
Toward Hierarchical Identity-Based Encryption

Jeremy Horwitz and Ben Lynn

Stanford University, Stanford, CA 94305, USA,
{horwitz|blynn}@cs.stanford.edu

Abstract. We introduce the concept of hierarchical identity-based en-
cryption (HIBE) schemes, give precise definitions of their security and
mention some applications. A two-level HIBE (2-HIBE) scheme consists
of a root private key generator (PKG), domain PKGs and users, all of
which are associated with primitive IDs (PIDs) that are arbitrary strings.
A user’s public key consists of their PID and their domain’s PID (in whole
called an address). In a regular IBE (which corresponds to a 1-HIBE)
scheme, there is only one PKG that distributes private keys to each
user (whose public keys are their PID). In a 2-HIBE, users retrieve their
private key from their domain PKG. Domain PKGs can compute the
private key of any user in their domain, provided they have previously
requested their domain secret key from the root PKG (who possesses
a master secret). We can go beyond two levels by adding subdomains,
subsubdomains, and so on. We present a two-level system with total
collusion resistance at the upper (domain) level and partial collusion re-
sistance at the lower (user) level, which has chosen-ciphertext security
in the random-oracle model.

1 Introduction

Shamir asked for an identity-based encryption (IBE) cryptosystem in 1984 [9],
but a fully-functional IBE scheme was not found until recent work by Boneh and
Franklin [1] and Cocks [4]. Recall that an IBE scheme is a public-key cryptosys-
tem where any arbitrary string is a valid public key. The corresponding private
keys must be computed by a trusted third party called the private key generator
(PKG) (who possesses a master secret). Users of the system request their private
key from the PKG.

We note that the public key infrastructure associated with standard public-
key cryptosystems also includes a trusted third party (in the form of a root
certificate authority) and allows a hierarchy of certificate authorities [12]: the
root certificate authority can issue certificates for other certificate authorities,
who in turn can issue certificates for users in their respective domains.

The original system of Boneh and Franklin does not allow for such structure.
However, a hierarchy of PKGs is desirable in an IBE system, as it greatly reduces
the workload on master server(s) and allows key escrow at several levels. For
instance, if the users of the system are employees of corporations, then it is
natural to want each corporation to be able to generate the private keys for
their employees, so that employees request their keys from their corporation,

L.R. Knudsen (Ed.): EUROCRYPT 2002, LNCS 2332, pp. 466–481, 2002.
c© Springer-Verlag Berlin Heidelberg 2002

Toward Hierarchical Identity-Based Encryption 467

rather than the top-level PKG. Only corporations request their domain secret
(and only once per corporation) from the top-level PKG. This is the idea behind
a hierarchical IBE (HIBE) system. In particular, this is an example of a two-level
HIBE (2-HIBE) scheme. (The advantage of an HIBE system over standard PKI
is that senders can derive the recipient’s public key from their address without
an online lookup.)

More precisely, there are three types of entities in a 2-HIBE scheme. There is
the root PKG, who possesses a master key. In the upper level, there are domain
PKGs, who can request their domain key from the root PKG. Lastly, there are
users, who can request private keys from their domain PKG. Each user and each
domain has a primitive ID (PID), which is an arbitrary string. (If Alice works for
Company.com and her email address is alice@company.com, her PID is alice
and her company’s PID is company.com.) The public key of a user consists of a
tuple of PIDs: the PID of the user and the PID of the user’s domain (this public
key is also called the user’s address) and, as with IBE systems, it is clear that
a sender can derive the receiver’s public key offline. We can generalize to HIBE
schemes with more levels by allowing subdomains, subsubdomains, and so on.

Another application for HIBE systems is generating short-lived keys for
portable computing devices. Suppose Alice is planning to embark on a week-
long business trip and wants to be able read her encrypted mail while on the
road. However, she is also worried that her laptop may be stolen or otherwise
compromised, so she does not want to simply copy her private key to the laptop.
This dilemma is readily solved with a 2-HIBE system: this time, the upper level
consists of people, such as Alice, and the lower level consists of dates, and when
an arbitrary user Bob wants to send a message to Alice he uses the tuple of Al-
ice’s PID and the PID for the current date as her address. Alice can generate (for
example) seven days’ worth of keys (from her private key that she has previously
requested from a PKG) and transfer these to her laptop. Now if the laptop is
compromised, the damage is limited. We note that collusion at the bottom level
is not an issue, as Alice will only put a small number of keys on her laptop. This
problem can also be solved with a standard (non-hierarchical) IBE scheme by
having Alice run her own IBE system [1], but in this case Bob must get Alice’s
system parameters before he can communicate with her.

In this paper, we give formal security definitions that can model plausible
real-life attack scenarios on HIBE systems. In addition to chosen-ciphertext at-
tacks, we must also worry about attacks involving collusion by entities on ar-
bitrary levels. In our example above, for instance, if the domain PKG of one
corporation A colludes with employees of another corporation B, they should
not be able to decrypt messages of other employees of corporation B (or of any
other corporation C, for that matter). In general, an adversary should not be
able to decrypt a message encrypted for a particular user in a particular domain
(and subdomain, subsubdomain, etc.), even if they have access to the private key
of every other user and of every other domain (and subdomain, subsubdomain,
etc.), in addition to information obtained from a decryption oracle.

