
Exploring Very Large State Spaces Using
Genetic Algorithms

Patrice Godefroid1 and Sarfraz Khurshid2

1 Bell Laboratories, Lucent Technologies, god@bell-labs.com
2 Laboratory for Computer Science, Massachusetts Institute of Technology,

khurshid@lcs.mit.edu

Abstract. We present a novel framework for exploring very large
state spaces of concurrent reactive systems. Our framework exploits
application-independent heuristics using genetic algorithms to guide a
state-space search towards error states. We have implemented this frame-
work in conjunction with VeriSoft, a tool for exploring the state spaces
of software applications composed of several concurrent processes exe-
cuting arbitrary code. We present experimental results obtained with
several examples of programs, including a C implementation of a public-
key authentication protocol. We discuss heuristics and properties of state
spaces that help a genetic search detect deadlocks and assertion viola-
tions. For finding errors in very large state spaces, our experiments show
that a genetic search using simple heuristics can significantly outperform
random and systematic searches.

1 Introduction

Model checking [4] is an automatic technique for verifying finite-state concur-
rent systems. The state space of a concurrent system is a directed graph that
represents the combined behavior of all the concurrent components in the sys-
tem. Model checking typically involves exhaustively searching the state space
of a system to determine whether some property of the system is satisfied or
not. State-space exploration techniques have been used successfully to detect
subtle yet important errors in the design and implementation of several complex
hardware and software concurrent reactive systems (e.g., see [19, 3, 1, 9]). It is
worth noting that the main practical interest of systematic state-space explo-
ration (and of “verification” in general) is to find errors that would be hard to
detect and reproduce otherwise.

The main practical limitation when model checking real systems is dealing
with the so-called state-explosion problem: the number of states contained in the
state space of large complex systems can be huge, even infinite, thereby mak-
ing exhaustive state-space exploration intractable. Several approaches have been
proposed to address the state-explosion problem, including symbolic verification,
partial-order methods and symmetry methods. Although these approaches have
increased the scope of model checking to state spaces that are several orders of

J.-P. Katoen and P. Stevens (Eds.): TACAS 2002, LNCS 2280, pp. 266–280, 2002.
c© Springer-Verlag Berlin Heidelberg 2002



Exploring Very Large State Spaces Using Genetic Algorithms 267

magnitude larger, many realistic state spaces are still too large to be handled,
and state explosion remains a fundamental problem in model checking.

When a problem is computationally too hard to solve using an exact and
complete algorithm, it is common in computer science to explore the use of
heuristics in order to find approximate solutions to the problem, or to converge
faster towards some solutions. Maybe surprisingly, the idea of exploiting heuris-
tics for model checking has received very little attention so far. This may be
due to two reasons. First, model checking is not an optimization problem: the
primary goal is not to find a best solution (e.g., the shortest path leading to
some state), it is to find any solution (e.g., any reachable error state). Second,
the historic emphasis in model checking has been on completeness: the primary
goal is to exhaustively check every reachable state of the system.

In this paper, we explore the use of genetic algorithms [11] for exploring
very large state spaces in search for error states. Genetic algorithms are search
algorithms inspired by the mechanics of genetics and natural selection. These
search algorithms combine survival of the fittest among chromosome-like string
structures with a structured yet randomized information exchange. Genetic al-
gorithms are often viewed as function optimizers, although the range of problems
they have been applied to is quite broad [18].

We present a framework that uses genetic algorithms to exploit heuristics
for guiding a search in the state space of a concurrent reactive system towards
errors like deadlocks and assertion violations. At each visited state during a
state-space exploration, the genetic algorithm decides which transition to ex-
plore next when there are more than one enabled outgoing transitions. We have
implemented this framework in conjunction with VeriSoft [8], an existing tool
for exploring the state spaces of systems composed of several concurrent soft-
ware processes executing arbitrary code. We present experimental results ob-
tained with several examples of programs, including a C implementation of a
public-key authentication protocol. From these experiments, we discuss general
properties of state spaces that seem to help a genetic search find errors quickly.
When the state space to be explored is very large, our experiments show that a
genetic search using simple application-independent heuristics can significantly
outperform random and systematic searches.

