
Adaptive Model Checking

Alex Groce1, Doron Peled2, and Mihalis Yannakakis3

1 Department of Computer Science
Carnegie Mellon University
Pittsburgh, PA, 15213

2 Department of Electrical and Computer Engineering
University of Texas at Austin
Austin, TX, 78712, USA

3 Avaya Laboratories
233 Mount Airy Road

Baskin Ridge, NJ 07920, USA

Abstract. We consider the case where inconsistencies are present
between a system and its corresponding model, used for automatic
verification. Such inconsistencies can be the result of modeling errors or
recent modifications of the system. Despite such discrepancies we can
still attempt to perform automatic verification. In fact, as we show, we
can sometimes exploit the verification results to assist in automatically
learning the required updates to the model. In a related previous work,
we have suggested the idea of black box checking, where verification
starts without any model, and the model is obtained while repeated
verification attempts are performed. Under the current assumptions,
an existing inaccurate (but not completely obsolete) model is used
to expedite the updates. We use techniques from black box testing
and machine learning. We present an implementation of the proposed
methodology called AMC (for Adaptive Model Checking). We discuss
some experimental results, comparing various tactics of updating a
model while trying to perform model checking.

Keywords: Automatic Verification, Black Box Testing, Learning Algo-
rithms.

1 Introduction

The automatic verification of systems, also called model checking, is increasingly
gaining popularity as an important tool for enhancing system reliability. A major
effort is to find new and more efficient algorithms. One typical assumption is that
a detailed model, which correctly reflects the properties of the original system
to be checked, is given. The verification is then performed with respect to this
model. Because of the possibility of modeling errors, when a counterexample is
found, it still needs to be compared against the actual system. If the counterex-
ample does not reflect an actual execution of the system, the model needs to be
refined, and the automatic verification is repeated. A similar iterative process

J.-P. Katoen and P. Stevens (Eds.): TACAS 2002, LNCS 2280, pp. 357–370, 2002.
c© Springer-Verlag Berlin Heidelberg 2002

358 A. Groce, D. Peled, and M. Yannakakis

in the framework of abstracted models of systems has been used as a technique
for combatting the state space explosion problem [4]. Our technique is substan-
tially different in that rather than using counterexamples to iteratively refine
the abstraction used (exposing variables or adding predicates for instance), we
use counterexamples to modify incorrect models which are not abstractions of
the real system.

Although there are several tools for obtaining automatic translation from
various notations to modeling languages, such translations are used only in a
small minority of cases, as they are syntax-specific. The modeling process and
the refinement of the model are largely manual processes. Most noticeably, they
depend on the skills of the person who is performing the modeling, and his
experience.

In this paper, we deal with the problem of model checking in the presence
of an inaccurate model. We suggest a methodology in which model checking is
performed on some preliminary model. Then, if a counterexample is found, it is
compared with the actual system. This results in either the conclusion that the
system does not satisfy a property, or an automatic refinement of the model. We
adapt a learning algorithm [1], to help us with the updating of the model. We
employ a testing algorithm [3,10] to help us compare the model with the actual
system, through experiments.

Our adaptive model checking approach can be used in several cases.

– When the model includes a modeling error.
– After some previously occurring bug in the system was corrected.
– When a new version of the system is presented.
– When a new feature is added to the system.

We present an implementation of Adaptive Model Checking (AMC) and ex-
perimental results. In the limit, this approach is akin to Black Box Checking [9]
(BBC), where initially no model is given. The current implementation serves
also as a testbed for the black box checking approach, and we present our ex-
perimental results.

The black box checking approach [9] is a strategy to verify a system without a
model. According to this strategy, illustrated in Figure 1, we alternate between
incremental learning of the system, according to Angluin’s algorithm [1], and
the black box testing of the learned model against the actual system, using the
Vasilevskii-Chou (VC) algorithm [3,10].