468 Jeremy Horwitz and Ben Lynn

We present a 2-HIBE scheme with total collusion resistance at the upper
level and partial collusion resistance at the lower level. (This limitation does not
affect its applicability to the above laptop example.) In terms of the corporate
setting, even if an arbitrary number of corporations collude, the master secret
is safe, but, at the lower level, if more than certain number of employees of a
corporation C collude, they can expose C’s private key.

Our system requires a bilinear map with certain properties. A suitable map
can constructed from the Weil pairing (which is described in [1]). Its performance
is sufficiently fast for practical purposes, provided the number of colluding parties
allowed in the lower level is not too large. (Its running time and key size involve
a term linear in this number.) Additionally, we can employ the same techniques
used with the Boneh-Franklin IBE scheme to split secrets across several servers
and achieve robustness for free.

2 Definitions

An identity-based encryption scheme (IBE) is specified by four randomized al-
gorithms: Setup, KeyGen (called Extract in [1]), Encrypt, and Decrypt. In brief,
Setup generates system parameters that are publicly released and a master key
that is given to the PKG only; KeyGen is run by the PKG to generate private
keys corresponding to a given primitive ID (PID); Encrypt encrypts a message
using a given PID (PIDs are public keys); and Decrypt decrypts a ciphertext given
a private key. We shall always take the message space to be M = {0, 1}m.

These algorithms must satisfy the standard consistency constraint, namely,
when d is the private key generated by algorithm KeyGen when it is given the
PID A as the public key, then

∀M ∈ M : Decrypt(params, A,C, d) = M ,

where C = Encrypt(params, A,M).
An �-HIBE has a family of � key-generation algorithms (KeyGeni for 1≤i≤�)

instead of just one, and public keys are now �-tuples of PIDs instead of just a
single PID.

Definition 1. A primitive ID (PID) is an arbitrary string, i.e., an element of
{0, 1}∗.

Definition 2. An address is an �-tuple of PIDs.

An address fully specifies a user’s public key.

Definition 3. A prefix address (or prefix) is an i-tuple of PIDs for some 0 ≤
i ≤ �. A prefix address 〈S1, . . . , Si〉 is said to be a prefix of the prefix address
〈T1, . . . , Tj〉 if i ≤ j and Sa = Ta for 1 ≤ a ≤ i.

Notice that addresses also happen to be prefix addresses.

Definition 4. For a non-negative integer �, an �-level hierarchical identity-
based encryption scheme (�-HIBE) is specified by � + 3 randomized algorithms:
Setup, KeyGeni (for 1 ≤ i ≤ �), Encrypt, and Decrypt:

Toward Hierarchical Identity-Based Encryption 469

Setup: Input: security parameter k ∈ Z. Output: system parameters params and
a master key mkε (which we also call the level-0 key).

KeyGeni: (for 1 ≤ i ≤ �): Input: params, mk〈S1,...,Si−1〉 (a level-(i− 1) key), and
an i-tuple of PIDs (a prefix address). Output: mk〈S1,...,Si〉 (a level-i key).

Encrypt: Input: params, an address, and a message. Output: a ciphertext.
Decrypt: Input: params, an address, a ciphertext, and a private key mk〈S1,...,S�〉.

Output: the corresponding plaintext.

These algorithms must satisfy the standard consistency constraint, namely,
when d is the private key generated by algorithm KeyGen	 when it is given the
address N as the public key, then

∀M ∈ M : Decrypt
(
params, N,C,mk〈S1,...,S�〉

)
= M ,

where C = Encrypt(params, N,M).

Remark 1. For certain values of �, an HIBE is the same as other familiar struc-
tures:

– When � = 0, this definition captures the essence of public-key encryption
schemes: the level-0 key corresponds to a private key and the params cor-
respond to the public key (the address is empty when calling Encrypt; each
system is associated with only one private key/public key pair).

– When � = 1, we have a definition of a standard IBE.

2.1 Security

In order to cover realistic attacks, we assume that an attacker may be able obtain
private keys at any level except for the master secret, and extend the standard
model of chosen-ciphertext security accordingly. We note that if the master secret
is compromised, the effects are at least as disastrous as when the root certificate
authority is compromised in a public-key cryptosystem. Thus we assume that the
precautions taken to guard the master secret are similar to those taken to guard
a root certificate authority in real life (e.g., secret splitting, tamper-resistant
hardware), rendering it unassailable. Consider the following game played by two
parties, an adversary and a challenger:

1. The challenger runs the Setup algorithm (for a given security parameter k)
and gives params to the adversary. It does not divulge mkε.

2. The adversary submits any number of decryption and/or key-generation que-
ries adaptively (i.e., each query may depend on the replies to previous que-
ries). In a decryption query, the adversary sends a ciphertext and an address
and is given the corresponding plaintext under the unique key associated
with that address (assuming the ciphertext and address are valid). For a
key-generation query, the adversary submits any prefix address 〈S1, . . . , Si〉
(for some 1 ≤ i ≤ �), and is told the output Ki (where Kj is defined to be
KeyGenj(Kj−1, 〈S1, . . . , Sj〉) for 0 < j ≤ i and K0 is the key returned by
Setup).
In other words, not only can the adversary learn the decryption of any chosen
ciphertext, it can also obtain the key corresponding to any prefix address.

470 Jeremy Horwitz and Ben Lynn

3. The adversary then outputs any two plaintextsM0,M1 ∈ M and any address
N on which it wishes to be challenged, subject to the restriction that no
prefix of N has been queried in the previous step.

4. The challenger picks b ∈ {0, 1} randomly and computes the ciphertext C =
Encrypt(params, N,Mb). It then sends the challenge C to the adversary.

