
Tight Bounds on Capacity Misses for
3D Stencil Codes

Claudia Leopold

Friedrich-Schiller-Universität Jena
Institut für Informatik
07740 Jena, Germany

claudia@informatik.uni-jena.de

Abstract. The performance of linear relaxation codes strongly depends
on an efficient usage of caches. This paper considers one time step of the
Jacobi and Gauß-Seidel kernels on a 3D array, and shows that tiling
reduces the number of capacity misses to almost optimum. In particular,
we prove that Ω(N3/(L

√
C)) capacity misses are needed for array size

N×N×N , cache size C, and line size L. If cold misses are taken into
account, tiling is off the lower bound by a factor of about 1+5/

√
LC. The

exact value depends on tile size and data layout. We show analytically
that rectangular tiles of shape (N−2) × s × (sL/2) outperform square
tiles, for row-major storage order.

1 Introduction

Stencil codes such as the Jacobi and Gauß-Seidel kernels are used in many sci-
entific and engineering applications, in particular in multigrid-based solvers for
partial differential equations. Stencil codes own their name to the fact that they
update array elements according to some fixed pattern, called stencil. The codes
perform a sequence of sweeps through a given array, and in each sweep update
all array elements except the boundary. This paper considers the Gauß-Seidel
and Jacobi kernels on a 3D array, which are depicted in Fig. 1. Since each update
operation (*) accesses seven array elements, we speak of a 7-point stencil.

In Fig. 1b), the copy operation can alternatively be replaced by a second loop
nest in which the roles of arrays A and B are reversed. Throughout the paper,
we consider a single iteration of the time loop. Copy operation or second loop
nest are not taken into account. Obviously, the Gauß-Seidel scheme incurs data
dependencies from iterations (i−1, j, k), (i, j−1, k), and (i, j,k −1) to iteration
(i, j, k), whereas the Jacobi scheme does not incur data dependencies.

When implemented in a straightforward way, the performance of stencil codes
lags far behind peak performance, chiefly because cache usage is poor [1]. On the
other hand, stencil codes have a significant cache optimization potential since
successive accesses refer to neighbored array elements. In 3D codes, five types of
data reuse can be distinguished:

(1) Assuming row-major storage order, the cache line that holds elementsA[i, j, k],
A[i, j, k + 1] . . . is reused in the k-loop,

P.M.A. Sloot et al. (Eds.): ICCS 2002, LNCS 2329, pp. 843−852, 2002.
 Springer-Verlag Berlin Heidelberg 2002



a) for (t=0; t<time; t++) /* or: while (!converged) */

for (i=1; i<N-1; i++)

for (j=1; j<N-1; j++)

for (k=1; k<N-1; k++)

A[i,j,k] += A[i-1,j,k] + A[i+1,j,k]

+ A[i,j-1,k] + A[i,j+1,k]

+ A[i,j,k-1] + A[i,j,k+1]; (*)

b) for (t=0; t<time; t++) { /* or: while (!converged) */

for (i=1; i<N-1; i++)

for (j=1; j<N-1; j++)

for (k=1; k<N-1; k++)

B[i,j,k] = A[i,j,k] + A[i-1,j,k] + A[i+1,j,k]

+ A[i,j-1,k] + A[i,j+1,k]

+ A[i,j,k-1] + A[i,j,k+1]; (*)

Copy(B->A);

}

Fig. 1. a) Gauß-Seidel and b) Jacobi code for N×N×N arrays A, B

(2) A[i, j, k] is reused in the k-loop, in the updates of A[i, j, k−1], A[i, j, k], and
A[i, j, k+1],

(3) A[i, j, k] is reused in the j-loop,
(4) A[i, j, k] is reused in the i-loop, and
(5) A[i, j, k] is reused in the time loop.