At any stage we have a model that approximates the actual system. We apply
model checking to this model. In our case we use the nested depth-first search
algorithm to check for emptiness of the product of the system with a Büchi au-
tomaton [6]. We can thus handle general LTL properties, under the assumption
that the upper bound on the size of the real system is correct. Because the com-
plexity of learning is dependent on the length of the counterexamples generated,
we apply iterative deepening to the nested depth-first search. If we find a coun-
terexample for the checked property, we compare it with the actual system. If it
turns out to be a false negative, we feed this example to the learning algorithm,
since this is an example of the difference between the model and the system.

Adaptive Model Checking 359

This allows us, through the learning algorithm, to improve the accuracy of the
model. If we do not find a counterexample (recall that we use an approximation
model for model-checking, and not the system directly), we apply the VC algo-
rithm, looking for a discrepancy between the current approximation model and
the system. Again, if we find a sequence that distinguishes the behavior of the
system from the model, we feed it to the learning algorithm, in order to improve
the approximated model.

Incremental
learning

(Angluin)

No counterexample Counterexample found

Conformance established

Model and
system do not
conform

Counterexample
refuted

Counterexample confirmed

report no
error found

Compare
counterexample

with system

report
counterexample

Model checking
w.r.t. current

model

(VC algorithm)

black box
testing

Fig. 1. The black box checking strategy

In this paper, we consider a variant case, in which a model for the tested
system is provided, but is inaccurate, due to modeling errors or new updates in
the system. Abandoning the model and applying the black box checking approach
may not be an efficient strategy due to the inherently high complexity of the
black box testing involved. Instead, we attempt to exploit the existing model in
order to learn the changes and verify the system. Specifically, we try to diminish
the need for the repeated call to the VC algorithm by providing the learning
algorithm with initial information taken from the given model. This is in line

360 A. Groce, D. Peled, and M. Yannakakis

with our goal of adapting an existing model, as opposed to performing model
checking without a model being initially present. We present experimental data
that compares the different cases.

2 Preliminaries

A Model and a System

A model is a finite automaton M = 〈S, ι,Σ, δ〉, where S is the (finite) set of
states, ι ∈ S is the initial state, Σ is the set of inputs, and δ ⊆ S × Σ × S is a
deterministic transition relation. That is, if (s, a, r), (s, a, r′) ∈ δ, then r = r′.

A run of M is a nonempty sequence a1a2 . . . an, such that there exists a
sequence s0s1 . . . sn, where for i ≤ n, (si, ai, si+1) ∈ δ. Similar variants of the
definitions also apply to infinite runs. The issue of finite vs. infinite executions is
orthogonal to this paper. The reader may refer to [9] for appropriate definitions
of a model that allows infinite runs and for a way to perform finite testing on
such models. Let L(M), the language of M , be the set of runs of M . We say
that an input a is enabled from a state s ∈ S, if there exists r ∈ S, such that
(s, a, r) ∈ δ. Similarly, a1a2 . . . an is enabled from s if there is a sequence of states
s0, s2, . . . , sn with s0 = s such that for 1 ≤ i ≤ n, (si−1, ai, si) ∈ δ.

We view a system S = (Σ, T) as a (typically infinite) prefix closed set of
strings T ⊆ Σ∗ over a finite alphabet of inputs Σ (if v ∈ T , then any prefix of v
is in T). The strings in T reflect the allowed executions of S.

We assume that we can perform the following experiments on S:

– Reset the system to its initial state. The current experiment is reset to the
empty string ε.

– Check whether an input a can be currently executed by the system. The
letter a is added to the current experiment. We assume that the system
provides us with information on whether a was executable. If the current
successful part of the experiment so far was v ∈ Σ∗ (i.e., v ∈ T), then
by attempting to execute a, we check whether va ∈ T . If so, the current
successful part of the experiment becomes va, and otherwise, it remains v.

A model M accurately models a system S if for every v ∈ Σ∗, v is a successful
experiment (after applying a Reset) exactly when v is a run of M . Note that
our system generates binary output in accordance with the enabledness of a
given input after executing some sequence from the initial state. We can easily
generalize the construction and subsequent algorithms to deal with arbitrary
output. We deal here with finite state systems, i.e., systems that are accurately
modeled by some finite state automaton. The size of a system is defined to be
the number of states of the minimal automaton that accurately models it.

