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Abstract. Distributed Data Mining (DDM) is the process of mining distributed
and heterogeneous datasets. DDM is widely seen as a means of addressing the
scalability issue of mining large data sets. Consequently, there is an emerging
focus on optimisation of the DDM process. In this paper we present cost
formulae for estimating the communication and computation time for different
distributed data mining scenarios.

1 Introduction

Distributed data mining (DDM) addresses the specific issues associated with the
application of data mining in distributed computing environments, which are typically
characterised by the distribution of users, data, hardware and mining software. DDM
is widely seen as a means of addressing the scalability issue of mining large data sets.
There are predominantly two architectural models used in the development of DDM
systems, namely, client-server (CS) and software agents. The “agents” category can
be further divided on the basis of whether the agents have the ability to migrate in a
self-directed manner or not (i.e. whether the agents exhibit the characteristic of
mobility or not). There is an emerging focus on efficiency and optimisation of
response time in distributed data mining [6][9]. A significant issue in the success of
an optimisation model is the computation of the cost of different factors in the DDM
process. In this paper, we present mathematical cost models that facilitate
identification of the different cost components in the DDM process for various
strategies such as client-server and mobile agents. These cost models form the basis
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for apriori estimation of the response time for a given task. In conjunction with the
cost models, we have developed a technique for estimating the run time of data
mining tasks (which is one of the cost components in the DDM process). The
experimental evaluation of this technique establishes its estimation accuracy and
validity.

In the following sections of this paper, we present cost models for distributed data
mining including cost formulae for estimating the communication time and our
technique for apriori estimation of the run time of data mining algorithms. The paper
is organised as follows. In section 2 we review related work in the field of distributed
data mining with a particular focus on optimisation techniques. Section 3 describes
the cost components in different DDM techniques and presents the cost formulae for
estimating these components. In section 4, the experimental results of our data mining
task run time estimation technique are analysed. Finally, in section 5, we conclude by
discussing the current status of our project and the future directions of this work.

2 Related Work

Work on improving performance of DDM systems by using an optimal/cost-efficient
strategy has been the focus of [6][9]. IntelliMiner [6] is a client-server distributed data
mining system, which focuses on scheduling tasks between distributed processors by
computing the cost of executing the task on a given server and then selecting the
server with the minimum cost. The cost is computed based on the resources (i.e.
number of data sets) needed to perform the task. While this model takes into account
the overhead of communication that is increased by having to transfer more datasets it
ignores several other cost considerations in the DDM process such as processing cost
and size of datasets. In [9], the optimisation is motivated by the consideration that
mining a dataset either locally or by moving the entire dataset into a different server is
a naive approach. They use a linear programming approach to partition datasets and
allocate the partitions to different servers. The allocation is based on the cost of
processing (which is assigned manually in terms dollars) and the cost of transferring
data (which is also assigned manually in terms of dollars). The manual assignment of
cost requires expert knowledge about different factors that affect the DDM process
and quantification of their respective impact, which is a non-trivial task. Thus the
computation of the cost is an important question for any optimisation model. In the
models discussed, the cost is either assigned manually or computed using a simple
technique, which only takes into account the availability of datasets. In the following
sections of this paper, we present a technique for computing the cost based on the
response time for different mining strategies. We use apriori estimates of the response
time for factors such as communication and processing.

3 Cost Components in the Distributed Data Mining Process

In general, optimisation models in DDM attempt to reduce the response time by
choosing strategies that facilitate faster communication and/or processing. We
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propose apriori estimates of the response time as the basis for computing the cost of

distributed data mining. In this section we describe the different cost components of

the DDM process and present cost formulae for estimating their response times. The
response time of a DDM task broadly consists of three components:

1. Communication: The communication time is largely dependent on the DDM model
and varies depending on whether the task is performed using a client server
approach or using mobile agents

2. Computation. This is the time taken to perform data mining on the distributed data
sets and is a core factor irrespective of the DDM model.