Reuse is exploited if data are kept in cache in-between successive accesses;
exploited reuse is denoted as locality. Reuse types 1 and 2 are always exploited
by the input codes; whether reuse types 3-5 are exploited depends on array size
N and cache capacity C. As explained by Rivera and Tseng [7], reuse type 3 is
exploited for C > 2N . This condition often holds in practice, and thus many 2D
codes perform well without cache optimization. The exploitation of type 4 reuse
requires C > 2N2, which does not hold for typical cache and array sizes. Tiling
can transform programs such that type 4 reuse is exploited, too. We will study
this technique in the paper. Type 5 reuse is out of our scope.

Tiling rearranges the updates such that successive type 4 reuses are moved
closer together. Fig. 2 depicts a tiled Gauß-Seidel code; tiled Jacobi code is
analogous and has been omitted for brevity. Tiling groups the updates into
rectangular blocks (called tiles) that are processed one after another. Note that
only two loops are blocked, and the third is not. Why it is better to block the
j- and k-loops instead of the i-loop will be explained in Sect. 3.

Tiling speeds up 3D stencil codes, as has been shown experimentally by
Rivera and Tseng [7]. The present paper complements their work by analytically
investigating the question as to how close to optimum tiling gets in terms of cache
misses. In line with common notation, we distinguish cache misses into cold
misses (the first access to an element), capacity misses (misses due to limited

844 C. Leopold



for (t=0; t<time; t++)

for (jj=1; jj<N-1; jj+=sj)

for (kk=1; kk<N-1; kk+=sk)

for (i=1; i<N-1; i++)

for (j=jj; j<min(jj+sj,N-1); j++)

for (k=kk; k<min(kk+sk,N-1); k++)

A[i,j,k] += A[i-1,j,k] + A[i+1,j,k]

+ A[i,j-1,k] + A[i,j+1,k]

+ A[i,j,k-1] + A[i,j,k+1]; (*)

Fig. 2. Tiled Gauß-Seidel code

cache capacity), and conflict misses (misses due to limited cache associativity).
Conflict misses can be eliminated through tile size selection, array padding, and
copying [6, 7], and are not considered in this paper.

This paper makes three contributions. First, we prove that Ω(N3/(L
√
C))

capacity misses are needed for any ordering of the update operations (*), where
L denotes cache line size. Second, we estimate the constant factor in this bound
by 0.35 under the assumptions N ≥ 1000, C ≥ 10000 and N 2 ≥ 100C. Third,
we analyze the tiled codes for different data layouts and tile sizes. While Rivera
and Tseng [7] use square tiles, we argue that rectangular tiles are superior. For
these, we prove that the number of cold and capacity misses is off the lower
bound by a factor of at most 1 + 4.6/

√
LC.

The paper is organized as follows. Section 2 proves the lower bound and esti-
mates the constant factor. Section 3 analyzes the tiled codes. Section 4 surveys
related work, and Section 5 finishes with conclusions.

2 Lower Bound

The number of cold misses is trivially equal to N3 − 8 since all elements of A,
except the corners, must be read. This number is independent on the order of
updates, and is, thus, valid for both the input and tiled codes. In the following,
we consider capacity misses only.

We do not rely on a particular cache replacement scheme, but assume user-
controlled data placement. The so-derived lower bound applies to any common
scheme such as LRU. Similarly, we do not take data dependencies into account,
which is correct because a lower bound to an unconstrained problem is always
a lower bound to a constrained problem, too. Accesses to B are ignored as they
can only increase the number of cache misses. Consequently, the lower bound
holds for both the Jacobi and Gauß-Seidel schemes.

An ordering of the updates is denoted as schedule. We allow for redundancy,
that is, updates may be carried out repeatedly with same indices i, j, k. Updates
must not be split into subcomputations, however, to guarantee bitwise-identical
results as compared to the input codes.

845Tight Bounds on Capacity Misses for 3D Stencil Codes



Theorem 1. Any schedule of the update operations (*) takes Ω(N3/(L
√
C))

capacity misses.

