimination. We ran the resulting deriva-
tive codes on various machine/compiler combinations and at various levels of
compiler optimisation. We found that execution times were not always in pro-
portion to the number of floating point operations and that this effect was very
machine-dependent.

Section 4 discusses the performance of certain elimination strategies regard-
ing such machine dependent issues as cache and register utilisation and then
points out the importance of statement ordering on certain processors.

2 Automatic Differentiation by Elimination Techniques

AD relies on the use of the chain rule of calculus applied to elementary operations
in an automated fashion. The input variables x with respect to which we need
to compute derivatives are called independent variables. The output variables y
whose derivatives are desired are called dependent variables. A variable which
depends on an independent variable, and on which a dependent variable depends,
is called an intermediate variable.

To illustrate the elimination approach, consider the code fragment comprising
four scalar assignments in the left of

x3 = φ3(x1, x2)
x4 = φ4(x2, x3)
x5 = φ5(x1, x3)
y = φ6(x4, x5)

∇x3 = c3,1∇x1 + c3,2∇x2

∇x4 = c4,2∇x2 + c4,3∇x3

∇x5 = c5,1∇x1 + c5,3∇x3

∇y = c6,4∇x4 + c6,5∇x5 .

(1)

Denoting

∇xi =

(
∂xi
∂x1

,
∂xi
∂x2

)
and ci,j =

∂φi

∂xj
,

we may use standard rules of calculus to write the linearised equations to the
right of (1). These linearised equations describe the forward mode of AD and
equivalent code would be produced by Adifor or TAMC enabling Jacobian
calculation on setting ∇x1 = (1, 0) and ∇x2 = (0, 1). The Computational Graph
(CG) for derivative calculation is sketched in Fig. 1. Vertices 1, 2 represent the
independents x1, x2; vertices 3, 4, 5 the intermediate variables x3, x4, x5; and
vertex 6 the dependent y. The edges are labelled with the local derivatives of the
equivalent code statements given to the right of (1) as shown. The corresponding
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Fig. 1. An example computational graph

matrix representation gives a linear system, to solve for the derivatives, with zero
entries in the matrix omitted for clarity:




−1
−1

c3,1 c3,2 −1
c4,2 c4,3 −1

c5,1 c5,3 −1
c6,4 c6,5 −1







∇x1

∇x2

∇x3

∇x4

∇x5

∇y



=




−1 0
0 −1
0 0
0 0
0 0
0 0




.

We may interpret the elimination approach via either the computational
graph or the matrix representation. Via the graph the Jacobian ∂y

∂(x1,x2)
is de-

termined by eliminating intermediate vertices from the graph until it becomes
bipartite, see [2, 10, 11]. For example vertex 5 may be eliminated by creating
new edges c6,1 = c6,5 × c5,1, c6,3 = c6,5 × c5,3 and then deleting vertex 5 and all
the adjacent edges. We might then eliminate vertex 4 then 3, termed a reverse
ordering.

In terms of the matrix representation, vertex elimination is equivalent to
choosing a diagonal pivot from rows 3 to 5, in some order. At each step we
eliminate all the coefficients under that pivot. For example by choosing row 5 as
the pivot row we add the multiple c6,5 of row 5 to row 6 and so produce entries
c6,1 = c6,5 × c5,1, c6,3 = c6,5 × c5,3 in row 6. We see that this is identical to the
above computational graph description. By then choosing rows 4 and 3 as pivots
we are left with the Jacobian in elements c61 and c62.

There are as many vertex elimination sequences as there are permutations
of the intermediate vertices. We choose a sequence using heuristics from sparse
matrix technology aimed at reducing fill-in, such as the Markowitz criterion
studied in [10, 11]. By reducing fill-in such techniques have the desired side-effect
of choosing an ordering which minimises the number of floating point operations
at each elimination step.
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3 Numerical Results

A typical application is the Roe flux routine [13]. This computes the numeri-
cal fluxes of mass, energy and momentum across a cell face in a finite-volume
compressible flow calculation. Roe’s flux takes as input 2 vectors of length 5
describing the flow either side of a cell face and returns as output a length 5
vector for the numerical flux (139 lines of code). We seek the 5 × 10 Jacobian
matrix.

We used EliAD to differentiate the Roe flux code with different vertex elim-
ination orderings. Those orderings are Forward, Reverse, Markowitz (Mark),
VLR, Markowitz Reverse Bias (Mark RB), and VLR Reverse Bias (VLR RB)
eliminations; see for instance [11, 14] for details. The reverse-bias variants resolve
ties when there are several nodes of the same cost by taking the one that appears
last in the original statement order [14].