Angluin’s Learning Algorithm

Angluin’s learning algorithm [1] plays an important role in our adaptive model
checking approach. The learning algorithm performs experiments on the system
S and produces a minimized finite automaton representing it.

Adaptive Model Checking 361

The basic data structure of Angluin’s algorithm consists of two finite sets of
finite strings V and W over the alphabet Σ, and a table f . The set V is prefix
closed (and contains thus in particular the empty string ε). The rows of the table
f are the strings in V ∪ V.Σ, while the columns are the strings in W . The set
W must also contain the empty string. Let f(v, w) = 1 when the sequence of
transitions vw is a successful execution of S, and 0 otherwise. The entry f(v, w)
can be computed by performing the experiment vw after a Reset.

We call the sequences in V the access sequences, as they are used to access
the different states of the automaton we are learning from its initial state. The
sequences in W are called the separating sequences, as their goal is to separate
between different states of the constructed automaton. Namely, if v, v′ ∈ V lead
from the initial state into a different state, than we will find some w ∈ W such
that S allows either vw or v′w as a successful experiment, but not both.

We define an equivalence relation ≡ mod(W) over strings in Σ∗ as follows:
v1 ≡ v2 mod(W) when the two rows, of v1 and v2 in the table f are the same.
Denote by [v] the equivalence class that includes v. A table f is closed if for each
va ∈ V.Σ such that f(v, ε) �= 0 there is some v′ ∈ V such that va ≡ v′ mod(W).
A table is consistent if for each v1, v2 ∈ V such that v1 ≡ v2 mod(W), either
f(v1, ε) = f(v2, ε) = 0, or for each a ∈ Σ, we have that v1a ≡ v2a mod(W).
Notice that if the table is not consistent, then there are v1, v2 ∈ V , a ∈ Σ and
w ∈ W , such that v1 ≡ v2 mod(W), and exactly one of v1aw and v2aw is an
execution of S. This means that f(v1a,w) �= f(v2a,w). In this case we can add
aw to W in order to separate v1 from v2.

Given a closed and consistent table f over the sets V and W , we construct
a proposed automaton M = 〈S, s0, Σ, δ〉 as follows:

– The set of states S is {[v]|v ∈ V, f(v, ε) �= 0}.
– The initial state s0 is [ε].
– The transition relation δ is defined as follows: for v ∈ V, a ∈ Σ, the transition

from [v] on input a is enabled iff f(v, a) = 1 and in this case δ([v], a) = [va].

The facts that the table f is closed and consistent guarantee that the transi-
tion relation is well defined. In particular, the transition relation is independent
of which state v of the equivalence class [v] we choose; if v, v′ are two equiva-
lent states in V , then for all a ∈ Σ we have that [va] coincides with [v′a] (by
consistency) and is equal to [u] for some u ∈ V (by closure).

There are two basic steps used in the learning algorithms for extending the
table f :

add rows(v) : Add v to V . Update the table by adding a row va for each a ∈ Σ
(if not already present), and by setting f(va, w) for each w ∈ W according
to the result of the experiment vaw.

add column(w) : Add w to W . Update the table f by adding the column w,
i.e., set f(v, w) for each v ∈ V ∪ V.Σ, according the the experiment vw.

The Angluin algorithm is executed in phases. After each phase, a new pro-
posed automaton M is generated. The proposed automaton M may not agree

362 A. Groce, D. Peled, and M. Yannakakis

with the system S. We need to compare M and S (we present later a short de-
scription of the VC black box testing algorithm for performing the comparison).
If the comparison succeeds, the learning algorithm terminates. If it does not, we
obtain a run σ on which M and S disagree, and add all its prefixes to the set
of rows V . We then execute a new phase of the learning algorithm, where more
experiments due to the prefixes of σ and the requirement to obtain a closed and
consistent table are called for.