Proof: Let Sched be any schedule. We partition Sched into subsequences S1, S2,
. . . , Sr of successive updates such that S1, S2, . . . Sr−1 contain exactly C

√
C

updates, and Sr contains up to 2C
√
C updates. Note that

r ≥ �(N−2)3/(C
√
C)� ,

where inequality indicates redundancy.
We define an array element e to be touched-only by Sl (1 ≤ l ≤ r) if the

number of accesses to e in Sl is at least one, but less than the total number of
accesses to e in Sched . In other words, an array element is touched-only if it is
accessed by multiple Sl.

The rest of this proof uses geometric argumentation. We model A by a large
cube that is composed of small unit cubes for the A[i, j, k]. Hence, A[i, j, k]
corresponds to a cube of side length 1×1×1 at position (i, j, k) of the large cube.

In the following, we consider any particular Sl. Let F denote the geometric
figure (also called arrangement) that corresponds to Sl, that is, the figure that
is composed of those unit cubes whose array elements are updated in Sl. Fur-
thermore, let Q be the smallest axes-parallel cuboid that completely holds F .
Obviously, the dimensions qi, qj , and qk of Q (in i-, j-, and k-direction, respec-

tively) fulfill qi · qj · qk ≥ C
√
C . We define a unit cube to be i-touched by F

if

– the cube belongs to F , but its left or right neighbor in i-direction does not,
or

– the cube does not belong to F , but its left or right neighbor in i-direction
does.

Analogously, we define j-touched and k-touched. We say that a cube is touched
if it is touched in at least one of the three directions. Since an array element has
up to 6 neighbors, a cube can be touched up to sixfold.

The concepts of touched and touched-only are related. Consider, for instance,
a cube inside F that is i-touched by F at the left boundary. Then the correspond-
ing array element A[i, j, k] is updated in Sl, but the left neighbor A[i−1, j, k] is
accessed and not updated. Consequently, A[i−1, j, k] is either updated in another
subsequence Sl′ with l′ 	= l, or A[i−1, j, k] is not updated at all. In the former
case, both Sl and Sl′ access A[i, j, k], and thus A[i, j, k] is touched-only by Sl.
In the latter case, A[i−1, j, k] belongs to the boundary of A.

Lemma 1 below shows that any arrangement of C
√
C cubes induces at least

4C− 6
√
C touched cubes. Consequently, within the whole schedule, the number

of pairs (Sl, e) for which the cube that corresponds to e is touched by the figure
that corresponds to Sl is at least

Z ≥ r · (4C − 6
√
C) .

We distinguish these pairs into five types:

846 C. Leopold



(1) e is touched-only by Sl, and Sl is the first subsequence that accesses e.
(2) e is touched-only by Sl, and Sl is the last subsequence that accesses e.
(3) e is touched-only by Sl, and Sl is neither the first nor the last subsequence

that accesses e.
(4) e is not touched-only by Sl, and e belongs to the boundary of A.
(5) e is not touched-only by Sl, and a neighbor of e belongs to the boundary of

A.

The whole schedule comprises at most 6N2+6(N−2)2 = 12N2−24N+24 pairs
of types 4 and 5. Let Zin, Zout, and ZinOut denote the total number of type 1, 2,
and 3 pairs, respectively. Then, Zin + Zout + ZinOut = Z − 12N 2 + 24N − 24
and Zin = Zout imply Zout + ZinOut ≥ Z/2− 6N 2 + 12N − 12.

In-between successive Sl’s, at most C data are kept in cache, summing up to
W ≤ (r−1) · C data in the whole schedule. Consequently, the number of data
that must be reloaded after having been replaced from cache is at least

Zout + ZinOut −W ≥ r · (2C − 3
√
C)− 6N2 + 12N − 12− rC + C

≥
⌊
(N−2)3/(C

√
C)

⌋
· (C − 3

√
C)− 6N2 + 12N − 12 + C .