From the input code we generated derivative codes in one of the two following
manners.

1. Statement level: local derivatives are computed for each statement, no matter
how many variables xi appear in its right-hand side.

2. Code list: local derivatives are computed for each statement in a rewritten
code that has at most two variables xi in each right-hand side.

Then, we applied the different vertex elimination strategies to the resulting com-
putational graphs (62 intermediate vertices for the first case and 208 interme-
diates for the second case). We ran the subsequent derivative codes on the fol-
lowing platforms: Silicon Graphics (SGI), Compaq Alpha (ALP), and two SUN
machines with different compilers denoted by SUN, NAG and FUJ. The various
processor/compiler combinations are described in Table 1.

Table 1. Platforms (processors and compilers)

Label Processor CPU L1-Cache L2-Cache Compiler Options

SGI R12000 300MHz 64KB 8MB f90 MIPSPro 7.3 –Ofast
ALP EV6 667MHz 128KB 8MB Compaq f95 5.4 –O5
SUN Ultra10 440MHz 32KB 2MB Workshop f90 6.0 –fast
NAG Ultra10 440MHz 32KB 2MB Nagware f95 4.0a –O3 –native
FUJ Ultra1 143MHz 32KB 0.5MB Fujitsu f90 5.0 –Kfast

Table 2 shows the CPU times required by the calculation of the original
function on the different platforms.

Table 3 summarises the ratio between the timings of the Jacobian and the
original function by using the different methods and platforms. Methods starting
with VE are those using a vertex elimination strategy from our AD tool. We write
FD for one-sided finite differences, SL for statement level and CL for code list.
For TAMC, the postfix ftl denotes the forward mode and ad denotes the reverse
mode.
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Table 2. Roe flux CPU timings (in µ seconds) of the function, T (F ), on different
platforms

SGI ALP SUN NAG FUJ

0.8 0.5 0.9 1.8 6.2

Timings are based on 10, 000 evaluations for each method and an average
of 10 runs of the executables from the different machines we used. We have
checked the accuracy by evaluating the largest difference from the corresponding
derivative found by Adifor [4]. This was less than 10−14 in all cases except finite
differences, where it was about 10−7, in line with the truncation error associated
with this approximation.

Table 3. Ratios of Jacobian to Function CPU timings, T (∇F )/T (F ), on various plat-
forms, ratios of floating point operations, rflops = FLOPs(∇F )/FLOPs(F ), and num-
bers of lines of code (#loc)

No. Method SGI ALP SUN NAG FUJ rflops #loc

1 FD (1-sided) 12.1 12.6 12.6 13.3 11.9 11.4 176
2 VE Forward(SL) 7.5 5.5 13.2 12.2 10.2 8.4 1534
3 VE Reverse(SL) 6.5 4.6 8.8 8.8 6.9 6.9 1318
4 VE Mark(SL) 6.4 5.1 9.8 10.4 6.7 7.2 1267
5 VE Mark RB(SL) 6.6 5.0 14.1 10.2 6.6 7.2 1261
6 VE VLR(SL) 6.0 4.5 8.9 9.1 6.1 6.5 1172
7 VE VLR RB(SL) 6.2 4.6 9.0 9.6 6.0 6.5 1170
8 VE Forward(CL) 7.3 5.2 18.7 19.2 14.9 12.1 3175
9 VE Reverse(CL) 6.7 4.7 10.7 9.9 9.5 8.9 2433
10 VE Mark(CL) 6.6 5.0 9.3 11.7 11.2 7.9 2058
11 VE Mark RB(CL) 6.6 5.3 10.2 11.0 10.9 7.7 2012
12 VE VLR(CL) 6.4 5.0 10.1 11.1 10.9 7.8 2116
13 VE VLR RB(CL) 7.2 5.4 10.8 12.4 12.1 8.4 2145
14 Adifor 15.9 9.8 31.4 50.5 14.4 15.0 614
15 TAMC-ftl 14.4 10.2 11.9 56.7 14.9 19.9 639
16 TAMC-ad 12.2 8.5 13.2 42.0 10.0 11.9 919

Table 3 shows that on the SGI and ALP platforms the vertex elimination
approach for computing Jacobians is about twice as fast as both conventional AD
tools and finite differences. On the SUN, NAG and FUJ platforms the vertex
elimination approach does not reach the same level of efficiency. We observe
that derivative codes for the code list version are often slightly slower than their
counterparts differentiated at statement level for ALP and SGI and sometimes
much slower on SUN, NAG and FUJ. Denoting by FLOPs(F ) and FLOPs(∇F )
the numbers of floating point operations required to compute respectively the
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function and its Jacobian, we obtained the ratios also shown in Table 3 from
the Roe flux test case. We see that on the SGI and ALP platforms the vertex
elimination derivative code ran faster than the ratio of floating point operations
predicts. On the SUN, NAG and FUJ platforms the reverse is usually true.