5. The adversary again issues any number of decryption and/or key-generation
queries adaptively, except that it now may not ask for the key corresponding
to any prefix of N or for the plaintext corresponding to C under the private
key corresponding to N .

6. The adversary outputs b′ ∈ {0, 1}, and wins if b = b′.

We call such an adversary an ID-CCA attacker.

Definition 5. We define an HIBE to be secure against adaptive chosen-cipher-
text attack (ID-CCA) if no polynomially-bounded adversary has a non-negligible
advantage in the above game, that is, for any polynomial f and for any prob-
abilistic polynomial-time algorithm A, Adv(A) :=

∣∣Pr[b = b′] − 1
2

∣∣ is less than
1/f(k). (The probability is over the random bits used by the two parties.)

Finding even a 2-HIBE that satisfies this security requirement remains an
open problem. We describe a 2-HIBE that is secure provided the adversary is
limited to n KeyGen2 queries within its domain (for a given n; unlimited KeyGen1
queries are allowed). In other words, our system resists arbitrary collusion at the
domain level, but resists only limited collusion at the user level.

We will also utilize a weaker notion of security in intermediate steps of our
proofs. Consider another game played by two parties, an adversary and a chal-
lenger:

1. The challenger runs the Setup algorithm (for a given security parameter k)
and gives params to the adversary.

2. The adversary submits some number of key-generation queries adaptively,
that is, for each query, the adversary submits any prefix address 〈S1, . . . , Si〉
(for some 1 ≤ i ≤ �), and is told the output Ki (where Kj is defined to be
KeyGenj(Kj−1, 〈S1, . . . , Sj〉) for 0 < j ≤ i and K0 is the key returned by
Setup).

3. The adversary then outputs any address N on which it wishes to be chal-
lenged, subject to the restriction that no prefix of N has been queried in the
previous step.

4. The challenger picks a message M ∈ M randomly and computes C =
Encrypt(params, N,M). It sends the challenge C to the adversary.

5. The adversary again issues some number of key-generation queries adap-
tively, except that it now may not ask for the key corresponding to any
prefix of N .

6. The adversary outputs some message M ′ ∈ M, and wins if M = M ′.

We call such an adversary an ID-OWE attacker.

Definition 6. We define an HIBE to be a one-way identity-based encryption
scheme (ID-OWE) if no polynomially-bounded adversary has a non-negligible
advantage in the above game.

Toward Hierarchical Identity-Based Encryption 471

Both these definitions are generalizations of definitions given by Boneh and
Franklin [1].

3 An HIBE Resistant against Domain Collusion

We present a two-level system resistant to collusion at the domain level. The
system is based on bilinear forms between two prime-order groups.

3.1 The BDH Assumption

We briefly review definitions given by Boneh and Franklin [1, 2].

Definition 7. Let G1, G2 be groups with prime order q. Then we say a map
e: G1 × G1 → G2 is bilinear if, for all g, h ∈ G1 and a, b ∈ Fq, we have
e
(
ga, hb

)
= e(g, h)ab.

Definition 8. The Bilinear-Diffie-Hellman problem (BDH) for a bilinear func-
tion e: G1 × G1 → G2 such that |G1| = |G2| = q is prime is defined as follows:
given g, ga, gb, gc ∈ G1, compute e(g, g)abc, where g is a generator and a, b, c are
randomly chosen from Fq. An algorithm is said to solve the BDH problem with
an advantage of ε if

Pr
[A(

g, ga, gb, gc
)
= e(g, g)abc

] ≥ ε .

Definition 9. A randomized algorithm IG that takes as input a security param-
eter k ∈ Z (in unary) is a BDH parameter generator if it runs in time polynomial
in k and outputs the description of two groups G1, G2 and a bilinear function
e: G1 × G1 → G2. We further require that the groups have prime order (which
we call q), and denote the output of the algorithm by (G1, G2, e) = IG(

1k
)
.

Definition 10. We say that IG satisfies the BDH assumption if no probabilistic
polynomial-time algorithm A can solve BDH (for IG(

1k
)
) with non-negligible

advantage.

For the remainder of the paper we make use of some fixed BDH parameter
generator IG that satisfies the BDH assumption, and use the symbols G1, G2, e, q
to represent the constituents of its output. Boneh and Franklin [1] also give
details on how to implement such a generator (their system also required one),
based on the Weil pairing. (In their construction, G1 is a group of points on a
certain elliptic curve and G2 is a certain subgroup of F

×
p2 , for some prime p.)

This assumption was implicitly used by Joux [7] to build a one-round three-
party Diffie-Hellman protocol. Other constructions also require the BDH as-
sumption ([8, 10, 11]). Additionally, a bilinear function is needed in a recently
described short signature scheme [3].

472 Jeremy Horwitz and Ben Lynn

3.2 A Game Transformation

The BDH assumption is closely tied to the CDH assumption. Recall that the
CDH problem asks for gab given g, ga, gb, whereas the goal in the CDH problem
is to compute e(g, g)abc = e(gab, gc) given gc in addition to g, ga, gb. This simi-
larity between the BDH and CDH assumptions naturally leads to the following
transformation on games:

Definition 11. Using the notation of the previous section, suppose G is a game
where the goal of the adversary is to compute a particular element g ∈ G1. Then
the e-transformation of G is the same game as G except now the adversary is
also given a random h ∈ G1 and the adversary’s goal is to compute e(g, h).

