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1. Introduction

Metocean data fields (atmospheric pressure, wind speed, sea surface and air
temperature, sea waves etc.) are multivariate and multidimensional, i.e. have a
complex spatial and temporal variability. Only 10-20 years back the environmental
databases wholly consisted of the time series (ship observation, sea and coastal
monitoring stations, automatic probes and buoys, satellites) in fixed points of spatial
regions. For processing of such data the different kinds of software are developed,
e.g. [11]. They interprets the information in terms of random values (RV) or time
series (TS) models only.

Development of environmental hydrodynamical models and use them for data
assimilation and reanalysis [14], has allowed to create global information arrays of
metocean fields in points of a regular spatial-temporal grid. So, the results of
meteorological fields reanalysis may be used as source for hydrodynamic simulation
of metocean (generally, hydrologic) fields, e.g., sea waves fields [8], water
temperature and salinity fields [12] et al. This way allow to obtain the ensemble of
metocean data fields in a regular grid points with certain temporal step. Hence, for
processing and generalization of such data the model of a nonstationary
inhomogeneous spatial-temporal random field (RF) must be considers.

Due to the high dimension of data in set of grid points, the multivariate statistical
analysis (MSA) are applied to their processing. The goal of MSA is solution of three
global problems - reduction of dimensionality (RD), detection of dependence (DD),
and detection of heterogeneity (DH) of the random data [1]. Its operates by the
canonical variables (principal components, canonical correlations, factor loadings),
includes regression, discriminant analyses, and analysis of variance and covariance,
classification, clustering and multidimensional scaling.

The main complexity of direct application of classical MSA to analysis of
metocean spatial-temporal fields is connected with the fact, that all the procedures
are developed for model of multivariate RV only [1,2,15,19]. Some of them are
generalized for model of multivariate time series [5]. But there are two problems in
the generalization of these procedures to RF model:

e  Various physical nature of metocean fields. Hence, the various mathematical
abstract objects may be used for their statistical description. E.g. the field of
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atmospheric pressure is scalar function, and the simplest moments
(mathematical expectation and variance) are scalar values too. The wind speed
field is Euclidean (geometric) vector function. The mathematical expectation of
such kind of data is Euclidean vector too, and variance is dyadic tensor. The
field of water parameters (temperature, salinity, oxygen) is the affine (algebraic)
vector function with affine vector of mathematical expectation and matrix of
variance. Hence, it is necessary previously to introduce the basic algebraic and
statistical operation for each kind of abstract objects. General discussion about
this is in the paper [6].

e Requirements to computational aspects of MSA RF procedures. For traditional
MSA RV with sufficiently small number of variables, the methods of linear
algebra are developed well [10]. But for random fields of high dimension,
especially in a small spatial and temporal grids, some of results by these
methods became ill-conditioned due to strong spatial and temporal connectivity
of data. Hence, it is necessary to develop special computational tools for MSA
RF on the base of functional analysis in infinite—-dimensional spaces of functions
[3].

The goals of this paper are:

e To demonstrate the general approach for MSA RF in arbitrary functional space
(scalar, Euclidean or affine vector) considering three main problems: RD, DD,
DH.

e To synthesize the stochastic models on the base of MSA RV result for further
ensemble simulation for investigation of non—observable rare environmental
events.

2. General Approach

Let us consider the infinite—dimensional space of functions H with the operations
of addition (f+g)eH, multiplication (f og)eH, and scalar product (g,f)eR of
elements f, g. Concept of scalar product is obvious only to scalar values. For
Euclidean and affine vectors it generalizes concept of scalar product both in discrete
space and in continuous space. If we consider the functional spaces of metocean
events as Hilbert [3], in each of them any element 1 can be presented as an infinite
converging series on some system of basic elements (scalar, Euclidean of affine
functions) {@y }:

T]=ch¢k . (1)
k

The back transformation
¢ =(M, ) ()

defines an isomorphism between functional space H and discrete space C, cxe C.



218 A.V. Boukhanovsky

Due to linearity of (1,2), the mathematical expectation and variance of 1) may be
expressed from the moments of coefficients cy:

my=>m ¢, (3)
k

Kn=%zkkp[¢k°¢p] : )
p

Here my — scalar mathematical expectations of ¢y, ki, — covariances between ¢, ¢p.
Full system of orthogonal functions {¢y} may be obtained by means of Gram-—
Shmidt [3] orthogonalization procedure in accordance with of equation

(0K > Os) = BNy » (5)

where Ny is a norm. Even for Euclidean or affine vector fields it is complicate to
obtain such functions in convenient form.

Let us consider optimal basis {@x} from all {¢x}€ H. Following [17], this basis is
generates by the equation

(K 9k) =Dy (©)

in the certain functional space H. System {@} is orthogonal, but coefficients ¢ are
independent random variables with variances Dy. For all other choices of {¢y}
coefficients ¢ are correlated due to (4).

The main advantage of model (1) is passage from random field m (scalar,
Euclidean or affine vector multivariate function) to set of scalar coefficients or scalar
time series{c, }. Hence, for different kinds of data the model of RV is valid for

{ci }. Below let us consider some applications of this approach for analysis and
synthesis of various metocean fields.

