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Abstract. In the computation of approximate solutions to hyperbolic

conservation laws, relaxation schemes have proven to be very useful. In

this paper we present a new higher order relaxation scheme based on

higher order nonoscillatory central space discretization and higher order

time discretization without use of Riemann solvers. Numerical experi-

ments with 2D Euler systems of gas dynamics are presented to demon-

strate the remarkable accuracy of the relaxation scheme.

1 Introduction

In this paper, we further generalise and extend the relaxation schemes of S. Jin,

and Z. Xin [4] to higher order accuracy to approximate solutions of compressible

Euler system of equations for gas dynamics written in conservative form as:
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Here �, u, v, p and E are the density, the x- and y-velocities, the pressure and

the total energy, respectively. The equation of state p = (
� 1)
�
E� �

2
(u2+ v2)

�
is required, where the speci�c heat ratio 
 = 1:4 for an ideal gas.

The eigenvalues of the Jacobian matrix @F=@U (or @G=@U) are �1 = u � c,
�2 = �3 = u and �4 = u+ c (or �1 = v � c, �2 = �3 = v and �4 = v + c). These
are the characteristic speeds for one-dimensional gas dynamics and are needed

here only for the estimation of relaxation variables. The sound speed c is de�ned
by c2 = 
p=�.

Many numerical schemes have been developed to approximate the solutions

of the system (1). For instance, the Godunov methods. All these methods are

easy to formulate and to implement. What we would like to present here is an
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alternate scheme which provides high resolution schemes at a low cost. Here the

characteristic information of the 
ow is included but there is no need to solve

(approximate) Riemann problems.

Relaxation methods make use of the characteristic variables of the system,

�nite speed of propagation and do not need Riemann solvers. In the same spirit

they are very similar to central schemes [5]. The relaxation system proposed by

Jin and Xin [4] and used henceforth for designing schemes is:
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where � > 0 is the relaxation rate. The matrices A = diagfa1; : : : ; a4g and

B = diagfb1; : : : ; b4g are appropriate diagonal matrices. In the zero relaxation

limit, � �! 0, solution of (2) approaches a solution of the original system (1)

by the local equilibrium

V = F(U) and W = G(U); (3)

provided the subcharacteristic condition [4, 9, 7, 8], holds:

j�kj

ak
+
j�kj

bk
� 1; 8 k = 1; : : : ; 4: (4)

The relaxation schemes proposed in [4] are based on the �nite di�erence dis-

cretization of (2), where, in particular, the authors consider a �rst order upwind

and a second order MUSCL scheme, together with a second order TVD implicit-

explicit time integration scheme. The resulting relaxation schemes are used in

the regime � << h or even when � �! 0 (relaxed schemes). Here h stands for

the space discretization parameter.

Notice that in (2) we construct a linear hyperbolic system with a sti� source

term that approximates the original system (1) with a small dissipative correc-

tion. The main advantage of considering such a system is that one is able to solve

the system (2) numerically with underresolved stable discretizations without ei-

ther using Riemann solver spatially and nonlinear systems of algebraic equation

solvers temporally. Moreover, the relaxation system (2) has linear characteristic

variables given by

V �AU; and W �BU: (5)

To avoid initial and boundary layer in (2), initial and boundary conditions are

chosen to be consistent to the local equilibrium (3).

The paper is organized as follows: In section 2, we formulate a higher order

central weighted nonoscillatory space discretization. Then, a higher order TVD

time stepping procedure based on implicit-explicit Runge-Kutta methods is de-

scribed in section 3. Numerical results are presented in section 5. Finally, a brief

conclusion is given in section 6.
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2 High Order Nonoscillatory Space Discretization

For the space discretization of the equation (2), we cover 
 with rectangular

cells Ci;j := [xi�1
2
; xi+1

2
] � [yj�1

2
; yj+ 1

2
] of uniform sizes �x and �y with h =

max(�x;�y). The cells, Ci;j, are centred at (xi = i�x; yj = j�y). We use the

notation:

!i�1
2
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!(x; y; t)dxdy;

to denote the point-values and the approximate cell-average of the function !

at (xi�1
2
; yj; t), (xi; yj�1

2
; t), and (xi; yj; t), respectively. We de�ne the following

di�erence operators

Dx!i;j :=
!i+ 1

2
;j � !i� 1

2
;j

�x
; Dy!i;j :=

!i;j+ 1
2
� !i;j�1

2

�y
(6)