Since at most L elements are loaded per memory access, the number of capacity
misses is at least

(1/L) ·
(⌊

(N−2)3/(C
√
C)

⌋
· (C − 3

√
C)− 6N2 + 12N − 12 + C

)

= Ω(N3/(L
√
C)) ,

provided that N is significantly larger than
√
C.

In the following, we estimate the constant factor in this bound under the
assumptions N ≥ 1000, C ≥ 10000 and N 2 ≥ 100C. Imposing stronger as-
sumptions increases the constant, and imposing weaker assumptions decreases
it. With X =

D
(N−2)3/(C

√
C), we get

X =
(
N2(N−6) + 12N − 8

)
/ (C

√
C)

≥ (100C(10
√
C − 6) + 120

√
C − 8) / (C

√
C)

= 1000− 600/
√
C + 120/C − 8/(C

√
C)

≥ 994 .

Consequently, �X� ≥ X − 1 ≥ (1 − 1/994) X . Let Y =
D

�X� · (C − 3
√
C) and

Z =
D
6N2 − 12N + 12− C. Then, C − 3

√
C ≥ 0.97C implies

Y ≥ (1− 1/994) · 0.97 · (N−2)3/
√
C ≥ 0.963N3/

√
C ≥ 9.63N2 .

From Z < 6N2 follows Z ≤ 0.63Y , and thus Y − Z ≥ 0.37Y . Putting it all
together, the number of capacity misses is at least

(1/L) · (Y − Z) ≥ (0.37/L) · 0.963 · (N3/
√
C) ≥ 0.35N3/(L

√
C) .

The proof of Lemma 1 is still open:

847Tight Bounds on Capacity Misses for 3D Stencil Codes



Lemma 1. For any arrangement of C
√
C cubes, at least 4C − 6

√
C cubes are

touched.

Proof: The proof is by contradiction. Let F be an arrangement with less than
4C − 6

√
C touched cubes. Let column denote a set of cubes in F that have the

same i- and j-coordinates, and let plane denote a set of cubes in F that have the
same k-coordinates. Furthermore, let wp denote the number of cubes in plane p.
We distinguish four cases and derive a contradiction in each of them.
Case 1: At least two planes p, p′ (p 	= p′) exist such that wp ≥ C and
wp′ ≥ C: The total number of k-touched cubes in F equals the sum of k-touched
cubes in the individual columns (columns are independent wrt. touches in k-
direction). In a column with one cube, at least three cubes are k-touched; in a
column with two or more cubes, at least four cubes are k-touched. Hence, if p
and p′ have x columns in common, the total number of k-touched cubes is at
least 4x+ 3(#touched(p)−x) + 3(#touched(p′)−x) ≥ 4C, a contradiction.
Case 2: A plane p exists with wp ≥ 4C/3: Since there are at least 4C/3 non-
empty columns, the total number of k-touched cubes is at least 3 · (4C/3) = 4C,
a contradiction.
Case 3: Exactly one plane p contains C ≤ wp < 4C/3 cubes; all other
planes contain less than C cubes:Obviously, the total number of i/j-touched
cubes equals the sum of i/j-touched cubes in the individual planes (planes are
independent wrt. touches in i/j-direction). In [3], it is shown that any 2D ar-
rangement of Q unit squares induces at least 4

√
Q i/j-touched squares. Thus, in

3D, any plane of Q cubes i/j-touches at least 4
√
Q cubes. Hence, F altogether

i/j-touches at least 4
√
C +

∑
p
(4
√
wp) cubes, with

∑
p
wp ≥ C

√
C − 4C/3 =

D
D.