3. Knowledge Integration. This is the time taken to integrate the results from the
distributed datasets.

The response time for distributed data mining is as follows:

T = taam + tki 0

In (1), T is the response time, tygm is the time taken to perform mining in a distributed

environment and t; is the time taken to perform knowledge integration. The response

time for tyym in turn can be represented as:
tadm = tam+ tcom (2)
In (2), tyn is the time taken to perform data mining and t.om is the time involved in the
communication. Depending on the model used for distributed data mining (i.e. mobile
agents or client server) and the different scenarios within each model, the factors such
as communication that determine tyyn will change. This results in a consequent
change in the actual cost function that determines ty4m. The modelling and estimation
of the knowledge integration (i) variable in Eq. (1) is non-trivial as it depends on
several unknown factors such as the size and type of results produced by data mining.

In fact, one of the primary reasons or rationales for data mining is the discovery of

hidden and unknown patterns in the data. Thus, we do not present cost formulae or

estimation techniques for the response time of knowledge integration.

3.1 Estimating the Communication Cost

The communication cost in the DDM process varies depending on whether the
client-server strategy is followed or the mobile agent model is used.

3.1.1 Mobile Agent Model

This case is characterised by a given distributed data mining task being executed in
its entirety using the mobile agent paradigm. The core steps involved include:
submission of a task by a user, dispatching of mobile agent (or agents) to the
respective data server (or servers), data mining and the return of mobile agent(s) from
the data resource(s) with mining results. This model is characterised by a set of
mobile agents traversing the relevant data servers to perform mining. In general, this
can be expressed as m mobile agents traversing n data sources. There are three
possible alternatives within this scenario. The first possibility is m = n, where the
number of mobile agents is equal to the number of data servers. This implies that one
data mining agent is sent to each data source involved in the distributed data mining
task. The second option is m < n, where the number of mobile agents is less than the
number of data servers. The implication of having fewer agents than servers is that
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some agents may be required to traverse more than one server. We do not consider
the third case of m > n since this is in effect equivalent to the case 1 above where
there is a mobile agent available per data server. Each of the above alternatives has its
own cost function. These cost models are described as follows.

Case 1. Equal number of mobile agents and data servers (m=n).

This is a case where data mining from different distributed data servers is
performed in parallel. The algorithm used across the different data servers can be
uniform or varied. The system dispatches a mobile agent encapsulating the data
mining algorithm (with the relevant parameters) to each of the data servers
participating in the distributed data mining activity.

Let n be the number of data servers. Therefore, the number of mobile agents is n
(since m=n). In order to derive the cost function for the general case involving n data
servers and n data mining agents, we first formulate the cost function for the case
where there is one data server and one data mining agent.

Let us consider the case where data mining has to be performed at the i data
server (i.e 1<i < n ). The cost function for the response time to perform distributed
data mining involving the /" data server is as follows:

tddm= tdm(i) + tdmAgent(AC, |) + tresuItAgem(iyAC)

The communication terms in the above cost estimate are are tymagent(AC, i) and

tresuItAgent(i’AC)- That is,

tcom= tdmAgent(AC, i) + tresuItAgent(i,AC) (3)
tamagent(AC, ). In our cost model, the representation tmobileagent(X, Y) refers to the
time taken by the agent mobileAgent to travel from node X to node y. Therefore
tamagent(AC, i) is the time taken by the mobile agent dmAgent (which is the agent
encapsulating the mining algorithm and the relevant parameters) to travel from the
agent centre (AC) to the data server (i). In general, the time taken for a mobile agent
to travel depends on the following factors: the size of the agent and the bandwidth
between nodes (e.g. in kilobits per second). The travel time is proportional to the size
of the agent and is inversely proportional to the bandwidth. This can be expressed as
follows:

tamagent(AC, i) o size of dmAgent (4)

tamagent(AC, i) o 1/ bandwidth 5)

From (4) and (5):

tamagent(AC, i) = ( k * size of dmAgent ) / (bandwidth between AC and i)

In the above expression for the time taken by the data mining agent to travel from
the agent centre to the data server, k is a constant. On adapting the representation used
by [8] to model the size of a mobile agent, we express the size of the data mining
agent (dmAgent) as:

size of an dmAgent = <dmAgent state, data mining algorithm, input parameters>
tresuitagent(i, AC). This is the time taken for the data mining results to be transferred
from the data server (i) to the agent centre (AC). However, estimating this component
apriori is not feasible as the size of results obtained from a data mining task is usually
unknown.