We can transform assumptions by applying this transformation to the un-
derlying game. For example, we obtain the BDH assumption (associated with a
particular e) when we apply this transformation to the CDH assumption.

It is possible to formulate our assumptions differently: we could have started
with assuming that e is a bilinear function such that if a game G is hard then its
e-transformation is also hard. This would simplify our exposition (for example,
we need only assume the CDH problem is hard, as that implies that the BDH
problem is hard). However, such an assumption is really an abstract description
of a class of assumptions, and we prefer the readability gained by relying on a
small number of concrete assumptions instead.

Clearly, if an adversary can win a game G, then it can easily win the e-
transformation of G. The converse is far from clear.

We shall see that transformed assumptions are required to show that schemes
are ID-OWE; without transformation, the assumptions are more natural, but we
can only show that an adversary cannot recover a user’s private key.

3.3 Linear e-One-Way Functions

We now build up to the definition of a linear e-one-way function, from which
one could build an HIBE. We then construct a function that is weaker than e-
one-way that will allow for efficiently building a 2-HIBE which is secure against
any collusion at the domain level and limited collusion at the user level.

Suppose that we have a function h: G × X → G1, where G and G1 are
groups, G is of prime order p, X is a set, and h(ga, x) = h(g, x)a for all g ∈ G,
x ∈ X, a ∈ Fp.

Definition 12. The elements x, x1, x2, . . . , xn ∈ X, a ∈ Fp, and a generator
g ∈ G are chosen at random. Given x, g, and 〈xi, h(ga, xi)〉 for i = 1, 2, . . . , n,
the problem of computing h(ga, x) is called the linear one-way problem (of size
n).

Definition 13. We say that h is a linear one-way function if no probabilistic
polynomial-time (in n and log p) algorithm can solve the linear one-way problem
of any size.

Toward Hierarchical Identity-Based Encryption 473

Remark 2. For example, if DDH is hard in F
×
p2 , the Weil pairing is an example

of a linear one-way function. More generally, bilinear functions that satisfy BDH
give rise to families of linear one-way functions. For example, suppose we have
(G1, G2, e) = IG(

1k
)
. Then fix a generator g ∈ G1 and consider the function

fg: G1 → G2 defined by fg(g1) := e(g, g1). Now, fg is one-way, assuming DDH is
hard in G2. To see this, assume that fg is easy to invert; DDH in G2 can be solved
as follows: given x, xa, xb, xc ∈ G2 we find their inverses y, ya, yb, yc respectively,
and check if e(y, yc) = e(ya, yb). We note that if IG is constructed as described
by Boneh and Franklin, then G2 is a subgroup of F

×
p2 , a group in which DDH

is thought to be hard. (It is also possible to construct elliptic curves where the
q-torsion points are contained in Fp for some large prime q. Inverting the Weil
pairing on these curves is equivalent to breaking DDH in Fp.) More generally,
this is why the relationship between a game and its e-transform appears to be
highly nontrivial: if an algorithm A could win a game G, given an algorithm B
that wins the e-transform of G, then A is an algorithm that can invert fg.

Now suppose that (G1, G2, e) = IG(
1k

)
. Then the e-transformation of the

linear one-way problem is called the linear e-one-way problem. (In this prob-
lem, we are also given gr for some random r ∈ Fp (in addition to x, g, and
〈xi, h(ga, xi)〉 for i = 1, 2, . . . , n) and now the goal is to compute e(h(ga, x), gr).)

Definition 14. If no probabilistic polynomial-time algorithm can solve the lin-
ear e-one-way problem of any size, then we say that h is a linear e-one-way
function.

If we knew how to construct linear e-one-way functions, we could construct an
HIBE scheme as follows:

Setup: Input: k ∈ Z. Run IG(
1k

)
and set (G1, G2, e) to be the output. Construct

a linear e-one-way function h: G1 × Fq → G1. Choose a random a ∈ Fq and
a random generator g ∈ G1. Pick cryptographically-strong hash functions
H1: {0, 1}∗ → G1, H2: {0, 1}∗ → Fq, and H3: G2 → {0, 1}m (for some m).
Output: mkε := a, and params := 〈G1, G2, e, g, g

a, H1, H2, H3〉.
KeyGen1: Input: a prefix address 〈S〉 (the domain name).

Output: mk〈S〉 := H1(S)a ∈ G1.
KeyGen2: Input: an address 〈S, T 〉 (S is the domain PID and T is the user PID).

Let mk〈S〉 ∈ G1 be the domain key.
Output: k = mk〈S,T 〉 := h

(
mk〈S〉, H2(S ‖T)) ∈ G2.

Encrypt: Input: params, N = 〈S, T 〉 (S is the recipient domain’s PID and T is
the recipient user’s PID), and M .
Pick a random r ∈ Fq.
Output: C = 〈gr,M ⊕ H3(s)〉, where s := e(h(H1(S), H2(S ‖T)), g)r.

Decrypt: Input: params, N = 〈S, T 〉, a ciphertext C = 〈gr, V 〉, and a user’s
private key k := mk〈S,T 〉 ∈ G1.
Output: M = V ⊕ H3(e(k, gr)).