We assume
∑
p
wp = D, which can only underestimate the number of touched

cubes. Lemma 2 below shows that, for any fixed value of
∑
p
wp, the value of

∑
p

√
wp is maximized if the wp take extreme values, that is, if �D/(C−1)� of the

wp take value C−1, one wp takes value D−�D/(C−1)� · (C − 1), and the other
wp take value zero. Thus, the total number of i/j-touched cubes is at least

4
√
C + 4 · �D/(C−1)� · √C−1 ≥ 4D/

√
C > 4C − 6

√
C ,

which contradicts the assumption.
Case 4: All planes contain less than C cubes: In analogy to Case 3, the
number of i/j-touched cubes can be estimated by

4
⌊
C
√
C/(C−1)

⌋
· √C−1 ≥ 4C − 4

√
C−1 > 4C − 6

√
C ,

which contradicts the assumption.

Lemma 2 completes the lower bound proof:

Lemma 2. For fixed values d, e ∈ N, a finite set X ⊆ N with
∑
x∈X

x = d and

∀x ∈ X : x ≤ e minimizes
∑
x∈X

√
x if

848 C. Leopold



– �d/e� elements of X have value e,
– one element of X has value d− �d/e� · e, and
– all other elements of X have value zero.

Proof: The proof is by contradiction. Let X be defined as to the items above,
and let Y 	= X with

∑
y∈Y

y = d and ∀y∈Y : y≤e minimize
∑

y∈set

√
y for all finite

sets with these properties. Since Y 	= X , elements ya, yb ∈ Y exist such that
0 < ya, yb < e. Let ya be the smallest and yb be the largest element with this
property. We define Y ′ =

D
(Y \ {ya, yb})∪{ya−1, yb+1}. Then, ∑

y′∈Y ′
y′ = d and

∀y′ ∈Y ′ : y′ ≤ e. Since for function f(y) =
√
y, the derivative f ′(y) = 1/(2

√
y)

is monotonely decreasing, we observe
√
ya−1 <

√
ya − 1/(2

√
ya) and

√
yb+1 <√

yb + 1/(2
√
yb), which yields

√
ya−1 +

√
yb+1 <

√
ya +

√
yb. Thus,

∑
y′∈Y ′

√
y′ =

∑
y∈Y,y �=ya,yb

√
y +

√
ya−1 +

√
yb+1 <

∑
y∈Y

√
y ,

in contradiction to the minimality of Y .

3 Upper Bound

The tiled codes in Fig. 2 partition the updates into blocks of size (N−2)×sj×sk.
Since the i-loop is not blocked, we say that the tiles proceed in i-direction.
Alternatively, tiling can block the i- and k-loops so that tiles proceed in j-
direction, or the i- and j-loops so that tiles proceed in k-direction. In either
case, si, sj, and sk denote the tile size in directions i, j, and k. Below, we
analyze the number of capacity misses assuming row-major storage order. For
column-major storage order, the argumentation is analogous, except that i- and
k-directions are interchanged.

The following analysis applies to both the Jacobi and Gauß-Seidel codes
since tiling preserves the data dependencies of Gauß-Seidel, and since accesses
to array B in the Jacobi code do not incur cache misses if a write-through cache
(cache-bypassing) is used.

Tiling in k-direction Updates are carried out subplane-by-subplane, for increas-
ing values of k. Here, similar to Sect. 2, a subplane is a set of array elements
with same k index that are accessed in the present tile. Since an update refers to
data from at most three subplanes, only three subplanes must be kept in cache
instead of the whole tile [7].

Nevertheless, since cache line direction equals tile direction, it is not possible
to keep exactly three planes in cache. Instead, the cache must hold up to 2L(si+
2)(sj+2) data, with factor 2 reflecting the possibility thatA[i, j, k] andA[i, j, k−1]
belong to different cache lines.

Capacity misses occur at tile boundaries only. If the updates of A[i, j, k] and
A[i+1, j, k] (analogously of A[i, j, k] and A[i, j+1, k]) belong to different tiles,

849Tight Bounds on Capacity Misses for 3D Stencil Codes



then both the cache line of A[i, j, k] and the cache line of A[i+1, j, k] must be
loaded twice. Of the four misses, two are capacity misses. Since data from the
same cache line are reused in successive planes, the two misses occur only once
during the processing of L planes, so that the total number of capacity misses
can be estimated by

(2/L) · total area of tile boundaries ≤ (2/L) · (N3/si +N3/sj) .