The rest of the paper is organized as follows. In Section 2, we recall the
basic principles of genetic algorithms. Section 3 describes our framework and
the genetic algorithms we use. We discuss how to modify a model checker to let
its search be guided by a genetic algorithm. In Section 4, we describe several
programs and properties we have analyzed using our implementation. We then
discuss results of experiments, and study the influence of various parameters on
the effectiveness of a genetic search. In Section 5 we present concluding remarks
and discuss related work.



268 P. Godefroid and S. Khurshid

11 0 0 0 1 0 110 0 0

0 0 10 0 00 1111 0

parent: a parent: b

offspring: c offspring: d

crossover:

0 1111 10 1111 0

offspring: c offspring: c’

mutation:

Fig. 1. Illustration of crossover and mutation operators. Candidate solutions are en-
coded as strings of bits. Parents a and b are recombined to produce offsprings c and
d: a crossover is performed at the 4th bit, i.e., the tails of both parents are swapped
starting from the 4th bit. Offspring c is then mutated to produce c′: a mutation is
performed at the 3rd bit, i.e., the value of the 3rd bit is flipped.

2 Genetic Algorithms

A genetic algorithm provides an algorithmic framework for exploiting heuristics
that simulates natural-evolution processes like selection and mutation. It evolves
candidate solutions to problems that have large solution spaces and are not
amenable to exhaustive search or traditional optimization techniques. Genetic
algorithms have been applied to a broad range of learning and optimization
problems [18] since their inception by Holland [11].

Typically, a genetic algorithm starts with a random population of encoded
candidate solutions, called chromosomes. Through a recombination process and
mutation operators, it evolves the population towards an optimal solution. Gen-
erating an optimal solution is not guaranteed and the challenge is thus to design
a “genetic” process that maximizes the likelihood of generating such a solution.
The first step is typically to evaluate the fitness of each candidate solution in the
current population, and to select the fittest candidate solutions to act as parents
of the next generation of candidate solutions. After being selected for reproduc-
tion, parents are recombined (using a crossover operator) and mutated (using a
mutation operator) to generate offsprings (see Figure 1 for a description of these
operators). The fittest parents and the new offsprings form a new population,
from which the process is repeated to create new populations. Figure 2 gives a
standard genetic algorithm in pseudocode.

To illustrate an iteration of a genetic algorithm, consider the boolean satis-
fiability problem. Assume that we want to find a satisfying assignment to the
following boolean formula: (x1∨x2∨¬x3)∧(x2∨x3∨x4)∧(¬x2∨x5∨¬x6)∧(¬x4∨
¬x5∨¬x6)∧(x3∨¬x5∨¬x6)∧(x3∨x4∨x5). Let’s say we have two (randomly gen-
erated) candidate solutions, a : {x1 = 1, x2 = 1, x3 = 0, x4 = 0, x5 = 0, x6 = 1}
and b : {x1 = 0, x2 = 0, x3 = 0, x4 = 0, x5 = 1, x6 = 1}. If we evaluate the for-
mula on a, we see that clauses 3 and 6 are false, whereas evaluating the formula
on b makes clauses 2 and 5 false. Both a and b are not satisfying assignments.
We now recombine a and b to produce an offspring c : {x1 = 1, x2 = 1, x3 =
0, x4 = 0, x5 = 1, x6 = 1}, which takes the first three variable assignments from
a and the last three from b. Offspring c does not define a satisfying assignment



Exploring Very Large State Spaces Using Genetic Algorithms 269

Fig. 2. Pseudocode for a standard genetic algorithm

either since it makes clause 5 false. However, if we mutate the value c assigns to
x3 to produce d : {x1 = 1, x2 = 1, x3 = 1, x4 = 0, x5 = 1, x6 = 1}, we see that d
does provide a satisfying assignment to our boolean formula.