Then, the semi-discrete approximation of (2) is

dUi;j

dt
+DxVi;j +DyWi;j = 0;

dVi;j

dt
+A2

DxUi;j = �
1

�

�
Vi;j � F(U)i;j

�
; (7)

dWi;j

dt
+B2DyUi;j = �

1

�

�
Wi;j �G(U)i;j

�
;

The approximate solution is reconstructed by a piecewise polynomial over the

grid points as:

!(x; y; t) =
X
i;j

pi;j(x; y;!)�i;j(x; y); �i;j = 1ICi;j
; (8)

where pi;j are polynomials de�ned in Ci;j. The degree of pi;j is determined by

the required order of accuracy of the method. In this paper we consider the third

order CWENO reconstruction, dimension by dimension [6,3]. Thus,

pi;j(x; y;!) := pi(x;!) + pj(y;!):

Here pi(x;!) and pj(y;!) are x- and y-polynomials. In the following we formu-

late the x-direction polynomial pi(x;!), the formulation of pj(y;!) can be done

analogously.

pi(x;!) = WLPL(x) +WRPR(x) +WCPC(x);

where

Wl =
�lP
m �m

; l;m 2 fL;R;Cg;
X
l

Wl = 1; �l =
cl

(" + ISl)2
;
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4
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2
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2
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ISC =
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2
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2
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2
+
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�x
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!i;j

2
�

1

24
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2�x
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(�x)2
(x� xi)

2
:

The constant " guarantees that the denominator does not vanish and is empiri-

cally taken to be 10
�6

.

With this background we can now discretize the characteristic variables (5)

as follows:

(v + aku)i+ 1

2
;j = pi(xi+ 1

2

; v + aku); (v � aku)i+ 1

2
;j = pi+1(xi+ 1

2
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Here u, v, w, ak and bk are the k-th (k = 1; : : : ; 4) components of U, V,W, A

and B respectively. Hence:
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Therefore, we obtain the following expressions for the numerical 
uxes in (6)

ui+ 1

2
;j :=

ui;j + ui+1;j

2
�

vi+1;j � vi;j

2ak

+
�
x;+
i;j + �

x;�
i+1;j

4ak

;
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2
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2
� ak

ui+1;j � ui;j

2
+

�
x;+
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x;�
i+1;j

4
;

ui;j+1

2

:=
ui;j + ui;j+1

2
�

wi;j+1 � wi;j

2bk

+
�
y;+
i;j + �

y;�
i;j+1

4bk

;

wi;j+1

2

:=
wi;j + wi+1;j

2
� bk

ui;j+1 � ui;j

2
+

�
y;+
i;j � �

y;�
i;j+1

4
;

where �
x;�
i;j , �

y;�
i;j are de�ned as:

�
x;�
i;j = W

�

L

�
(v � aku)i;j � (v � aku)i�1;j

�
+W

�

R

�
(v � aku)i+1;j � (v � aku)i;j

�
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�
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�
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The weight parameters W
�

L , W
�

R and W
�

C for �
x;�
i;j are given by

W�

l =
��lP
k �

�

k

; l; k 2 fL;R;Cg;
X
l

W�

l = 1; ��l =
cl

("� ISl)
2
;

cL = cR =
1

4
; cC =

1

2

IS
�

L =

�
(v � aku)i � (v � aku)i�1

�2
; IS

�

R =

�
(v � aku)i+1 � (v � aku)i

�2

IS�C =
13

3

�
(v � aku)i+1 � 2(v � aku)i + (v � aku)i�1

�2
+

1

4

�
(v � aku)i+1 � (v � aku)i�1

�2
:

The corresponding weight parameters for �
y;�
i;j are obtained by changing v�aku

to w � bku in the above formulas.

We close by pointing out that in this higher order scheme we approximate

F(U)i;j and G(U)i;j in (2) using the fourth-order Simpson quadrature rule as

opposed to the Midpoint Rule which was used in the �rst and second order cases

in [4].