subroutine ANGLUIN(V,W, f, σ)
if f, V and W are empty then

/∗ starting the algorithm from scratch ∗/
let V := {ε}; W = {ε};
add rows(ε);

else
for each v′ ∈ prefix (σ) that is not in V do

add rows(v′);
while (V,W, f) is inconsistent or not closed do

if (V,W, f) is inconsistent then
find v1, v2 ∈ V , a ∈ Σ, w ∈W, such that

v1 ≡ v2 mod(W) and f(v1a,w) �= f(v2a,w);
add column(aw);

else / ∗ (V,W, f) is not closed ∗/
find v ∈ V , a ∈ Σ,

such that va �∈ [u] for any u ∈ V ;
add rows(va);

end while
return automaton(V,W, f)

end ANGLUIN

Fig. 2. An incremental learning step

The subroutine in Figure 2 is an incremental step of learning. Each call to
this subroutine starts with either an empty table f , or with a table that was
prepared in the previous step, and a sequence σ that distinguishes the behavior
of the proposed automaton (as constructed from the table f) and the actual
system. The subroutine ends when the table f is closed and consistent, hence a
proposed automaton can be constructed from it.

Let m be the size of an automaton that faithfully represents the system
S. Assume that Angluin’s algorithm is executed in such a way that each time
an automaton that does not faithfully represents the system S is proposed,
a shortest counterexample showing the discrepancy in behavior is presented,
without accounting for the time it takes for calculating such a counterexample.
This assumption is made in order to decouple the complexity of comparing S
with M from the learning algorithm. Then, the time complexity is O(m4).

Adaptive Model Checking 363

We do not in practice perform the expensive breadth-first search required to
copute the shortest counterexample, but we do apply iterative deepening to the
nested depth-first search in order to avoid its preference for very long paths and
cycles.

Spanning Trees

A spanning tree of an automaton M = 〈S, ι,Σ, δ〉 is a graph G = 〈S, ι,Σ,∆〉
generated using the following depth first search algorithm.

explore(ι);
subroutine explore(s):

set old(s);
for each a ∈ Σ do

if ∃s′ ∈ S such that (s, a, s′) ∈ δ
and ¬old(s′) /∗ s′ was not found yet during the search ∗/

add (s, a, s′) to ∆;
explore(s′);

A spanning tree thus is a subgraph G of M , with no cycles. Let T be the
corresponding runs of G. Notice that in Angluin’s algorithm, when a proposed
automaton M is learned, the set V of access sequences includes the runs of a
spanning tree of M .

Separating Sequences

Let M = 〈S, ι,Σ, δ〉 be an automaton with a set of states S. Let ds be a function
ds : S → 2Σ

∗
. That is, ds returns, for each state S, a set of words over Σ. We

require that if s, s′ ∈ S, s �= s′, then there are w ∈ ds(s) and w′ ∈ ds(s′), such
that some σ ∈ prefix (w) ∩ prefix (w′) is enabled from exactly one of s and s′.
Thus, σ separates s from s′. We call ds the separation function of M (see, [8]).

A simple case of a separation function is a constant function, where for each
s, s′, ds(s) = ds(s′). In this case, we have separation set. Note that the set W
generated by Angluin’s algorithm is a separation set. We denote the (single) set
of separating sequences (a separation set) for an automaton M by DS(M).

The Hopcroft algorithm [7] provides an efficient O(n log n) for providing a
set of separating sequences, where n is the number of states.

Black Box Testing

Comparing a model M with a finite state system S can be performed using
the Vasilevskii-Chow [10,3] algorithm. As a preparatory step, we require the
following:

– A spanning tree G for M , and its corresponding runs T .
– A separation function ds, such that for each s ∈ S, |ds(s)| ≤ n, and for each

σ ∈ ds(s), |σ| ≤ n.

