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Abstract. Here we present preliminary results in which a genetic algo-
rithm (GA) is used to evolve one-dimensional binary-state cellular au-
tomata (CA) to perform a non-trivial task requiring collective behavior.
Using a fitness function that is an average area in the iterative map, the
GA discovers rules that produce a period-3 oscillation in the concentra-
tion of 1s in the lattice. We study one run in which the final state reached
by the best evolved rule consists of a regular pattern plus some defects.
The structural organization of the CA dynamics is uncovered using the
tools of computational mechanics.

PACS: 82.20Wt Computational modeling; simulation.

1 Introduction

A cellular automata (CA) is a regular array of N cells, each of whose state si(t)
is taken from a finite number of values, and which evolves in discrete time steps
according to a local rule φ. CAs provide simple models of complex systems in
which collective behavior can emerge out of the actions of simple, locally con-
nected units. This collective behavior obeys laws that are not easily deduced
from the local rule. However it is not well established how to design a CA to
exhibit a specific behavior.

The application of genetic algorithms (GA) to the design of one dimensional
CA that perform useful computations has both scientific and practical interest
[4, 13, 14]. In the original work of Crutchfield and Mitchell [4] a GA was able
to discover CAs with high performance on tasks requiring cooperative collective
behavior, namely the density and the synchronization tasks. Figure 1 shows two
space-time diagrams of two evolved CA. A successful CA for the density classi-
fication task decides whether or not the initial configuration contains more than
half 1s. If it does, the whole lattice eventually iterates to the fixed point config-
uration of all cells in state 1; otherwise it eventually iterates to the fixed-point
configuration of all 0s [6, 4]. For the synchronization task, a successful CA will
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Fig. 1. Space-time diagrams illustrating the behavior of two CAs that perform the
density classification task (a) and the synchronization task (c) [5, 13]. Time starts
on t = 0 and goes from up down and space is displayed on the horizontal axis. Black
represents a cell in state 1 while white is a cell in state 0. The corresponding space-time
diagram after filtering out regular domains are shown in (b) and (d).

reach a final configuration in which all cells oscillate between all 0s and all 1s on
successive time steps [5, 9].

The computational task that we study in this paper is the QP3(P3) task in
which the goal is to find a CA that, starting from a random initial condition,
reaches one final configuration in which the concentration c(t) = 1

N

∑N
i si(t)

oscillates among three different values. This task was previously studied in d = 3
where the concentration of some CAs show many non-trivial collective behaviors
(NTCB).

Figure 2 shows the iterative map, i.e. the graph of c(t + 1) versus c(t), for
a family of totalistic CA rules [10]. Here the different collective behaviors are
represented by distinct clouds of points. A few years ago a generic argument was
given against the existence of collective behaviors with period larger than 2 in
extended systems with local interactions [1]. Nonetheless, larger-period collec-
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tive behaviors have been observed in such systems. The most interesting NTCB
is the quasiperiod three behavior (QP3). Several attempts have been made to
understand its phenomenology and have addressed the possible mechanisms by
which this puzzling collective behavior emerges [2, 3, 8] but at the moment there
is not an answer to the question of how NTCB can be predicted from the local
rule. In [11] a GA was used to evolve a population of three dimensional CAs
to perform a QP3(P3) task, i.e. under an appropriate fitness function the GA
selected rules with P3 or QP3 collective behavior. In this work we evolve a pop-
ulation of one-dimensional CAs rules to perform the QP3(P3) task.
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Fig. 2. Iterative map for five totalistic cellular automata rules [10]. The different col-
lective behaviors are shown by distinct clouds of points: (a) period-1; (b) period-2; (c)
intermittent period-2; (d) period-3; (e) quasiperiod-3.

2 The Genetic Algorithm

Our GA begins with a population of P=20 randomly generated chromosomes.
Each chromosome is a bit string representing the output bits for all possible
neighborhood configurations in a binary state CA of radius 3, listed in lexico-
graphic order. (”Radius 3” means that each neighborhood of a cell consists of
the cell itself plus the three nearest neighbors on either side.) Since there are
27 = 128 such neighborhood configurations, the chromosomes are 128-bits long.
Thus there is a huge space of 2128 possible rules in which the GA is to search.
The fitness evaluation for each CA rule is carried out on a lattice of N cells
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starting from a random initial condition of concentration 0.5. After a transient
time of N/2 time steps, we allow each rule to run for a maximum number of
M = N/2 iterations. From the iterative map of Figure 2 we observe that the
area of period-1 and period-2 behaviors are smaller than the area of period-3 and
QP3. This heuristic lead us to define the fitness F (φ) of a rule φ as the average
area covered in the iterative map corresponding to φ. It is worth pointing out
that the final state the CA must reach for this task is not necessarily a periodic
one such as it is for the synchronization and the density tasks.