The operations of evaluation, selection, recombination and mutation are usu-
ally performed many times in a genetic algorithm. Selection, recombination, and
mutation are generic operations in any genetic algorithm and have been thor-
oughly investigated in the literature. On the other hand, evaluation is problem
specific and relates directly to the structure of the solutions (i.e., how candidate
solutions are encoded as chromosomes and relate to each other). Therefore, in a
genetic algorithm, a major issue is the choice of the structure of solutions and of
the method of evaluation (fitness function). Other parameters include the size
of the population, the portion of the population taking part in recombination,
and the mutation rate. The mutation rate defines the probability with which a
bit is flipped in a chromosome that is produced by a crossover.

3 Genetic Algorithms for State-Space Exploration

In this section, we discuss how genetic algorithms can be used to guide a search
in the state space of a concurrent reactive system.

3.1 Combining Genetic Algorithms and Model Checking

In our context, the search space to be explored is the (possibly inifinite) state
space of the system. For simplicity and without loss of generality, we assume that
the state space has a unique initial state. Candidate solutions are finite sequences
of transitions in the state space starting from the initial state. Each candidate
solution is encoded by a chromosome, i.e., a finite string of bits. Figure 3 shows
a simple example of encoding. How to encode finite paths in a graph using
chromosomes is discussed in details below.

To evaluate the fitness of a chromosome, the genetic algorithm executes the
path encoded by the chromosome. This is done by combining the genetic al-
gorithm with a model checker. Given a representation of a system, the model



270 P. Godefroid and S. Khurshid

Fig. 3. Example encoding. Assume a state space with fixed branching (of 4) and fixed
depth (of 4); 8 bits are used to represent a chromosome. The chromosome ‘10 01 00 11’
encodes the path that visits the filled states (following the bold edges) in state space.

checker determines the state space to explore. The execution of a path starts in
the initial state. If there are more than one possible transitions from the cur-
rent state, the model checker informs the genetic algorithm about the number
of possibilities. The genetic algorithm decodes a part of the chromosome it is
currently processing and informs the model checker of which transition to take.
The model checker then checks whether the state following that transition is an
error state. If so, the current path is saved and the user is notified. Otherwise,
the model checker repeats this process from the new state.

Since a chromosome can only encode a finite number of transitions, the state
space is explored up to a fixed depth. Whenever the model checker has explored
a path up to this maximum depth, it prompts the genetic algorithm to evalu-
ate the fitness of the current chromosome. This operation is discussed further
below. Once the fitness of the current chromosome has been computed, another
chromosome of the current population is evaluated using the same process.

3.2 Genetic Encoding

We now discuss a novel chromosome-encoding scheme that can be applied to ar-
bitrary state spaces. Indeed, the simple encoding technique described in Figure 3
is not satisfactory for several reasons.

First, the number of enabled transitions in a state is typically not constant.
Moreover, an upper bound on the number of enabled transitions in a state may
not be known a priori1. Therefore, a practical encoding cannot use a fixed num-
ber of bits to encode a single transition. We resolve this issue by dynamically
interpreting a chromosome: if there are n enabled transitions from the current
state being processed during the state-space search, we read the next log(n) bits
from the current chromosome to decide which next transition to explore.

Second, the number of enabled transitions in a state is not necessarily a power
of 2. This means that we may have to deal with spurious encodings: encodings
that fall outside the desired interval of values. The traditional approach [10]
to deal with this issue is to map the decoded integer linearly into the desired
interval. This approach, however, typically introduces bias toward some values
1 We assume that the number of enabled transitions in any given state is finite, and
hence that such a bound exists.



Exploring Very Large State Spaces Using Genetic Algorithms 271

in the desired interval. Therefore, we deal with spurious encodings by updating
such chromosomes instead: if there are n enabled transitions from the current
state and the next log(n) bits of the current chromosome decode to a value
greater than or equal to n, we randomly generate a number between 0 and n−1
and replace the last log(n) bits read of the chromosome by the binary encoding
of this number. Note that our procedure for updating chromosome bits in this
case is necessary to avoid multiple fitness evaluations of the same chromosome
to evaluate to different values.