This bound is minimized for si = sj = �√C/(2L)� − 2, which implies about

(2/L) ·N3 ·2 · (√2L/
√
C) = 5.7 · (N3/

√
LC) capacity misses. Taking cold misses

into account, this value is off the lower bound by a factor of at most

N3 − 8 + 5.7N 3/
√
LC

N3 − 8 + 0.35N 3/
√
LC

= 1 +
5.35N3/

√
LC

N3 − 8 + 0.35N 3/
√
LC

< 1 + 5.4/
√
LC .

Tiling in i- or j-direction We refer to i-direction; tiling in j-direction is analo-
gous. In both cases, the cache lines proceed orthogonal to the tiles, and thus are
cut by tile boundaries.

Again, the cache must hold about three subplanes of A (here: set of array
elements with same i index), although the exact value is somewhat different. On
one hand, it is sufficient that the cache holds about two subplanes instead of three
since after updating A[i, j, k], element A[i−1, j, k] can be removed, and before
updating A[i, j, k], element A[i+1, j, k] is not yet needed. On the other hand,
cache lines must be stored completely, even if they are cut by tile boundaries and
part of the elements is not accessed in the present tile. Hence, C > rsjsk, for
some value r with 2 < r < 3. Below we use r = 3, which somewhat overestimates
the real cost (for reasonably large sj , sk).

Capacity misses occur at tile boundaries. We distinguish three cases, which
are depicted in Fig. 3. The figure shows a plane of A for any fixed i. Referring to
the figure, we denote tile boundaries with fixed j (1 ≤ i, k ≤ N−2) as horizontal,
and tile boundaries with fixed k (1 ≤ i, j ≤ N−2) as vertical.

Cache lines along horizontal tile boundaries (such as lines a and b) must be
loaded twice during the overall computation; after loading, they are used in L
iterations of the k-loop. Of the four misses, two are capacity misses. Thus, the
total number of capacity misses at horizontal tile boundaries is (2/L) ·N3/sj .

At vertical boundaries, cache lines that are cut (such as c) incur one capacity
miss since each line must be loaded twice. Cache lines that end at tile boundaries
(such as d and e) incur one capacity miss each, since both lines must be loaded
twice. Hence, the case that cache lines are cut induces less misses than the case
that cache lines end at tile boundaries. We assume here that all cache lines are
cut, which can be achieved by padding the array. Then, N3/sk capacity misses
are taken at vertical tile boundaries.

Adding the values of horizontal and vertical boundaries, we get a total of

(2/L) ·N3/sj +N3/sk

850 C. Leopold



a
b

c

d e
Tile

j

k

Fig. 3. Cache misses at tile boundaries

capacity misses. For sj = sk ≈ √
C/3, this value equals

√
3(1+2/L) · (N3/

√
C).

While Rivera and Tseng restrict consideration to square tiles [7], the following
analysis suggests that rectangular tiles (sj 	= sk) perform better. Substituting
sj = C/(rsk) into the above formula yields

f(sk) = (2rskN
3)/(LC) +N3/sk

capacity misses. This function is minimized for

f ′(sk) = (2rN3)/(LC)−N3/s2
k = 0 ,

that is, for sk =
√
(LC)/(2r) and sj =

√
(2C)/(rL). Here, sk = (L/2) · sj ,

that is, rectangular tiles of shape (N−2)× s× (sL/2) minimize the number of
capacity misses. For these tiles, 2

√
2r · (N3/

√
LC) ≈ 4.9 · (N3/

√
LC) capacity

misses are taken, which is slightly less than the number of capacity misses for
tiling in k-direction, and less than the number of capacity misses for square tiles.
Taking cold misses into account, i-direction tiling is off the lower bound by a
factor of at most 1 + 4.6/

√
LC, which is very close to one.