4 Performance Issues

The elimination strategies we used are based on criteria aimed at minimising the
number of floating point multiplications required to accumulate the Jacobian.
Van der Wijngaar and Saphir [15] have shown that, on RISC platforms, neither
the number of floating point operations nor even the cache miss rate are sufficient
to explain performance of a numerical code; and processor-specific instructions
(which can be seen from the generated assembly code) and compiler maturity
affect performance.

4.1 Floating Point Performance

If we consider the derivative code speed in terms of floating point operations
per clock cycle as shown in Fig. 2, all the elimination strategies are performing
over 1 floating point operation per cycle on the SGI and ALP platforms. The
Compaq EV6 and R12000 can perform up to 2 floating point operations per
clock cycle [16] and a throughput of in excess of one floating point operation
per clock cycle may be considered highly satisfactory. On the SUN and NAG
platforms a throughput of less than half a floating point operation per clock
cycle is achieved. Again the theoretical maximum is 2. It was initially thought
that cache misses may explain the poor timing ratios on these platforms.

1 2 3 4 5 6 7 8 9 10 11 12 13
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Fig. 2. Number of floating point operations per cycle performed by FD (number 1)
and the elimination strategies (numbered 2–13 as they appear in Table 3); the bars
represent (from left to right) results obtained from SGI, ALP, SUN, and NAG
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4.2 Cache Misses

On the SGI, the outputs from SGI Origin’s SpeedShop profiler showed that the
derivative codes fit in the instruction cache and they differed from each other
only by few cache misses in the primary/secondary data caches. The Compaq
Alpha EV6 processor we used has caches comparable to those of the MIPS
R12000 (see Table 1). Therefore, we do not expect cache misses to be crucial for
the SGI and ALP platforms.

The Sparc Ultra 10 has relatively small caches compared with the R12000 and
EV6. On the SUN and NAG platforms we noticed a performance degradation
mainly of the code list method. Here, the forward elimination from the code
list showed particularly poor performance. Profiling with the Sun Workshop 6.2
tools, we observed a 28% instruction cache miss rate for this forward elimination
strategy. Using a SUN Blade 1000 (600 MHz) with double the primary cache size,
that percentage came down to 10%. Interestingly the timing ratios remained
similar to those from the Ultra 10 indicating that although instruction cache
misses were occurring, the root cause of the poor performance lay elsewhere.

4.3 Statement Ordering in the Derivative Code

The SGI and ALP processors may perform 2 floating point operations per clock
cycle through their floating point pipeline, provided that the floating point oper-
ation being performed uses data currently in a register and does not require any
data from the output of an operation ahead of it and still in the pipeline. The
SGI platform has a latency of 2 clock cycles before the result of an operation
is available whereas for the ALP platform this is 4 clock cycles [16]. This may
explain the slightly better results from the SGI compared to the ALP in Fig. 2.

Apart from their larger cache sizes the other main difference between the
SGI/ALP platforms and the SUN/NAG/FUJ platforms is that the SGI and ALP
processors support out-of-order execution [16]. This technique involves maintain-
ing queues of floating point operations ready to be performed and if the one at
the head of the current queue requires a value currently being processed in the
floating point pipeline or not currently in a register, then the processor switches
to another queue. Use of this technique reduces the importance of instruction
scheduling by the compiler.

On the Ultra10 and Ultra1 processors of the SUN, NAG and FUJ platforms
there is no out-of-order execution. The optimising compiler must perform more
intensive optimisation of instruction scheduling in order to maintain good use
of the floating point pipeline. The derivative codes we produce are large (see
final column of Table 3), contain no loops or branching and hence comprise
one large basic block. We therefore expected optimising compilers to schedule
floating point instructions effectively since there are no complications regarding
the control flow of the program. Since this is obviously not occurring for the
SUN, NAG and FUJ platforms, we conjectured that the local optimisation of
instruction scheduling performed by the compiler might not be able to maintain
a good throughput in the floating point pipeline since statements using the
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same variables might be separated by several hundred lines of source code. Since
an elimination sequence produces a certain set of elimination statements that
may be placed in any order that respects their dependencies, we additionally
conjectured that we might be able to reorder the statements in the derivative
code to make better use of variables currently in registers.