3. Applications to analysis

3.1. Reduction of dimensionality [6]. Let us consider the scalar fields of sea level
pressure (SLP) {(r,t) and wind speed (VS) at the level 10 (m) V(F ) by the
reanalysis [13] data array. Here r =(x,y) are the spatial coordinates, t is time.
Traditionally for RD the expansion on empirical orthogonal basis (EOF [14]) are
uses. For scalar fields of SLP the EOFs are the eigenfunctions of correlation kernel,
and equation (6) became to Fredholm II integral equation [17]:

[ K(E,F )y (F)dFy = Ag(F) . Y

(R)
Spectrum {Ay} of such kernel is discrete. Application of quadrature methods for
(7) solution results in matrix representation without avoiding multicollinearity of the
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problem. Therefore let us use projective (variational) methods [11] for obtaining
orthogonal basis. The idea of this methods is using of expansion (1) for
representation of each EOF in (7). If we substitute (3) in (7), the equation (7)
transform to algebraic eigenvalue problem. Occasionally such method allows to
obtain analytical solution for some types of modeling representations of
autqcorr;:latipn f}lnct'}on Kn(O) of ‘non-‘homogen§ous‘ﬁel(‘i [5]:
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Fig. 1. First EOFs of monthly-mean SLP (North Hemisphere) and VS (North Atlantic). (a,c)-
January, (b,d)-July

When we generalize (1) on Euclidean vector field v (T ,t) in accordance with the
rules of vector sums and dyadic (external) products, the equation (6) transforms in
two homogeneous Fredholm II equations:

[ K (Fys ) QE)AE, + [ Ky (Fy, B W(Ey )E, = Ao(Fy), ®)
[ K vu iy, QAT + [ Ky (Fy, B W(E )E, = My(Fy),
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with respect to components ¥ =(,y) . Here K., — correlation functions between

components of Euclidean vector. Using of (8) allows to simplify the interpretation of
vector EOFs. E.g., in fig. 1 the first EOFs of monthly—mean SLP (a,b) and VS (c,d)
are shown for January and July. It is clearly seen the great zones of wind speed
variability near Iceland and Azores.

First ten EOF’s of monthly-mean SLP determined more than 80-90% of general
variability (from month to month), and first ten EOF’s of WS — more than 70%.

2. Detection of dependence [7]. Let us consider the long—term dependence
between iceness (the area of the sea, covered by ice) of Barents Sea, and air
temperature spatial-temporal fields (below — AT). Take in account joint spatial and
temporal variability, we define the iceness time series {(t) in terms of multivariate
dynamical system [4]:

* 9
gt = j j h(F,t —t)n(F,1)dTdFE +£(t) .

<R>0

Here h(e) is transfer functions between input 1 (AT) and output { (iceness), &(t) — is
lag random function.

The values of AT in nearest points are strongly correlated. So, the problem of
multicollinearity is observes, and nonparametrical estimation of h(e) in (9) is non—
correct. For increasing of conditionality of equations, born by (9), let us consider the
AT fields as an expansion (1) by EOFs from (6,7). The first EOF approximated more
90% of total variability.

The second step of model simplification is using the orthogonal decomposition in
time domain. While the series of iceness (see fig. 2) are clearly cyclic, the model of
periodically correlated stochastic process (PCSP) are used for it representation. So,
the time series may be expanded by trigonometric basis. Generally we obtaining bi—
orthogonal expansion for AT fields

NED = a,(Oy, E) =D Y by, F)cos(@,t) + by, @)sin(w,t)  (10)

and expansion for iceness time series

Gt = B cos(@y, ) + B sin(@p,t). 11

This model allows to transfer from model of correlated RFs to model of depended
RV {b(s) b(c) ) ﬁ(c)} so the procedure of dependence detecting is simplified. The

joint correlation matrix K[b(s) (c),Bffl),Bff)] is rarefied, but between several
coefficients the dependence is high. If we calculate the canonical correlations [15]
between ff),bgc)} and ffl),ﬁff)}, we obtain A;=0.8 and A,=0.6, so, the general

dependence between considered factors is sufficiently high. In the fig. 2 the time
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series of iceness from 1960 to 1980 are shown by observations and model simulation
by (9-11). It is clearly seen the good agreement between to graphs.
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Fig. 2. Time series of iceness (%) of the Barents sea. 1 — observations, 2 — simulation (9-11).

3. Detection of heterogeneity [8]. Let us consider the example of typization of
water mass of Baltic sea on the base of long—term observations on four International
monitoring stations BY-2, BY-5, BY-15, BY-28, see fig. 3a. The water
temperature T, salinity S, conditional density p and dissolved oxygen concentration
O, are jointly used for typization. All the data obtained each month from 1960 to
1980, in standard depths: z=0(10)100(25)... meters.

The generalization of assimilated data in terms of mathematical expectations and
variances of initial data demands to operate with the grid function of mathematical
expectation in 8832 points, and correlation matrix with more than 39-106
independent elements.