4 Related Work

Tiling is a well-known compiler optimization [6, 10]. Nevertheless, Douglas et
al. [1] observe that current production compilers are not able to tile stencil codes.
The problem is partly due to differences in the way tiling works for stencil codes
as opposed to dense linear algebra codes (the focus of compiler research). In tiled
stencil codes, the data sets of neighbored tiles overlap, whereas in dense linear
algebra codes, the data sets are disjoint.

Several papers deal with tiling specifically for stencil codes. Closest to ours
is work by Rivera and Tseng [7] who, like us, consider one iteration of the time
loop for 3D arrays. Tiling is studied experimentally, including a discussion of
tile size selection and array padding to reduce conflict misses. Rivera and Tseng
observe that tiling speeds up 3D stencil codes by 17 − 121%, but they do not

851Tight Bounds on Capacity Misses for 3D Stencil Codes



relate their result to a lower bound. Other papers investigate tiling schemes for
the time loop, that is, for the exploitation of type 5 reuse [1, 2, 5, 8, 9].

Part of the proof techniques in this paper have originally been developed
for the simpler case of 2D stencils with 2N > C in [3, 4]. These references also
discuss minor modifications of tiling, such as a snake-like order of tile evaluation,
and a sophisticated data layout scheme that eliminates the L factor from the
quotient between upper and lower bounds. The modifications can be generalized
to 3D, but have little impact on running time.

5 Conclusions

This paper has analyzed the numbers of cold and capacity misses in one time
step of the Jacobi and Gauß-Seidel kernels on 3D arrays. We have proven a
lower bound, and have shown that the well-known technique of tiling gets very
close to this bound. Moreover, we have compared different tiling schemes, and
observed that tiles of shape (N−2)×s×(sL/2) perform best. Future work should
investigate this claim experimentally, including padding.

References

1. C. C. Douglas, U. Rüde, J. Hu, and M. Bittencourt. A guide to designing cache
aware multigrid algorithms. In Concepts of Numerical Software, Notes on Numerical
Fluid Mechanics. Vieweg-Verlag, 2001. To appear.

2. C. E. Leiserson, S. Rao, and S. Toledo. Efficient out-of-core algorithms for lin-
ear relaxation using blocking covers. Journal of Computer and System Sciences,
54(2):332–344, Apr. 1997.

3. C. Leopold. On optimal locality of linear relaxation. To appear in Proc. IASTED
Int. Multi-Conf. on Applied Informatics, 2002.

4. C. Leopold. On optimal temporal locality of stencil codes. To appear in Proc. ACM
Symp. on Applied Computing, 2002.

5. C. Leopold. An analytical evaluation of tiling for stencil codes with time loop. To
appear in Workshop-Proc. of Int. Parallel and Distributed Processing Symp. (4th
Workshop on Advances in Parallel and Distributed Computational Models), 2002.

6. G. Rivera and C.-W. Tseng. A comparison of compiler tiling algorithms. In 8th Int.
Conf. on Compiler Construction, pages 168–182. LNCS 1575, 1999.

7. G. Rivera and C.-W. Tseng. Tiling optimizations for 3D scientific computations.
In Proc. Supercomputing. IEEE, 2000. Available at http://www.supercomp.org/
sc2000/Proceedings/start.htm.

8. S. Sellappa. Cache-efficient multigrid algorithms. Master’s thesis, University of
North Carolina at Chapel Hill, Dept. of Computer Science, 2000.

9. Y. Song and Z. Li. New tiling techniques to improve cache temporal locality. In
Proc. of the ACM SIGPLAN Conf. on Programming Language Design and Imple-
mentation, pages 215–228, 1999.

10. M. E. Wolf and M. S. Lam. A data locality optimizing algorithm. SIGPLAN
Notices, 26(6):30–44, 1991.

852 C. Leopold


	Introduction
	Lower Bound
	Upper Bound
	Related Work
	Conclusions
	References