Third, a suitable length (i.e., number of bits) for chromosomes cannot be
determined in advance. Since a chromosome can only encode a finite number
of transitions, the model checker only explores paths up to a fixed depth. For a
maximum depth d, we use sufficiently long chromosomes so that they can encode
any path of length up to d, and we track the effective length of chromosomes. The
effective length at any point during a genetic evolution is the maximum number
of bits that have been read from any single chromosome up to that point in
the search. Mutations and crossovers are performed only on initial segments of
chromosomes up to the (current) effective length.

3.3 Fitness Function

An important parameter of a genetic algorithm is the fitness function that defines
the fitness of each chromosome. We consider in this work two classes of errors
that we wish to detect in state spaces: deadlocks and assertion violations. Dead-
locks are states with no outgoing transitions (all the processes in the system are
blocked). Assertions are boolean expressions involving program variables that
are said to be violated when the corresponding boolean expression evaluates to
false. We now discuss heuristics for guiding a genetic search towards both classes
of error states.

For deadlock detection, a simple heuristic to measure the fitness of a chro-
mosome is to sum the number of enabled transitions at each state along the exe-
cution path represented by the chromosome. The intuition behind this heuristic
is that chromosomes with a smaller sum seem more likely to lead to deadlocks,
and should therefore be considered fitter.

For detecting assertion violations, a possible heuristic is to attempt maxi-
mizing assertion evaluations. To achieve this, one can award bonus scores for
chromosomes that lead to as many as possible assertion evaluations. One can
also award bonuses to chromosomes that make choices leading towards assertion
statements at control points in the control flow graph of the program; this can be
done by instrumenting the execution of tests (such as “if-then-else” statements)
in the program using a static analysis of the program text.

When analyzing protocols with message exchanges, a sensible heuristic is
to attempt maximizing the number of messages being exchanged. We use this
simple heuristic in the analysis of Needham-Schroeder public key authentication
protocol [15] and identify a (previously known [14]) attack on the protocol (see
Section 4 for details).



272 P. Godefroid and S. Khurshid

Note that our framework can be used to discover multiple (independent)
errors of a same type in a system without requiring to fix previously detected
errors. This can be done by awarding penalty scores to chromosomes that lead
to states where a previously discovered error is detected. Application-specific
heuristics can also be used in our framework to fine tune the performance of the
genetic algorithm if needed.

3.4 Dynamically Adapting Parameters

The genetic algorithm we use in this work is a slight variation of the pseudocode
in Figure 2 where the value of some parameters are adapted as the genetic evo-
lution progresses. In particular, we keep track of the best and worst chromosome
fitness in each generation, and, if both fitness values become equal, we increase
the mutation rate, in order to help the genetic evolution get out of local maxi-
mas. Once there is an improvement in the overall fitness, we restore the original
mutation rate to continue evolution as normal.

As mentioned in Section 3.2, we also update the effective length of chromo-
somes during evolution.

If evolution stabilizes (i.e., the fitness does not seem to improve for several
generations) and the search does not find any error, we re-start the genetic algo-
rithm with the initial default parameter values and a new randomly generated
seed to generate a new random initial population. This reduces any bias that
may have been introduced in a previous run that used a “bad” seed.

4 Experimental Evaluation

We have implemented the framework presented in the previous section in con-
junction with VeriSoft [8], a tool that implements model-checking algorithms for
exploring the state spaces of systems composed of several concurrent software
processes executing arbitrary code written in full-fledged programming languages
such as C or C++. We report in this section results of experiments comparing
the performances of four state-space search algorithms:

· GA is the genetic algorithm described in the previous section;
· GAM is GA with no crossovers (only mutations);
· RAND is a “random search” that explores random paths in a state space;

and
· EXH is a search algorithm that systematically explores the state space up

to some fixed depth2, and attempts to explore it exhaustively.

The purpose of these experiments is also to identify heuristics and properties of
state spaces that help a genetic search detect deadlocks and assertion violations.
2 Note that, in general, the depth of the state space of a software system composed
of processes executing arbitrary C or C++ code may not be bounded, making the
state space infinite and a fully exhaustive search impossible.