The values of concentration are assembled in groups of 4 consecutive values
(c1, c2, c3 and c4) and the fitness function F (φ) is defined by:

F (φ) =
4

M

M/4∑

i

1

2
abs[(c2 − c1)(c4 − c2)− (c3 − c2)(c3 − c1)]i

In each generation: (i) F (φ) is calculated for each rule φ in the population.
(ii) The population is ranked in order of fitness. (iii) A number E = 5 of the
highest fitness (“elite”) rules is copied without modification to the next gener-
ation. (iv) The remaining P − E = 15 rules for the next generation are formed
by single-point crossover between randomly chosen pairs of elite rules. The off-
springs from each crossover are each mutated with a probability m = 0.05. This
defines one generation of the GA; it is repeated G = 103 times for one run of
the GA.

3 Results

We performed more than 100 different runs of the GA, each with a different
random-number seed. In the density and in the synchronization task the usual
lattice size was 149 cells, but here to define clearly the collective behavior we
need a greater lattice size. We used a lattice of N = 103 cells.

Symbol Rule Table Hexadecimal Code NTCB Fitness λ

φa 21088418-01091108-41038844-10c18080 P3 0.048 0.211

φb ffbe84bc-10874438-c6a08204-9d1b800b P3 0.186 0.414

φc 146157d1-fbb53fec-7dfbeffc-eaf0fa28 QP3(P3) 0.066 0.625

φd f193800-c06b0eb0-e000461c-80659c11 P3 0.031 0.336

Table 1. The best evolved rules, the rule table hexadecimal code, the type of non-
trivial collective behavior, the fitness function averaged over 100 initial conditions and
the lambda parameter. To recover the 128-bit string giving the output bits of the rule
table, expand each hexadecimal digit to binary. The output bits are then given in
lexicographic order.
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Generation Rule Table Hexadecimal Code Fitness λ

10 21008100-00200500-4001a000-1080c000 0.004 0.117

25 21008108-20200d20-41412000-1090521b 0.006 0.203

48 21008908-20200500-40298008-1081c082 0.012 0.180

104 21088118-20200108-41098008-1081c142 0.015 0.195

140 21088518-01091108-41018040-10c1a002 0.043 0.203

415 (φa) 21088418-01091108-41038844-10c18080 0.048 0.211

Table 2. CA look-up table output bits given in hexadecimal code, value of the fitness
function and the lambda parameter for some ancestors of rule φa.
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Fig. 3. Best fitness rule versus generation in the run in which rule φa was found at gen-
eration 415. Lattice size is 103 cells. The rules of the initial population were randomly
selected.

Table 1 shows some of the best evolved rules, the rule table hexadecimal
code, the kind of collective behavior observed, the fitness of the rule averaged
over 100 initial configurations and the parameter λ, which is the fraction of 1s
in the rule table’s output bits [12]. Under the fitness function F (φ) the GA was
able to find many rules with the desired behavior and about 30% of the runs
ended up with a rule that showed a P3 collective behavior. Only one rule φc
showed a QP3 collective behavior that after a long time decays into a P3, but
this will be studied elsewhere.

The progression of a typical evolutionary run is depicted in Figure 3 which
plots the fittest rule of each generation in the run in which rule φa was found. It
is observed that the fitness of the best CA rules increases in jumps. Qualitatively
the rise in fitness can be divided into several epochs, each one corresponding to
the discovery of a new improved strategy. The generational progression of the
GA can give important information about the design of CA rules with a specific
behavior. Table 2 shows some ancestors of rule φa. Their iterative map and the
time series of the concentration are shown in Figures 4 - 5. In the initial gener-
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Fig. 4. Iterative map of the concentration of the fittest rule in generation: (a) 10; (b)
48; (c) 140; (d) 415 at which φa was discovered.

ations the GA discovers a rule (φ10) that displays a P2 behavior , Figures 4a-5a,
and the fitness of the rule is very small F (φ10) = 0.039. In generation 48 there
is a jump in F (φ48) = 0.116 and now the iterative map, Figure 4b, shows two
clouds of points with a greater size than in generation 10. In generation 140
there is a big jump in fitness F (φ140) = 0.430, and the iterative map now shows
a triangular object, while the time series of the concentration shows clearly three
branches. Finally, when rule φa is discovered at generation 415, a further im-
provement in the fitness is attained.

Under the fitness function F (φ) the evolutionary process has selected some
rules that, starting from a random initial condition, synchronize the concen-
tration to a three-state cycle. To see how such a synchronization is obtained
we use the tools of the computational mechanics developed by Crutchfield and
Hanson [7]. This point of view describes the computation embedded in the CA
space-time configuration in terms of domains, defects, and defect interactions.
Figure 6 shows a space-time diagram of rules φ10, φ48, φ140, and φa. The space-
time diagrams of φ10 and φ48, Figures 6a-b, show irregular regions of fractal
structures separated by straight lines. While for rules φ140 and φa the space-time
diagrams show patterns in which there is an easily recognized spatio-temporally
periodic background -a domain- on which some dislocations move. In the sim-
plest case, a domain Λ consists of a set of cells in the space-time diagram that
are always repeated. For example, the domain for rule φa and φ140 is shown in
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Fig. 5. Time series of the concentration of the fittest rule in generation: (a) 10; (b)
48; (c) 140; (d) 415(φa).