To assess the impact of statement ordering in the derivative code, we per-
turbed the order of statements without altering the data dependencies within
the code. We reordered the assignment statements with the aim of using each
assigned value soon after its assignment. We therefore used a modified version of
the depth first search algorithm [17]. Namely, we regarded the statements in the
derivative code as the vertices of an acyclic graph, with the output statements
at the top and an edge from s to t if statement t uses the output from state-
ment s. Then, we arranged the statements in the order produced by a depth-first
traversal of this graph. The results are shown in Table 4, which also displays the
Table 3 results in brackets. We can see that statement reordering has greatly
improved many of the SUN, NAG and FUJ times, has improved most of the SGI
times, but has made no significant difference to the ALP times. For instance,
looking at the SUN column of Table 4, the statement reordering has improved
the generated code using the forward elimination from the code list by 56%.
In this case, we observed that the resulting reordered derivative has 34% less
loads and 72% less stores than the original derivative code. This indicates that
the compiler was not achieving efficient register usage for the original derivative
code. We now see that the Jacobian to function CPU time ratios have all signif-
icantly improved and we are approaching twice the efficiency of the best of the
conventional techniques, AD or finite-differencing, of Table 3.

Table 4. Ratios, T (∇F )/T (F ), of the reordered derivative codes from the Roe flux
test case on different platforms, timings in brackets are those before the reordering (c.f.
Table 3)

Method SGI ALP SUN NAG FUJ

VE Forward(SL) 6.7 (7.5) 5.4 (5.5) 9.3 (13.2) 7.8 (12.2) 7.4 (10.2)
VE Reverse(SL) 5.2 (6.5) 4.6 (4.6) 7.7 (8.8) 7.2 (8.8) 6.2 (6.9)
VE Mark(SL) 5.8 (6.4) 5.2 (5.1) 8.6 (9.8) 7.3 (10.4) 6.1 (6.7)
VE Mark RB(SL) 5.8 (6.6) 5.1 (5.0) 7.9 (14.1) 6.8 (10.2) 6.0 (6.6)
VE VLR(SL) 6.4 (6.0) 4.6 (4.5) 8.2 (8.9) 6.3 (9.1) 5.6 (6.1)
VE VLR RB(SL) 6.8 (6.2) 4.5 (4.6) 7.5 (9.0) 6.2 (9.6) 5.6 (6.0)
VE Forward(CL) 6.2 (7.3) 5.2 (5.2) 8.2 (18.7) 13.3 (19.2) 8.5 (14.9)
VE Reverse(CL) 6.4 (6.7) 5.0 (4.7) 8.8 (10.7) 7.5 (9.9) 7.4 (9.5)
VE Mark(CL) 6.6 (6.6) 5.1 (5.0) 7.8 (9.3) 7.3 (11.7) 6.1 (11.2)
VE Mark RB(CL) 6.3 (6.6) 5.4 (5.3) 8.6 (10.2) 7.5 (11.0) 6.1 (10.9)
VE VLR(CL) 7.1 (6.4) 4.9 (5.0) 7.5 (10.1) 6.8 (11.1) 6.2 (10.9)
VE VLR RB(CL) 6.8 (7.2) 5.8 (5.4) 8.1 (10.8) 8.1 (12.4) 6.4 (12.1)
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5 Conclusions

Automatic differentiation via vertex elimination allows us to produce Jacobian
code which, in conjunction with an optimising compiler, efficiently uses a float-
ing point pipeline on processors that support out-of-order execution. On other
platforms tested and that supported a floating point pipeline we found that the
compiler was not able to schedule the floating point operations with enough
register re-use to allow the floating point processor to perform efficiently. Appli-
cation of a simple statement reordering strategy based on depth first traversal
enabled the compiler to optimise the resulting derivative code more effectively.

We conclude that we have an AD tool that, when assisted by statement
reordering on some platforms, produces Jacobian code approaching or exceeding
twice the efficiency of the current state-of-the-art for the Roe flux test problem.
We are currently testing and evaluating the tool’s performance on a number of
test problems taken from the MINPACK-2 optimisation test suite [18].
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