Since the mining is performed at the distributed locations concurrently, the total
communication cost is equal to the time taken by the mobile agent that takes the
longest time to travel to its respective remote location. Therefore,

tcom = MaX(tamagent(AC, i), where i=1..n (6)
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Case 2. Fewer mobile agents than data servers (m<n).

This is the second case, where the number of mobile agents (m) available for
distributed data mining is less than the number of data sources (n) participating in a
distributed data mining task (i.e. m < n). Thus the i agent (where 1 <i < m) travel to
and perform mining at j sites labelled specified in ds;, ds,,...,ds; (where 1 <j <n). We
make an assumption that the mining agent returns to the agent centre only after it has
accomplished its task in all the respective data sources assigned to it and that results
are sent to the central server directly. This allows us to estimate the communication
cost more effectively.

The total time taken to mine is therefore the time taken by the agent, which takes
the maximum time interval to complete its task. The communication cost estimate for
the i agent’s response time is as follows in equation (7):

i1

tcom (l) = tdmAgenl (AC’ ds1 ) + tdmAgenl (.]’ .] + 1) + tdmAgenl (dsj ’ AC)

=2

In the above expression, the first term is the time taken by the data mining agent to
travel from the agent centre to the first data server in its path. The term involving the
summation is the time taken for the agent to travel to the respective data sites within
the set assigned to it (excluding the final site). The second last term is the time taken
to mine at the last data site in its path. The final term in the expression is the time
taken for the agent to travel from the last site on its path to the agent centre.

Since there are m agents operating concurrently, the time t;m is the time taken by
the agent requiring the longest travel time. Thus,

teom = Mmax(tcom(i) ), i=1..m (8)
In (8), tcom(i) is estimated from equation (7).

3.1.2 Client Server Model

The communication cost formulae for the response time in DDM systems that use
the traditional client-server paradigm is presented in this section. Typically, data from
distributed sources is brought to the data mining server — a fast, parallel server - and
then mined. Let there be n data sites from which data has to be mined. Let s; be the
data set obtained from the i site (where 1 < i < n). The communication time for
DDM for the data set s; from the i site is as expressed in equation (9) as follows:

teom(i) = tdataTranster(i,DMS, si), 1<i<n 9)

The term tyatatranster(i, DMS, §;) is the time taken to transfer the data set (s;) from the i
site to the DDM server (DMS) and is estimated as follows:

taataTranster(i, DMS, si) = size of s;i / ( bandwidth between i and DMS ) (10)
The data transfer can be a significant addition when the data volumes are large and/or
the bandwidth is low. In this section, we have presented the cost formulae for the
communication component of the DDM process for different mining strategies. We
now present our technique for estimating the cost of performing data mining.
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3.2 Estimating the Data Mining Cost

In this section, we present application run time estimation techniques as an
approach to estimating the time taken to perform data mining. We have developed a
novel rough sets based approach to estimating the run time of applications [5]. The
motivation for our work in this area comes from application run time estimation
techniques proposed by [7]. Application run time prediction algorithms including
[11[2][7] operate on the principal that applications that have similar characteristics
have similar run times. Thus, a history of applications that executed in the past along
with their respective run times is maintained in order to estimate the task run time.

Early work in this area by [1][2] proposed the use of “similarity templates” of
application characteristics to identify similar tasks in the history. A similarity
template is a set of attributes that are used as the basis for comparing applications in
order to determine if they are similar or not. It was proposed by [7] that manual
selection of similarity templates was limited and they proposed automated definition
and search for templates and used genetic algorithms and greedy search techniques.
They were able to obtain improved prediction accuracy using these techniques. For a
detailed description of the template identification and search algorithms readers are
referred to [7].

We have developed a rough sets based algorithm to address the problem of
automatic selection of characteristics that best define similarity to estimate application
run times. Rough sets provide an intuitively appropriate theory for identifying good
“similarity templates” (or sets of characteristics on the basis of which applications can
be compared for similarity). For a detailed explanation of the theoretical soundness of
a rough sets based approach and its improved prediction accuracy to identify
similarity templates readers are referred to [5]. In this paper, we present a brief
overview of our algorithm for use as a means to costing the data mining component in
the DDM process.