3 High Order TVD Time Discretization

The semi-discrete formulation (7) can be rewritten as a system of ordinary dif-

ferential equations:

dY

dt
= F(Y)�

1

�
G(Y); (9)
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where the time-dependent vector functions Y :=
�
Ui;j;Vi;j;Wi;j

�T
,

F(Y) :=
�
�DxVi;j � DyWi;j;�A

2
DxUi;j;�B

2
DyUi;j

�T

and G(Y) :=
�
0;Vi;j � F(U)i;j;Wi;j �G(U)i;j

�T
. Due to the presence of the

sti� term in (7), one can not use explicit schemes to integrate the equations (9),

particularly when � �! 0. On the other hand, integrating the equations (9) by

implicit scheme, either nonlinear or linear algebraic equations have to be solved

at every time step of the computational process. To �nd solutions of such systems

is computationally very demanding. In this paper we consider an alternative

approach based on Implicit-Explicit (IMEX) Runge-Kutta splittings. The non

sti� stage of the splitting for F is straightforwardly treated by an explicit Runge-

Kutta scheme, while the sti� stage for G is approximated by a diagonally implicit

Runge-Kutta (DIRK) scheme. Compare [2, 10] for more details.

Let �t be the time step and Yn denote the approximate solution at t = n�t.

We formulate the IMEX scheme for the system (9) as:

Kl = Y
n +�t

l�1X

m=1

~almF(Km)�
�t

�

sX

m=1

almG(Km); l = 1; 2; : : :; s;

(10)

Y
n+1 = Yn +�t

sX

l=1

~
blF(Kl)�

�t

�

sX

l=1

blG(Kl):

The s� s matrices ~
A = (~alm); A = (alm) and the s-vectors ~b; b are the standard

coe�cients which characterize the IMEX s-stage Runge-Kutta scheme. They are

given by the usual double Butcher tables

0 0 0 0 0 0

~c2 ~a21 0 0 0 0

~c3 ~a31 ~a32 0 0 0

: : : : : :

~cs ~as1 ~as2 . . . ~ass�1 0

~
b1

~
b2 . . . ~

bs�1
~
bs

0 0 0 0 0 0

c2 a21 a22 0 0 0

c3 a31 a32 a33 0 0

: : : : : :

cs as1 as2 . . . ass�1 ass

b1 b2 . . . bs�1 bs

The left and right tables represent the explicit and the implicit Runge-Kutta

methods. Then, the implementation of the IMEX algorithm to solve (9) is carried

out in the two following steps:

1. For l = 1; : : : ; s,

(a) Evaluate K�

l as: K�

l = Yn +�t

l�2X

m=1

~almF(Km) +�t~all�1F(kl�1):

(b) Solve for Kl: Kl = K

�

l �
�t

�

l�1X

m=1

almG(Km) �
�t

�

allG(Kl):

2. Update Yn+1 as: Yn+1 = Yn +

sX

l=1

~
blF(Kl)�

�t

�

sX

l=1

blG(Kl):
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Recall that what we call high order relaxation schemes are composed of the high

order reconstruction (8) augmented with the high order IMEX splitting (10).

Notice that, using the relaxation scheme neither linear algebraic equation nor

nonlinear source terms can arise. In addition the high order relaxation scheme

is stable independently of � , so that the choice of �t is based only on the usual

CFL condition

CFL := max
1�i;j�4

�
�t

h
; a

2

i

�t

�x
; b

2

j

�t

�y

�
� 1: (11)

In our numerical computation we consider the third order IMEX scheme devel-

oped in [2], the associated double Butcher tables can be represented as:

0 0 0 0 0 0
1

2

1

2
0 0 0 0

2

3

11

18

1

18
0 0 0

1

2

5

6
�5

6

1

2
0 0

1 1

4

7

4

3

4
�7

4
0

1

4

7

4

3

4
�7

4
0

0 0 0 0 0 0
1

2
0 1

2
0 0 0

2

3
0 1

6

1

2
0 0

1

2
0 �1

2

1

2

1

2
0

1 0 3

2
�3

2

1

2

1

2

0 3

2
�3

2

1

2

1

2

Obviously, at the limit (� �! 0) the time integration procedure tends to a time

integration scheme of the limit equations based on the explicit scheme given by

the left table in (10).

Remark. Note that the �rst and second order relaxation schemes studied earlier

in [4] can be viewed as (8) taking

Pi;j(x; y;!) = !i;j and Pi;j(x; y;!) = ! +
!�i;j

�x
(x� xi) +

!�i;j

�y
(y � yj);

respectively. Here !�i;j=�x and !�i;j=�y are discrete slopes in the x and y direc-

tions. The time integration procedure in [4] can be represented as (10) where

the explicit and implicit tables are given by

0 0 0

1 1 0
1

2

1

2

-1 -1 0

2 1 1
1

2

1

2

4 Numerical Results

We present numerical experiments for several problems (1) using the scheme

introduced above. We solve three model problems. All of them have been used

extensively in literature to test various numerical schemes. In all our computation

the computational domain 
 is divided in Nx� Ny grid points, the relaxation

rate � is �xed to 10�6 and the relaxation matrices A and B are chosen locally

according to (4) as:

ak = 2j�kj; and bk = 2j�kj; k = 1; : : :4:

The following test cases are selected:
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The Shock Re
ection Problem. This problem was solved by Jin and Xin [4]

using the second order relaxation scheme. In our computation we take the same

parameters as [4]. Thus, 
 = [0; 4] � [0; 1]; initially the domain 
 is �lled by

a free-stream supersonic in
ow with Mach number 2:9. The Dirichlet boundary

conditions are imposed at left and upper boundaries as

U(0; y; t) = (1; 2:9; 0; 5:99071)T ;

U(x; 1; t) = (1:69997; 4:45279;�0:86074;21:30317)T:

The bottom boundary is a re
ecting wall and the supersonic out
ow condition is

applied along the right boundary. The simulation is performed until t = 5 using

�t = 0:005. Plots of the pressure are shown in Fig. 1 using 30 equi-distributed

contours. As can be seen from this �gure, the re
ected shock was very well

captured by the relaxation scheme.

(a) (b)

Fig. 1. The shock re
ection problem. 30 equi-distributed pressure contours. (a) 60�20

grid points; (b) 120� 40 grid points.

The Double-Sod Tube Shock Problem. This example is inspired by the

standard 1D Sod tube shock problem [1]. Hence 
 = [�1; 1]� [�1; 1] and the

initial conditions are chosen as:

U(x; y; 0) =

�
(0:1; 0; 0; 0:25)T if xy < 0,

(1; 0; 0; 2:5)T otherwise.

Homogeneous Neumann boundary condition were used, and �t = 0:001.

In Fig. 2 we display 30 equi-distributed contour plots of the density at time

t = 0:16. The high resolution of the new relaxation scheme is clearly visible.

The Double-Mach Re
ection Problem. This test example consist of the

canonical double Mach re
ection problem [11]. The domain 
 = [0; 4]� [0; 1].

The re
ecting wall lies at the bottom of the computational domain starting from

x = 1

6
. Initially a right-moving Mach 10 shock is positioned at x = 1

6
, y = 0 and

makes a 60� angle with the x-axis. For the bottom boundary, the exact post-

shock condition is imposed for the part from x = 0 to x = 1

6
and a re
ective

boundary condition is used for the rest. At the top boundary of the domain


, the 
ow values are set to describe the exact motion of the Mach 10 shock.
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(a) (b)

Fig. 2. The double-Sod tube shock problem. 30 equi-distributed density contours. (a)

100 � 100 grid points; (b) 200 � 200 grid points.

Fig. 3 shows 30 equi-distributed contour plots of the density at time t = 0:2 with

�t = 0:0005. Only part of 
, [0; 3]� [0;1], is shown. We can see the complicated

structures being captured by the new relaxation scheme.

(a) (b)

Fig. 3. The double-Mach re
ection problem. 30 equi-distributed pressure contours. (a)

120 � 30 grid points; (b) 240 � 60 grid points.

5 Concluding Remarks

We have described here a third order relaxation scheme for two-dimensional

Euler system of equation for inviscid 
ow. The system of equations is reformu-

lated into a relaxing system. For the space discretization a generalisation of the

interpolating polynomial is presented and here a third order CWENO recon-

struction is used. For the time integration a third order Runge-Kutta splitting

has been used. In this approach very good accuracy is achieved without using

Riemann solvers nor solving nonlinear systems. The ability of the methods to

handle such nonlinear systems allows for generalization to a much broader set

of hyperbolic system equations.
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Table 1. CPU time in minutes for the above test problems

Test problem Grid points �t N� steps CPU

The Shock Re
ection Problem 120 � 40 0:005 1000 16

The Double-Sod Tube Shock Problem 100 � 100 0:001 160 7

The Double-Mach Re
ection Problem 240 � 60 0:0005 400 12

The multidimensional algorithms presented in this paper can be highly opti-

mized for the vector computers, because they are explicit procedures and contain

no recursive elements. Some di�culties arise from the fact that for e�cient vec-

torization the data should be stored continuously within long vectors rather

than two-dimensional arrays. For completeness, we summarize in table 1 the

CPU time, measured on a PC with AMD-K6 200 processor running FORTRAN

code under Linux 2.2, for the test problems presented in this paper.

Future directions for this work include the following: improvement to include

unstructured grids, development of re�nement strategies, and three-dimensional

problems.
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