364 A. Groce, D. Peled, and M. Yannakakis

Let Σ≤k be all the strings over Σ with length smaller or equal to k. Further, let
m be the number of states of the automaton M . We do the experiments with
respect to a conjectured maximal size n of S. That is, our comparison is correct
as long as representing S faithfully (using a finite automaton) does not need to
have more than n states. The black box testing algorithm prescribes experiments
of the form Resetσ ρ, performed on S, as follows:

– The sequence σ is taken from T.Σ≤n−m+1.
– Run σ from the initial state ι of M . If σ is enabled from ι, let s be the state

of M that is reached after running σ. Then ρ is taken from the set ds(s).

The complexity of the VC algorithm is O(n2m |Σ|n−m+1).

3 Adaptive Verification

Our adaptive model checking methodology is a variant of black box check-
ing. While the latter starts the automatic verification process without having
a model, adaptive model checking assumes some initial model, which may be
inaccurate. The observation is that the inaccurate model is still useful for the
verification. First, it can be used for performing model checking. Caution must
be taken as any counterexample found must still be compared against the actual
system; in the case that no counterexample is found, no conclusion about the
correctness of the system can be made. In addition, the assumption is that the
given model shares some nontrivial common behavior with the actual system.
Thus, the current model can be used for obtaining a better model.

The methodology consists of the following steps.

1. Perform model checking on the given model.
2. Provided that an error trace was found, compare the error trace with the

actual system. If the trace involves a cycle, the cycle must be repeated a
number of times equal to the upper bound given for the real size of the
system. If this is an actual execution of the system, report it and stop.

3. Start the learning algorithm. Unlike the black box checking case, we do not
begin with V = W = {ε}. Instead, we initiate V and W to values obtained
from the given model M as described below. We experiment with several
ways of doing so.

4. If no error trace was found, we can either decide to complete the verifi-
cation attempt (assuming that the model is accurate enough), or perform
some black box testing algorithm, e.g., VC, to compare the model with the
actual system. A manual attempt to correct or update the model is also
possible. Notice that black box testing is a rather expensive step that should
be eliminated.

In the black box checking algorithm, we start the learning with an empty
table f , and empty sets V and W . This immediately cause the initialization of
V = W = {ε} (see Figure 2). As a result, the black box checking algorithm
alternates between the incremental learning algorithm and a black box testing

Adaptive Model Checking 365

(VC algorithm) of the proposed automaton with the actual system. Applying the
VC algorithm may be very expensive. In the adaptive model checking case, we
try to guide the learning algorithm using the already existing (albeit inaccurate)
model. We assume that the modified system has a nontrivial similarity with the
model. This is due to the fact that changes that may have been made to the
system were based on the old version of it. We can use the following:

1. A false negative counterexample σ found (i.e., a sequence σ that was consid-
ered to be a counterexample, but has turned out not to be an actual execution
of the system S). We perform learning experiments with prefix (σ), i.e., the
set of all prefixes of σ.

2. The runs T of a spanning tree G of the model M as the initial set of access
sequences V . We precede the learning algorithm by performing for each
v ∈ T do add rows(v).

3. A set of separating sequences DS(M) calculated for the states of M as the
initial value of the set W . Thus, we precede the learning algorithm by setting
f to be empty, and W = DS(M).

Thus, we attempt to speed up the learning, using the existing model information,
but with the learning experiments now done on the actual current system S. We
experiment later with the choices 1 + 2 (in this case we set W = {ε}), 1 + 3 (in
this case we set V = {ε}) and 1 + 2 + 3.

In order to justify the above choices of the sets V and W for the adaptive
model checking case, we will show the following: If the model M accurately
models a system S, starting with the aforementioned choices of V and W the
above choices allow Angluin’s algorithm to learn M accurately, without the
assistance of the (time expensive) black box testing (the VC algorithm).

Theorem 1. Assume that a finite automaton M accurately models a system
S. Let G be a spanning tree of M , and T the corresponding runs. If we start
Angluin’s algorithm with V = T and W = {ε}, then it terminates learning
a minimized finite automaton A with L(A) = L(M). Moreover, the learning
algorithm will not require the use of the black box testing.