It can be shown that this scheme is ID-OWE. By applying the Fujisaki-
Okamoto [6] transformation, we obtain a scheme which is ID-CCA. Though

474 Jeremy Horwitz and Ben Lynn

finding a linear e-one-way function h remains an open problem, we are able to
construct an h such that the linear e-one-way problem for a fixed n is hard,
giving rise to a 2-HIBE system that is resistant to (unlimited) domain-level
collusion and can tolerate up to n-party user-level collusion. We describe this in
the following section. Briefly, we will define h: Gn+1

1 × Fq → G1 (for some n; q
is the prime order of G1) as h((g0, g1, . . . , gn), d) := gd0

0 gd1

1 · · · gdn

n . We then have
a linear function h such that, given g and n pairs 〈xi, h(g, xi)〉, it appears hard
to determine 〈x′, h(g, x′)〉 for any other x′.

3.4 Our Domain-Collusion Resistant Scheme

Let n denote the amount of collusion that we are willing to tolerate at the user
level.

Setup: Input: k ∈ Z. Run IG(
1k

)
and set (G1, G2, e) to be the output. Choose

a random a ∈ Fq and a random g ∈ G1. Pick cryptographically-strong hash
functions H1: {0, 1}∗ → Gn+1

1 , H2: {0, 1}∗ → Fq, and H3: G2 → {0, 1}m

(where M = {0, 1}m is the message space). For the security proof, we view
the hash functions as random oracles.
Output: mkε := a and params := 〈G1, G2, e, g, g

a, H1, H2, H3〉.
KeyGen1: Input: a prefix address 〈S〉 (the domain name). Let 〈g0, g1, . . . , gn〉 =

H1(S) (so each gi lies in G1).
Output: mk〈S〉 := 〈ga

0 , g
a
1 , . . . , g

a
n〉 ∈ Gn+1

1 .
KeyGen2: Input: an address 〈S, T 〉 (S is the domain PID and T is the user PID).

Set d := H2(S ‖T) (which is an element of Fq).
Let mk〈S〉 = 〈ga

0 , g
a
1 , . . . , g

a
n〉 ∈ Gn+1

1 be the domain key.
Output: k = mk〈S,T 〉 :=

∏n
i=0 g

adi

i ∈ G1.
Encrypt: Input: params, N = 〈S, T 〉 (S is the recipient domain’s PID and T is

the recipient user’s PID), and a message M .
Set 〈g0, g1, . . . , gn〉 := H1(S). Set d := H2(S ‖T).
Pick a random r ∈ Fq. Then compute w := e

(∏n
i=0 g

di

i , ga
)r

∈ G2.
Output: the ciphertext 〈gr,M ⊕ H3(w)〉.

Decrypt: Input: params, N = 〈S, T 〉, a ciphertext C = 〈U, V 〉, and a private key
k = mk〈S,T 〉 ∈ G1.
Output: M = V ⊕ H3(e(k, U)).

The scheme is consistent because, by the bilinearity of e, we have e(k, U) =

e
(∏n

i=0 g
di

i , ga
)r

, when U = gr.

3.5 Proof of Security

Recall that we are restricting the adversary to at most n KeyGen2 queries from
the same domain.

Toward Hierarchical Identity-Based Encryption 475

Theorem 1. Suppose A is an ID-OWE attacker of our cryptosystem with an
advantage of ε. Then, if we model H1, H2, and H3 as random oracles, there
exists an algorithm B that can solve the BDH problem with an advantage of
ε/

(
2(QK1 + 2QK2)QH1

(
QH2

n

)
e
)
, where QKi is the total number of KeyGeni que-

ries, QHi
is the number of Hi queries issued by A, and e is the base of the

natural logarithm.

Proof. The proof of the theorem is broken into several lemmata. In Lemma 1, we
show that an attacker B, whose KeyGen queries are restricted to only KeyGen2
queries from the same domain as the challenge address, is essentially as strong
as an arbitrary attacker A. We do so in a manner similar to that used in the
analysis of the Boneh-Franklin scheme [1], which is itself partly based on a
technique of Coron [5]. In Lemma 2, we define the Bilinear Polynomial Diffie-
Hellman (BPDH) game, and give a reduction from the attack by the B described
above to an attack by (an attacker) C on the BPDH game. Lastly we produce
a reduction from an attack by C on the BPDH game to an attack by D on the
BDH problem. The combination of the three lemmata leads immediately to the
theorem. ��

Lemma 1. Suppose there exists an ID-OWE attacker A with an advantage of
ε. Let Qi be a bound on the number of Hi queries made by A (for i = 1, 2). If
we model H1 as a random oracle, then there exists an ID-OWE attacker B with
an advantage of ε/eQ, where Q = Q1 + 2Q2, whose key-generation queries are
all KeyGen2 queries from the same domain as the challenge domain.

Proof. After receiving the system parameters, B passes them on to A. Without
loss of generality, we may assume that every key-generation query for a pre-
fix address (domain name) 〈S〉 or address 〈S, T 〉 has been preceded by an H1
(domain-level) hash query on the domain PID S. We may also assume that A
issues an H1 hash query on the challenge domain PID before revealing it.

We will need some auxiliary functions and global variables:
Initially, L is an empty list that will hold information on B’s responses to H1

queries, and schallenge is a string that is set to a special value null. Additionally,
we will use a unique value real (not in G, Fq, etc.) in the proof.

When A issues an H2 query for an address 〈S, T 〉 (i.e., a hash query on S ‖T),
B returns H2(S ‖T).

When A issues an H1 query on a domain PID S, B runs the following algo-
rithm:

1. If L contains a tuple whose first element is S, then
(a) If L contains 〈S, r0, r1, . . . , rn〉, then return 〈gr0 , gr1 , . . . , grn〉.
(b) If L contains 〈S,real〉, then return H1(S).