3.2.1 Rough Sets Algorithm for Estimating t4,,

Zdislaw Pawlak introduced the theory of Rough Sets in 1981 as a mathematical
tool to deal with uncertainty in data. For a good overview of rough sets concepts,
readers are referred to [4]. A data set in rough sets is represented as a table called
Information System, where each row is an object and each column is an attribute. The
attributes are partitioned into condition attributes and decision attributes. The
condition attributes determine the decision attribute. The history, as shown in figure 1,
is a rough information system, where the objects are the previous applications whose
run times (and other properties) have been recorded. The attributes in the information
system are the properties about the applications that have been recorded. The decision
attribute is the application run time that has been recorded. The other properties that
have been recorded constitute the condition attributes. This model of a history
intuitively facilitates reasoning about the recorded properties so as to identify the
dependency between the recorded attributes and the run time. Thus, it is possible to
concretise similarity in terms of the condition attributes that are relevant/significant in
determining the decision attribute (i.e. the run time). Thus, the set of attributes that
have a strong dependency relation with the run time can form a good similarity
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template. Having cast the problem of application run time as a rough information
system, we now examine the fundamental concepts that are applicable in determining
the similarity template.

Condition Attributes Decision

Attribute

s o w— |

App. |Size |Comp. |.. Run

Name Resou Time

rces

Object 1
Object 2
Object n

Figure 1: A Task History Modelled as a Rough Information System

Degree of Dependency. Using rough sets it is possible to measure the degree of
dependency between two sets of attributes. The measure takes values [0,1] and higher
values represent stronger degrees of dependency. It is evident that the problem of
identifying a similarity template can be stated as identifying a set of condition
attributes in the history that have a strong degree of dependency with the run time.
Significance of Attributes. The significance of an attribute is the extent by which the
attribute alters the degree of dependency between a set of condition and decision
attributes. If an attribute is “important” in discerning/determining the decision
attribute, then its significance value, which is measured in the range [0,1], will be
closer to 1. The similarity template should consist of a set of properties that are
important for determining the run time.

Reduct. A reduct consists of the minimal set of condition attributes that have the
same discerning power as the entire information system. All superfluous attributes are
eliminated from a reduct. According to [4], while it is relatively simple to compute a
single reduct, the general solution for finding all reducts is NP-hard. A similarity
template should consist of the most important set of attributes that determine the run
time without any superfluous attributes. In other words, the similarity template is
equivalent to a reduct which has the most significant attributes included.

We now present our rough sets algorithm for identifying similarity templates in
figure 2. It is evident that rough sets theory has highly suitable and appropriate
constructs for identifying the properties that best define similarity for estimating
application run time estimation. Our technique for applying rough sets to identify
similarity templates centres round the concept of a reduct. We use a variation of the
reduct generation algorithm proposed by [3]. The algorithm proposed by [3] was
intended to produce reducts that included user specified attributes. The modified
algorithm we use to compute the reduct for use as a similarity template is shown in
figure 2. It computes reducts by iteratively adding the most significant attribute to the
D-core (note: the core of a rough information system is the intersection of all reducts
and the D-core is the core with respect to the set of decision attributes). An
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improvement we have included in the algorithm is the identification of any reduct of
size ID-core + 1. From our experiments we found that it is not unusual for the D-core
to combine with the a single attribute (typically the most significant attribute) to form
a reduct. This iteration in Step 6, is computationally inexpensive as it involves only
simple additions and no analysis. Thus, if a reduct of size ID-core + 1| exists, we find
it without further computation.