Table 3. The concentration of activated cells in Λ oscillates among three values
1/2, 1/3, and 1/6. The computational strategy used by φa and φ140 seems to be
their capacity to discover a domain that fulfills the requirements imposed by the
task. In many cases, two adjacent synchronized regions left and right are out of
phase i.e., there is some displacement of the right domain along the temporal
axis when compared with the left domain. At the boundaries between them there
are several defect cells, or particles that propagate with a given velocity. The
particles, named with Greek letters, can be seen in Figure 7 which is a filtered
space-time diagram of Figure 6d. The filtered diagrams reveal defect cells that
interact among them and are transmitted from distant parts of the lattice until
more synchronized regions are obtained.

Though the concentration of the CA can attain a P3 collective behavior,
rules like φa fail to synchronize the whole lattice to a single domain: there are
some particles like α and µ that appear at the boundary between two Λ domains
which are in phase. Figure 8 shows in a log-log plot the decaying of the density
of defects ρd versus the time for φa. Data points have been averaged over ten
different initial condition with the system running for 5x104 time steps. It can
be observed that the density of defects ρd decreases with time to a non-zero
asymptotic value. This decay of the number of defects means that there are
increasingly large homogeneous domains and the particles become increasingly
less important to the collective behavior over time.
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Fig. 6. Space-time diagrams of the fittest evolved rules in the run in which φa was
discovered. For each space-time diagram a window of 256x256 cells is displayed. Gen-
erations: (a) 10. (b) 48. (c) 140. (d) 415 (φa).

Domain Λ Particles (velocities)

1 1 0 1 0 0 α ∼ ΛΛ (-1)
1 1 0 0 0 0 β ∼ ΛΛ+1 (1/3)
0 1 0 0 0 0 δ ∼ ΛΛ−1 (0)
1 0 0 1 1 0 ε ∼ ΛΛ+2 (1)
0 0 0 1 1 0 γ ∼ ΛΛ+1 (1)
0 0 0 0 1 0 µ ∼ ΛΛ (1)

Main Particle Interactions

β + γ → α + δ α + β → δ + ε
α + γ → µ α + ε → γ

Table 3. Domain Λ for rule φa, the particle catalog with their boundaries and velocities
and several of the interactions.
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Fig. 7. Filtered space-time diagram of rule φa corresponding to Figure 6d.
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Fig. 8. The density of defects versus time for rule φa

4 Conclusion

The emergence of collective behaviors that arise from the local interaction of
a collection of individuals is a phenomenon observed in many natural systems.
To investigate emergent properties in spatially extended systems a theoretical
framework was proposed in [4], which requires a decentralized system such as a
CA, an idealized computational model of evolution such as a genetic algorithm
and finally a computational task that necessitates global information processing.

The computational task that we studied was the QP3(P3) collective behav-
ior task in spatial dimension d = 1, where the entire system has to cooperate
in order that the concentration of activated cells is oscillating among three val-
ues. Using a fitness function that was the size of the attractor in the iterative
map, the GA discovers many CA rules whose space-time dynamics displays the
desired behavior. It is worth pointing out that for this task the system does not
need to be globally synchronized. Here we have focused on a run in which the
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best evolved rule’s strategy used domains and particles to produce the desired
behavior. Domains and particles were also shown to be central to the GA’s so-
lutions for the density and synchronization tasks, described in [4, 5].

To our knowledge there are no systematic studies of this computational task
in d = 1, and we expect that this work will motivate further investigations such
as the study of globally synchronized P3 behavior.
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3. H. Chaté and P. Manneville. Collective behaviors in spatially extended systems
with local interactions and synchronous updating. Progress Theor. Phys., 87(1):1–
60, 1992.

4. J. P. Crutchfield and M. Mitchell. The evolution of emergent computation. Pro-
ceedings of the National Academy of Science U.S.A., 92:10742–10746, 1995.

5. R. Das, J. P. Crutchfield, M. Mitchell, and J. E. Hanson. Evolving globally syn-
chronized cellular automata. In L. J. Eshelman, editor, Proceedings of the Sixth
International Conference on Genetic Algorithms, pages 336–343, San Francisco,
CA, 1995. Morgan Kaufmann.

6. R. Das, M. Mitchell, and J. P. Crutchfield. A genetic algorithm discovers particle-
based computation in cellular automata. In Y. Davidor, H.-P. Schwefel, and
R. Männer, editors, Parallel Problem Solving from Nature—PPSN III, volume 866,
pages 344–353, Berlin, 1994. Springer-Verlag (Lecture Notes in Computer Science).

7. J. E. Hanson and J. P. Crutchfield. Computational mechanics of cellular automata:
An example. Physica D, 103:169–189, 1997.

8. J. Hemmingsson. A totalistic three-dimensional cellular automaton with quasiperi-
odic behaviour. Physica A, 183:225–261, 1992.

9. W. Hordijk. Dynamics, Emergent Computation, and Evolution in Cellular Au-
tomata. Ph.D. dissertation, Univ. New Mexico, 1999.
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