Sketch of proof. By induction on the length of experiment that is required to
distinguish pairs of states of M . As the induction basis, by consistency, we will
separate states in V according to whether va can be accessed from the initial
state or not, for v ∈ V , a ∈ Σ. Then, suppose that the states reached by va and
v′a were separated. The table cannot become consistent before we separate va
and v′a. ��

Theorem 2. Assume that a finite automaton M accurately models a system S.
Let DS(M) be a set of separating sequences for M . If we start Angluin’s algo-
rithm with V = {ε} and W = DS(M), then it terminates learning a minimized
finite automaton A with L(A) = L(M). Moreover, the learning algorithm will
not require the use of the black box testing.

366 A. Groce, D. Peled, and M. Yannakakis

Sketch of Proof. Because of the selection of the separation set, each time a
new state of M is accessed through an experiment with a string v ∈ V , it will be
immediately distinguished from all existing accessed states. Consequently, by the
requirement that the table will be closed, the learning algorithm will generate
for it a set of immediate successors. Thus, the table f will not be closed before
all the states of M are accessed via experiments with strings of V . ��

The above theorems show that the given initial settings do not prevent us
from learning correctly any correct finite representation of S (note also that
adding arbitrary access and separating sequences does not affect the correctness
of the learning algorithm). Of course, when AMC is applied, the assumption is
that the system S deviates from the model M . However, if the changes to the
system are modest, the proposed initial conditions are designed to speed up the
adaptive learning process.

4 An Implementation

Our implementation of AMC is described in this section. We provide some ex-
perimental results.

Experimental Results

Our implementation prototype is written is SML (Standard ML of New Jersey)
and includes about 5000 lines of code. We have performed several experiments
with our AMC prototype. We compared adaptive learning (AMC) and black box
checking (BBC). In addition, we compare the behavior of different initial values
with which we started the AMC. In particular, we experimented with starting
AMC with a spanning tree T of the current model M , a set of distinguishing
sequences DS(M), or with both. In each case of AMC, the prefixes of the coun-
terexample that was found during the verification of the given property against
the provided, inaccurate, model was also used as part of the initial set of access
sequences V .

The examples used in our experimental results are taken from a CCS model
of a COMA (Cache Only Memory Architecture) cache coherence protocol [2].
We use the more recent CCS model obtained from the site

ftp.sics.se/pub/fdt/fm/Coma

rather than that in the paper; we also modify the syntax to that of the Concur-
rency Workbench [5]. We used the Concurrency workbench in order to convert
the model into a representation that we can use for our experiment.

The model is of a system with three components: two clients and a single
directory. The system S2 with 529 states is a set of processes to generate local
read and write requests from the client. The system S3 with 136 states, allows
observation only of which processes have valid copies of the data and which (if
any) have write access. (We preserved the names S2 and S3 from the paper [2]).

Adaptive Model Checking 367

Property ϕ1 asserts that first the component called ‘directory ’ has a valid
copy, then clients 1 and 2 alternate periodically without necessarily invalidating
the data that any of the others hold. (The directory is the interface between
the two memory units in the cache protocol. COMA models basically have only
a cache to handle memory.) Property ϕ2 describes a similar property but the
traces now concern a cache having exclusivity on an entry (a cache can have a
valid copy without exclusivity, which is more involved to obtain). For AMC we
have selected properties that do not hold, and tampered with the verified model
in order to experiment with finding (false negative) counterexamples and using
them for the adaptive learning.

The next table summarizes the experiments done on S2. The columns marked
BBC correspond to the black box checking, i.e., learning from scratch, while the
rightmost column correspond to the three different ways in which the learning
algorithm was initialized for the adaptive learning case. The notation ϕ1 � ϕ2
means that the experiment included checking ϕ1 first, and then checking ϕ2.
In the black box checking this means that after a counterexample for ϕ1 is
found (which is intended to be the case in our experiments), we continue the
incremental learning algorithm from the place it has stopped, but now with
ϕ2 as the property. This possibly causes continuing the incremental learning
process for the proposed model automata, and performing the VC algorithm
several times. In the adaptive case, it means that we initialize AMC with the
information about the previously given model, according to the three choices.
The memory and time measurements for these cases are the total memory and
time needed for completing the overall checking of ϕ1 and ϕ2.