1. Let A={ay, ay,....,an}be the set of condition attributes and D be the set of decision
attributes.
Let C be the D-Core
REDUCT =C
A1 =A-REDUCT
Compute the Significances of the Attributes (SGF) in A1 and sort them in ascending
order
Fori=1A1lto 0
K(REDUCT, D) = K(REDUCT, D) + SGF(aj) /* K(X,Y) is the degree of
dependency between attribute sets X and Y) */
If K(REDUCT,D) = K(A,D)
REDUCT = REDUCT v g
Exit
End If
K(REDUCT, D) = K(REDUCT, D) - SGF(aj)
End For
7. K(REDUCT, D) = K(REDUCT, D) + SGF(aja1)
8.  While K(REDUCT,D) is not equal to K(A,D)

arwn

o

Do
REDUCT = REDUCT u a; (where SGF(aj) is the highest of the attributes in
A1)
Al =A1- aj
Compute the degree of dependency K(REDUCT,D)
End

9. IREDUCTI->N
10. Fori=0toN
If & is not in C (that is the original set of attributes of the REDUCT at the start
and SGF(a)) is the least)
Remove a; from REDUCT
End If
Compute degree of dependency K(REDUCT, D)
If K(REDUCT, D) not equal to K(A,D)
REDUCT u a; -> REDUCT
End If
11. End For
12. Endif

Figure 2: Reduct Generating Algorithm

This process of re-computation of the dependency (to determine if an attribute is
significant or not) is expensive as it involves finding equivalence classes and the
iteration we initiated was principally an attempt to avoid it. We have also introduced
the concept of “incremental evaluation of equivalence classes” to improve the
performance of the algorithm. We have presented our rough sets approach to
application run time estimation techniques as a way of estimating the cost of
processing as it allows prediction of the time taken to perform mining at a given
location. Obviously, the success of such a technique is dependent on the prediction
accuracy.



Techniques for Estimating the Computation and Communication Costs 611

4 Experimental Results and Analysis

The viability of using these cost models for DDM optimisation depends on the
accuracy of the estimation techniques. Thus, the estimated communication times and
predicted data mining task run times must be close to actual run time for these cost
formulae to form the basis for effective optimisation. We are implementing mobile
agents to perform distributed data mining and do not have experimental results to
validate the communication cost models. However, we have implemented our rough
sets algorithm and in this section present results from experiments on estimating the
run times of data mining tasks. We compiled a history of data mining tasks by
running several data mining algorithms on a network of distributed machines running
Windows 2000 and Sun OS 5.8 and recording information about the tasks and the
environment. We executed several runs of data mining jobs by varying the parameters
of the jobs such as the mining algorithm, the data sets, the sizes of the data sets (from
IMB to 20MB) and the machines on which the tasks were run. The algorithms used
were from the WEKA package of data mining algorithms [10]. For each data mining
job, the following information was recorded in the history: the algorithm, the file
name, the file size, the operating system, the version of the operating system, the IP
address of the local host on which the job was run, the processor speed, the memory,
the start and end times of the job. Currently we record only static information about
the machines, however we are implementing a feature to enable recording dynamic
information such as memory usage and CPU usage. We used histories with 100 and
150 records and each experimental run consisted of 20 tests. The mean error we
recorded was 0.34 minutes and the mean error as a percentage of the mean run time
was 8.29. The mean error is less than a minute and the error as a percentage of the
actual run times is also very low, which indicates that we obtained very good
estimation accuracy for data mining tasks. This good performance accuracy is
illustrated in figure 3, which presents the actual and estimated run times from one of
our experimental runs.

Comparison of Actual and Estimated Run Times

10 -
g e
=
£
g 6 ——ESTIMATE
g 4. —s— ACTUAL
£
S 2
o

o T T T T T T T T T T T T T T T T T T T 1

Experiment #

Figure 3: Actual Vs. Estimated Run Times
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5 Conclusions and Future Work

This paper has focussed on computing the cost of the distributed data mining
process by estimating the response time of the communication and computation
components. Accurate costing is vital for optimisation of the DDM process and we
address the need for good cost estimation techniques. We have developed cost
formulae for estimating the response time of the communication for different
strategies (including client server and mobile agent techniques) and a rough sets based
application run estimation algorithm for predicting the run times of data mining tasks.
We have experimentally validated the prediction accuracy of our rough sets
algorithm, which is shown to have low mean errors and high accuracy. We are
currently implementing the mobile agent model for DDM so as to experimentally
validate the cost formulae for estimating the communication time. Future directions of
this work include the development of a DDM optimiser based on the cost models
presented in this paper.
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