For decreasing of dimensionality the bi—ortogonal expansion of (1) on the basis
{ox(z),y,(t)} for each oceanographic value (T,S,p,0;) is considered

§(z,0) = Y a, (D@ (2) =D D by @y (2, (1) =) N (2)y, (). (12)
k k s s

In paper [8] shown, that the spatial basis @x(z) is Chebyshev polynomials, and
temporal one Y (t) — is trigonometric. So, the expression (12) allows to transfer from
model of vertical-inhomogeneous RF {(z,t) to system of RV {by} for T,S,p,0,
independently. Due to the physical dependence between water mass parameters, the
values {by} are correlated. Let us use its for typization in terms of discriminant
variables. One of general procedures of discriminant analysis is obtaining of
canonical discriminant functions (KDF) £, as follows linear combination [15]:

13)
fpm =u0 +22uksbfgm)
k s
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Here bfgm) are coefficients of expansion (12) for monitoring station p in a year m,

Uy, Uy, are the coefficients, so, that the distinctions of mathematical expectations of
two each classes became maximal. Values of £, are not correlated.
For obtaining of CDF the matrix equation are used:

Bv =AWv a4

n
where uw; =v;4n—-g, u, =—2uixi. Here B is matrix of correlations between
=

classes, W — matrix of correlations inside the classes (for each station BY), v —

eigenvectors and A — eigenvalues respectively of matrix W~'B. The first CDF
explain approximately 50% of general distinctions, and second — 45%. So, only two
first CDF may be used for typization of water masses. In the fig. 3 in plane of first
two CDF (fy,f,) the classes of observations are shown. It is clearly seen, that there are
three separated classes: Baltic sea near the Darss (BY-2), Southern Baltic (BY-5)
and Central Baltic (BY-15,28).
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Fig. 3. Fig. 3. Typization of water masses of Baltic sea. (a) — Positions of International
monitoring stations (b) — Data of four monitoring stations in first two CDF (f1,f2) plane.

4. Application to ensemble simulation and extreme analysis

Representation (1) allows to synthesize the model ensemble of metocean fields on the
base of MSA RF results by means of stochastic models. These models are used for
interval estimation, testing of hypotheses about latent properties of phenomena and
investigation of rare non—observable situations, e.g. extreme values of metocean
fields once T years.
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For identification of stochastic model let us consider (1) in terms of factor analysis

[1]:
n =2ck¢k +€. (15)
k

Here cy are the factors, basis elements ¢ — became the factor loadings, and € is the
specific factor. If all the factors obtained by means (6), this method called as
“principal factor method” for scalar variables.

Model (15) allows generate the model ensemble by means of Monte—Carlo
approach on the base of variances of coefficients ¢y, and specific factor € [20]. For
example, in the fig. 4 the directional annual WS extremes in North Atlantic
(55N,30W) are shown. These values are obtained by means of direct estimation on
simulated ensemble [19] by the model, based on EOF’s from fig.1. It is seen, that
strongest direction is West (28 m/s), and weakest — is North—East.

S

Fig. 4. Estimation of annual WS directional extremes in North Atlantic (55N,30E). 1 —
simulation, 2 — estimation on reanalysis data, 3 — 95% confidence intervals

In the same fig. the values of annual extremes on reanalysis [13] data are shown
too. The 95% confidence intervals covered both simulated and reanalysis estimates.
Thus, it shown the good agreement between stochastic model and data.
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5. Discussion and conclusions

The above presented examples shown, that the using of orthogonal expansion (1)
for representation of multivariate and multidimensional spatial-temporal metocean
fields allows to obtain some advantages in comparison with classical matrix methods
of MSA RV, e.g.:

e Simplification of probabilistic model (from non—scalar RF to system of scalar
RV);

e Possibility to obtain the analytical solutions — a step for complex mathematical
investigation of physical phenomena;

e Avoiding of quantization problem (methods of interpolation between greed
points and objective analysis are not required);

e Decreasing of data dimensionality (in example 3, the initial data correlation
matrix consists of more than 39-10° independent elements, and reduced matrix
in (14) — only 153 elements);

e 100% parallelization by data due to independent computation of each values of
coefficients (2) by means of scalar product;

e Improvement of matrix conditionality. The orthogonal expansion (1) in matrix
terms may be consider as singular value decomposition (SVD) [10] of
correlation matrix by means of orthogonal matrixes of special type. So, the result
of such SVD is matrix of smaller rank with the smaller conditional number. So,
the stability of computations with such matrix is higher.

It is necessary to indicate some shortcuts of the above mentioned approach. One of
them is based in the correct choice of type of formal orthogonal basis. In some cases,
as temporal rhythms, this choice is obvious, but for description of spatial patterns the
problem has no unique solution. With this fact the weak convergence of the
expansions may be connected.

Despite of this, the orthogonal expansions (1) in functional spaces remains the
power tool of multivariate statistics of spatial-temporal fields and may be used for all
the problems: reduction of dimensionality, detection of dependence and detection of
heterogeneity. Using of this tool is not be based only on formal statistic approach, but
the specifics of physical phenomena, initial database and hindcast tools must take
into account.
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