In the tables, time is measured in seconds, and memory in megabytes. The
experiments were done on a Sun Sparc Ultra Enterprise 3000 with 250Mhz pro-
cessors and 1.5 gigabytes of RAM.

Property BBC V �= {ε} W �= {ε} V,W �= {ε}
Time Mem Time Mem Time Mem Time Mem

ϕ1 1234 31 423 41 682 32 195 37
ϕ2 934 31 424 45 674 42 198 42

ϕ1 � ϕ2 1263 31 454 45 860 44 227 47
ϕ2 � ϕ1 1099 31 453 45 880 40 227 44

The following table includes the number of states learned in the various ex-
periments, and the length of the counterexample.

Property BBC V �= {ε} W �= {ε} V,W �= {ε}
States Len States Len States Len States Len

ϕ1 258 90 489 211 486 211 489 211
ϕ2 174 113 489 539 486 539 489 539

ϕ1 � ϕ2 274 112 489 539 486 539 489 539
ϕ2 � ϕ1 259 160 489 211 486 211 489 211

368 A. Groce, D. Peled, and M. Yannakakis

The next table includes similar time and memory measurement experiments
performed with the system S3:

Property BBC V �= {ε} W �= {ε} V,W �= {ε}
Time Mem Time Mem Time Mem Time Mem

ϕ1 913 24 14 25 13 24 7 25
ϕ2 13917 26 14 25 14 25 7 25

ϕ1 � ϕ2 1187 27 17 25 19 26 10 25
ϕ2 � ϕ1 13873 27 17 26 19 25 10 25

Similarly, the following table includes the number of states and length of
counterexample for the experiments with S3.

Property BBC V �= {ε} W �= {ε} V,W �= {ε}
States Len States Len States Len States Len

ϕ1 79 25 134 114 135 114 134 114
ϕ2 108 118 134 142 135 142 134 142

ϕ1 � ϕ2 81 94 134 142 135 142 134 142
ϕ2 � ϕ1 114 113 134 114 135 114 134 114

In addition, we performed sanity checks. We applied AMC with the three
different initializations on S2 and S3, and checked that we indeed obtained
automata with 136 and 529 states, respectively. It should be commented that
the deliberate change that was made to the original systems of S2 and S3 has
resulted in no change in the number of states (in the minimal representation) of
these systems.

Observing the tables, we see that performing BBC, i.e., learning a model from
scratch, was 2.2 to 100 times slower than AMC. In addition, BBC has in some
cases learned a model that is less than half of the actual states of the minimal
automaton that faithfully represents the system (after the modification), while
AMC was able to generate a representation that is less than 50 states short.
It turned out that for the smaller system, S3, BBC has done a better job in
learning a model than for S2. This means that it got a model with number of
states closer to the actual minimal representation of the system.

We also see that the counterexample for BBC is shorter than that of AMC.
This is not surprising, as BBC is ‘zooming into’ an error by considering incremen-
tally growing automata for representing the system, while AMC is attempting
to obtain a close enough representation first.

We comment that the implementation was done using SML, which takes
about 20 megabytes for keeping its internal runtime structures. SML performs
garbage collection phases during the execution, which slightly affects the running
time and memory usage.

Adaptive Model Checking 369

Improving the Prototype

Note that there is no guarantee that the adaptive model checking will zoom
into a correct model by performing the learning algorithm. After the learning
algorithm terminates, it is still possible that discrepancies exist, and to detect
them we need to apply the black box testing part and then resume the learning.
Of course, it is beneficial to avoid the testing part, in particular for relatively
large models, as much as possible. For that, we may enhance the learning part
with various heuristics. For example, we start AMC in Section 3 assuming that
the actual structure of S would resemble a model M immediately after resetting
S. This does not need to be the case. Thus, we may look for behaviors that
match or resemble the set of runs T of a spanning tree of the model M from
other points in the execution of S. For example, we may augment the learning
algorithm by looking forward two or three inputs from every given state, and
try to pattern match that behavior with that of set of runs T .