2. Otherwise, flip a coin that takes the value 1 with probability p and
0 otherwise (p will be determined later).
(a) If coin = 1, then pick random r0, r1, . . . , rn ∈ Fq. Insert the

tuple 〈S, r0, r1, . . . , rn〉 into L, and return 〈gr0 , gr1 , . . . , grn〉.

476 Jeremy Horwitz and Ben Lynn

(b) Otherwise, coin = 0. In this case, insert 〈S,real〉 into L and
return H1(S).

Since we are modelling H1 as a random oracle, A cannot distinguish between
this simulation and the real H1.

When A issues a KeyGen1 query on a prefix address (domain name) 〈S〉, B
runs the following algorithm:

By assumption, A has already issued an H1 query for S.
1. If 〈S, r0, r1, . . . , rn〉 is on the list L, return 〈gar0 , gar1 , . . . , garn〉.
2. Otherwise, 〈S,real〉 appears on L: output failure and halt.

When A issues a KeyGen2 query on an address 〈S, T 〉, B runs the following
algorithm:

Again by assumption, a hash query on S has already been issued. Let
d = H2(S ‖T).
1. If L contains 〈S, r0, r1, . . . , rn〉, return

〈
gar0d0

, gar1d1
, . . . , garndn

〉
.

2. Otherwise, 〈S,real〉 ∈ L:
(a) If schallenge = S, then B issues the KeyGen2 query (recall that

B is allowed to do this for the challenge domain).
(b) If schallenge �= null then B outputs failure and halts.
(c) Otherwise, B sets schallenge := S and issues the KeyGen2 query.

Eventually, A outputs a challenge address 〈S, T 〉. If 〈S,real〉 �∈ L, then
output failure. If 〈S,real〉 ∈ L and schallenge �= null and schallenge �= S,
then output failure. Otherwise (when 〈S,real〉 ∈ L and (schallenge = null
or schallenge = S)), set schallenge := S.

The next round of queries is handled in the same manner as in the first round.
Finally, A will output a guess M and halt; then B outputs M and halts.

Clearly, if A is successful, then so is B.
Recall that Q1 is the number of KeyGen1 queries. Then the probability that

failure is not output during such a query is at least pQ1 (it is sufficient to have
coin = 1 for each query).

Recall that Q2 is the number of KeyGen2 queries. In the worst case, for every
KeyGen2 query on an address 〈S, T 〉, L contains 〈S,real〉, and, once schallenge
has been set, any other value for S will cause failure. So the probability that
failure is not output during KeyGen2 queries is bounded from below by pQ2−1.

After A outputs the challenge address, the probability that 〈S,real〉 is on
the list L is 1 − p, and the probability schallenge = S or schallenge = null is at
least pQ2 . (In the worst case, every KeyGen2 query is in a different domain, and,
trivially, the probability that schallenge = S or schallenge = null is no less than
the probability that schallenge remains null.)

Let k = Q1+2Q2−1. Then pk(1−p) is a lower bound on the probability that
a failure state is not reached. It is minimized when p = k/(k + 1), which makes
the probability of not reaching a failure state bounded from below by 1/e(k+1).

With Q = Q1 + 2Q2, we see that B has an advantage of at least ε/eQ. ��

Toward Hierarchical Identity-Based Encryption 477

Definition 15. The Computational Polynomial Diffie-Hellman (CPDH) game
(of degree n) for a function H: X → G1, where X is a set, is the following game:

A polynomial f(x) = c0 + c1x + · · · + cnx
n with coefficients in Fq is chosen

at random. An element a is chosen at random from Fq.
The attacker is given g, ga, gc0 , gc1 , . . . , gcn and d ∈ Fq.
Then the attacker picks any s ∈ X, and learns gaf(H(s)). This step is repeated

up to n times. (The attack may be adaptive.)
Lastly, the attacker wins if it can output the value of gaf(d).

Remark 3. For n = 0, this reduces to the CDH problem. (The adversary is not
allowed to make any queries.)

Definition 16. The Bilinear Polynomial Diffie-Hellman (BPDH) game (of de-
gree n) for a function H: X → G1 is the e-transformation of the corresponding
CPDH game, i.e., it is the same as the previous game except that the attacker is
also given gr for some random r ∈ Fq and now the attacker’s goal is to compute
e(g, g)arf(d).

Remark 4. For n = 0 this reduces to the BDH problem.

Lemma 2. Suppose there exists an ID-OWE attacker B with an advantage of
ε whose key-generation queries are always KeyGen2 queries of addresses from
the same domain as the challenge domain, and furthermore, B makes at most n
such queries. (B makes no KeyGen1 queries.) Then, there exists an attacker C
that can win the BPDH game for H2 with an advantage of ε/(2Q), where Q is
a bound on the number of H1 queries that B makes.

Proof. Again we may assume that any key-generation query for an address is
preceded by a hash query for that address, and that before the challenge address
is output, a hash query for the challenge address will have been issued. We may
also assume that each query (for any hash function) is distinct (since previous
results can simply be cached). Also, without loss of generality, we may assume
that B makes exactly n KeyGen2 queries.

The algorithm C is given as input g, ga, gc0 , gc1 , . . . , gcn , gr, d (using the no-
tation employed in the description of the BPDH game; its goal is to compute
e(g, g)arf(d)). C begins by giving B the system parameters g, ga.

There is a list L that is used to store H3 queries and is initially empty.
C picks a random i between 1 and Q. On the ith H1 query for S (that B

makes), C sets schallenge := S and returns 〈gc0 , gc1 , . . . , gcn〉. For all other H1
queries, C returns H1(S). Since we are modelling H1 as a random oracle, the
algorithm B cannot distinguish between this simulation of H1 and the real H1.

When B issues an H2 query for 〈S, T 〉, C returns H2(S ‖T).
When B issues anH3 query for s ∈ G2, C returnsH3(s), and inserts 〈s,H3(s)〉

into L.
When B issues a KeyGen2 query on 〈S, T 〉, if S �= schallenge, then C outputs

failure and halts. Otherwise, C issues a query for gaf(H2(S‖T)) and returns the
result to B.

478 Jeremy Horwitz and Ben Lynn

Eventually, B gives the challenge address N = 〈S, T 〉 to C. If S �= schallenge,
then C outputs failure and halts. Otherwise, C chooses a random R ∈ {0, 1}k,
and C gives the ciphertext C := 〈gr, R〉 to B.

The next round of queries is handled in the same manner as in the first round.
Eventually, B outputs its guess M and halts. Then, the algorithm C looks for

a tuple of the form 〈s,M ⊕ R〉 in L; if it cannot find it, C outputs failure. If B
is successful (i.e., if Encrypt(params, N,M) = C), then M = R ⊕ H3(s), where
s = e(g, g)arf(H2(S‖T)). If C finds the tuple in L, C then knows n + 1 values of
the function x �→ e(g, g)arf(x), so C can compute e(g, g)arf(d) using Lagrange
interpolation.

Notice that, since H3 is a random oracle, if 〈s,H3(s)〉 is not found in L,
then the decryption of the ciphertext C is independent of the knowledge B
accumulated from its various queries, which means that B succeeds in this case
with probability 1/2k.

The probability of success is (1/Q)(1 − 1/2k) (i must be guessed correctly),
which is at least 1/(2Q). ��
Lemma 3. Suppose there exists an algorithm C that can win the BPDH game for
a function H: X → G1 with an advantage of ε and suppose H may be modelled
as a random oracle. Then there exists an attacker D that can solve the BDH
problem with an advantage of ε/

(
Q
n

)
, where Q is a bound on the number of H

queries that C makes.

Proof. We may assume that Q ≥ n, that all H queries are distinct (previous
results can be cached), and that a query for gaf(H(s)) implies that C has already
issued a query for H(s).

The algorithm D is given g, gx, gy, gz for randomly chosen x, y, z ∈ Fq (its goal
is to compute e(g, g)xyz). Set y0 := y. There is a list L that holds responses to H
queries that is initially empty. D picks random a0, a1, . . . , an, y1, y2, . . . , yn ∈ Fq.
D then solves the system of equations

g
a0
0

0 · ga1
0

1 · · · gan
0

n = gy0

g
a0
1

0 · ga1
1

1 · · · gan
1

n = gy1

...

g
a0

n
0 · ga1

n
1 · · · gan

n
n = gyn

for the gi. If we define the matrix A by Aij := aj
i , then, with high probability,

the ai are distinct (so A is a Vandermonde matrix), thus guaranteeing a unique
solution for the gi.

Then, D hands C the input 〈g, gx, g0, g1, . . . , gn, g
z, a0〉.

Let Q be a bound on the number of H queries made by C. D chooses a
random subsequence I of length n from the sequence (1, 2, . . . , Q).

Let sj ∈ X be the jth element on which C makes an H query. D answers
that query as follows:

If j is the ith element of I, then D responds with ai and inserts 〈sj , i〉 into
L. Otherwise, j �∈ I and D responds with a random number. Since the ai were

Toward Hierarchical Identity-Based Encryption 479

chosen at random, the algorithm C cannot distinguish between our simulation
of a random oracle and a real random oracle.

If C asks for gaf(H(s)), then, if 〈s, i〉 ∈ L for some i, D replies with gyi .
Otherwise, it outputs failure and halts.

Eventually, C will output its guess g′ for e(g, g)xzf(a0) and halt; then D out-
puts g′ and halts.

Let r1, r2, . . . , rn ∈ Fq be such that g0 = gr0 , gr1 , . . . , gn = grn (we will never
need to explicitly compute the ri). If D has not yet failed, and, if C wins its game,
then C will output g′ = e(g, g)xzf(a0) = e(g, g)xyz (where f is the polynomial
f(u) = r0 + r1u + · · · + rnu

n), which means that D, by outputting e(g, g)xyz,
will win the BDH game.

Thus, the probability of D succeeding, given that C is successful, is at least
1/

(
Q
n

)
(it is sufficient for the set I to correspond exactly to the n elements of X

for which C issues gaf(H(s)) queries). ��
Applying the Fujisaki-Okamoto transformation to the cryptosystem yields an

ID-CCA 2-HIBE system that tolerates user collusion up to size n; in this system,
the Setup algorithm also selects two hash functions H ′: {0, 1}k × {0, 1}k → Fq

and H ′′: {0, 1}k → {0, 1}k, and there is an extra level of hashing during en-
cryption and decryption, as follows (we use the same notation as in the de-
scription of the cryptosystem): Encrypt now also picks a random σ ∈ {0, 1}k,
computes r := H ′(σ,M) (instead of picking a random r ∈ Fq), and outputs
C := 〈gr, σ ⊕ H3(s),M ⊕ H ′′(σ)〉 (as opposed to 〈gr,M ⊕ H3(s)〉). Decrypt is
modified similarly.