The Vasilevskii-Chow algorithm, used to compare the system with a model, is
a bottleneck in our approach. In the limit, when there is no error, the algorithm
is exponential in the difference between the conjectured size of the system and
its actual size.

We apply the following heuristic improvement. The most wasteful part of
the algorithm is manifested when arbitrary sequences of inputs over the input
alphabet Σ (of length n−m + 1) are required by the algorithm. We generate
a smaller set of sequences as follows. Given some information about the inputs,
we calculate a partial state and carry the updating of the current state with the
generation of the sequence. For example, if we know that some of the inputs
correspond to message passing, we may include with each partial state a counter
for each message queue. Such a counter will be set to zero in the initial state
and will increment or decrement according to the corresponding send and receive
events, respectively. Thus, from a current state where a counter that corresponds
to some queue is zero, we do not allow an input that corresponds to a receive
event.

5 Discussion

Our adaptive model checking approach is applicable for models that are inac-
curate (but not completely irrelevant). When a principle change is made, the
approach will still work, but the time to update the model may be substantial.
In some pathological cases, simple changes can also lead to a substantial update
effort. In particular, the following change to a system provides a ‘worst case’
example: The system functionality is not being changed, except for adding some
security code that needs to be input before operating it.

The main problem we have dealt with is the ability to update the model
according to the actual system, while performing full LTL model checking. While
the changes learned may not fully reflect corresponding changes in the actual
system S, the obtained model may still be useful for verification.

370 A. Groce, D. Peled, and M. Yannakakis

We have compared two approaches: one of abandoning the existing model in
favor of learning a finite state representation of the system S from scratch (BBC).
The other one is using the current model to guide the learning of the potentially
modified system (AMC). We argue that there are merits to both approaches.
The BBC approach can be useful when there is a short error trace that identifies
why the checked property does not work. In this case, it is possible that the BBC
approach will discover the error after learning only a short proposed model. The
AMC approach is useful when the modification of the system is simple or when
it may have a very limited affect on the correctness of the property checked.

References

1. D. Angluin, Learning Regular Sets from Queries and Counterexamples, Informa-
tion and Computation, 75, 87–106 (1978).

2. G. Birtwistle, F. Moller, Ch. Tofts, The verification of a COMA cache coherence
protocol, IEEE Workshop on Formal Methods in Software Practice (FMSP’96).

3. T. S. Chow, Testing software design modeled by finite-state machines, IEEE trans-
actions on software engineering, SE-4, 3, 1978, 178–187.

4. E. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith, Counterexample-guided
abstraction refinement, CAV 2000, 154–169.

5. R. Cleaveland, J. Parrow, B. Steffen, The Concurrency Workbench: a semantic-
based tool for the verification of concurrent systems, TOPLAS 15(1993), 36–72.

6. Courcoubetis, C., Vardi, M.Y., Wolper, P., Yannakakis, M., Memory efficient
algorithms for the verification of temporal properties, Formal Methods in System
Design 1(1992), pp. 275–288.

7. J.E. Hopcroft, An n log n algorithm for minimizing the states in finite automata,
The theory of Machines and Computation, Academic Press, New York, 189–196,
1971.

8. D. Lee, M. Yannakakis, Principles and methods of testing finite state machines -
a survey, Proceedings of the IEEE, 84(8), 1090–1126, 1996.

9. D. Peled, M. Y. Vardi, M. Yannakakis, Black Box Checking, Black Box Checking,
FORTE/PSTV 1999, Beijing, China.

10. M. P. Vasilevskii, Failure diagnosis of automata, Kibertetika, no 4, 1973, 98–108.

	Adaptive Model Checking
	Introduction
	Preliminaries
	A Model and a System
	Angluin’s Learning Algorithm
	Spanning Trees
	Separating Sequences
	Black Box Testing

	Adaptive Verification
	An Implementation
	Experimental Results

	Discussion
	References