The proof of Lemma 3 involves a reduction that is exponential in n, rendering
the system untrustworthy for large n. One could simply assume that the Bilinear
Polynomial Diffie-Hellman game is hard to win in order to rectify this, but it
would be better to find a polynomial-time reduction from winning the Bilinear
Polynomial Diffie-Hellman game to a more natural assumption.

4 Conclusions and Open Problems

We introduced hierarchical identity-based encryption schemes and their related
security definitions. We presented a concrete two-level HIBE scheme that is
totally collusion-resistant on the upper level and partially collusion-resistant on
the lower level, and showed it to be secure under the BDH assumption (in the
random-oracle model). An open problem is to construct a two-level HIBE scheme
that is totally collusion-resistant on the lower level and at least partially (if not
totally) collusion-resistant on the upper level.

One could try to extend our approach to finding a 2-HIBE system to attempt
to construct an �-HIBE system for any given � by using a family of � − 1 linear
e-one-way functions such that the output of one is used as the first input of the
next. Ideally, there would be a single linear e-one-way function h: G1 × X → G1,
and one could apply h recursively to obtain a family of any given size.

Unfortunately, this may not be enough to guarantee that an ID-OWE at-
tacker has negligible advantage. A major hurdle in a proof of security is that it

480 Jeremy Horwitz and Ben Lynn

is not clear how to build a simulator that can answer an algorithm’s queries for
addresses within the same domain but within a different subdomain than the
challenge address. Additionally, if we model hash functions as random oracles,
then the most obvious approaches will involve security reductions exponential in
� (informally, it seems a simulator must guess which hash query to rig at each
level).

In any event, there are no known families of linear e-one-way functions of any
size (that can accompany a bilinear function satisfying the BDH assumption).
However, if we are willing to tolerate n-party collusion at every level, then we
may construct a family of functions by extending our scheme. In our system,
KeyGen2 produces one group element from n group elements. This suggests a
scheme where a private key at the top level consists of n	−1 group elements: to
generate keys for the next level, sets of n elements are used to produce one group
element each; private keys at a given level contain n times the number of group
elements in private keys of the level below. At the bottom level a private key
consists of a single group element which can be fed into the bilinear function.

Clearly, in this scheme, the key size at the top level increases exponentially
with �, so it does not scale well. Even so, for some applications, setting � slightly
greater than 2 may be beneficial; e.g., if we take domains, subdomains and users
to be corporations, departments and employees, then it may be less likely for
n department key generators to collude than for n2 employees to collude. (It is
still possible for n2 employees to collude and expose the corporation’s key, but
this requires n employees from each of n different departments.)

References

1. D. Boneh and M. Franklin, “Identity Based Encryption from the Weil Pairing”,
Advances in Cryptology: CRYPTO 2001 (LNCS 2139), pp. 213–229, 2001.

2. D. Boneh and M. Franklin, “Identity Based Encryption from the
Weil Pairing”, Cryptology ePrint Archive, Report 2001/090, 2001.
http://eprint.iacr.org/2001/090/

3. D. Boneh, B. Lynn, and H. Shacham, “Short Signatures from the Weil Pairing”,
Advances in Cryptology: ASIACRYPT 2001 (LNCS 2248), pp. 514–532, 2001.

4. C. Cocks, “An Identity Based Encryption Based on Quadratic Residues”, Cryp-
tography and Coding (LNCS 2260), pp. 360–363, 2002.

5. J. Coron, “On the Exact Security of Full Domain Hash”, Advances in Cryptology:
CRYPTO 2000 (LNCS 1880), pp. 229–235, 2000.

6. E. Fujisaki and T. Okamoto, “Secure Integration of Asymmetric and Symmetric
Encryption Schemes”, Advances in Cryptology: CRYPTO ’99 (LNCS 1666), pp.
537–554, 1999.

7. A. Joux, “A One Round Protocol for Tripartite Diffie-Hellman”, Algorithmic Num-
ber Theory : 4th International Symposium, ANTS-IV (LNCS 1838), pp. 385–394,
2000.

8. M. Kasahar, K. Ohgishi, and R. Sakai, “Cryptosystems Based on Pairing”, The
2001 Symposium on Cryptography and Information Security, Oiso, Japan, 2001.

9. A. Shamir, “Identity-Based Cryptosystems and Signature Schemes”, Advances in
Cryptology: CRYPTO ’84 (LNCS 196), pp. 47–53, 1985.

Toward Hierarchical Identity-Based Encryption 481

10. E. Verheul, “Evidence That XTR Is More Secure than Supersingular elliptic curve
cryptosystems”, Advances in Cryptology: EUROCRYPT 2001 (LNCS 2045), pp.
195–210, 2001.

11. E. Verheul, “Self-Blindable Credential Certificates from the Weil Pairing”, Ad-
vances in Cryptology: ASIACRYPT 2001 (LNCS 2248), pp. 533–551, 2001.

12. ISO/IEC 9594-8, “Information Technology — Open Systems Interconnection —
The Directory: Authentication Framework”, International Organization for Stan-
dardization, Geneva, Switzerland, 1995 (equivalent to ITU-T Recommendation
X.509, 1993).

	1 Introduction
	2 Definitions
	2.1 Security
	3.2 A Game Transformation

	3 An HIBE Resistant against Domain Collusion
	3.1 The BDH Assumption
	3.2 A Game Transformation
	3.3 Linear e-One-Way Functions
	3.4 Our Domain-Collusion Resistant Scheme
	3.5 Proof of Security

	4 Conclusions and Open Problems
	References