Exploring Very Large State Spaces Using Genetic Algorithms 273

4.1 Examples of Programs and Properties

We report experiments performed with two sample C programs.

Dining philosophers. Consider the following variant of the well-known dining-
philosophers problem:

while (true) {
think;
nondeterministically
pick left-fork; pick right-fork;
OR
pick right-fork; pick left-fork;

eat;
drop left-fork; drop right-fork; }

The above pseudocode describes a philosopher process. A philosopher starts by
thinking, which then makes him hungry at which point he nondeterministically
decides to either pick his left fork followed by his right fork, or to pick his
right fork followed by his left fork. Once a philosopher has both forks adjacent
to him in his hands, he eats. Finally, he drops first the left fork and then the
right fork back onto the table, and repeats this process indefinitely. Since several
philosophers are sitting around the same table and hence sharing one fork with
each of their two adjacent neighbors, they compete for forks with each other.
For instance, if all philosophers around the table have picked their left fork, the
entire system is then in a deadlock.

We denote by PHIL a C implementation of the above system with 17 philoso-
phers. We arbitrarily choose this large number of processes so that it is not pos-
sible to explore the state space of the system exhaustively within a reasonable
amount of time. Nondeterminism is simulated using the system call VS toss
supported by VeriSoft (see [8]). In what follows, we compare the effectiveness of
various search algorithms to find deadlocks in this system.

Needham-Schroeder protocol. The Needham-Schroeder public-key authen-
tication protocol [15] aims at providing mutual authentication, so that two par-
ties can verify each other’s identity before engaging in a transaction. The protocol
involves a sequence of message exchanges between an initiator, a responder, and
a mutually-trusted key server. The exact details of the protocol are not neces-
sary for the discussion that follows and we omit these here. An attack against
the original protocol involving six message exchanges was reported in [14]: an
intruder Carol is able to impersonate an initiator Alice to set up a false session
with responder Bob, while Bob thinks he is talking to Alice.

We denote by AUTH a C implementation3 of the Needham-Schroeder pro-
tocol. This implementation is described by about 500 lines of C code and is
much more detailed than the protocol description analyzed in [14]. The C code
also contains an assertion that is violated whenever an attack to the protocol
3 John Havlicek provided us this implementation.



274 P. Godefroid and S. Khurshid

Table 1. Genetic search versus random and exhaustive search

error #errors runtime average time depth

found? #runs (hrs) to find error searched

GA yes 26/50 1:16:21 2 min 57 sec 65
PHIL RAND no 0/1 8:00:00 - 65

EXH no 0/1 8:00:00 - 34
GA yes 3/100 2:33:24 51 min 8 sec 110

AUTH RAND no 0/1 8:00:00 - 110
EXH no 0/1 8:00:00 - 45

occurs. We compare below the effectiveness of various search algorithms to find
assertion violations representing attacks to this implementation of the protocol.

4.2 Experimental Results

In the experiments that follow, whenever a genetic search is applied to PHIL to
detect deadlocks, the heuristic (fitness function) used is to minimize the sum of
enabled transitions along a single execution path. In contrast, whenever a genetic
search is applied to AUTH to detect protocol attacks, the heuristic used in the
experiments below is to maximize the number of messages exchanged among
parties involved in the protocol along a single execution path. All experiments
were performed on a Pentium III 700 MHz processor with 256 MB of RAM.

The genetic parameters we use are as follows. The population size is set
to 200 chromosomes. The best 100 chromosomes in a generation reproduce. The
default mutation rate is 200, i.e., each bit of a chromosome that is produced by a
crossover is flipped with probability 1/200. The effective length of chromosomes
varies between 70 and 320 bits.

Genetic Search versus Random and Exhaustive Searches. We compare
the performance of the search algorithms GA, RAND and EXH for analyzing
PHIL and AUTH. For GA and RAND, we limit the depth of the search to
paths of length about twice the length of the shortest path that leads to an error.
(We discuss this choice later in this section.) For EXH, we limit the search depth
to about the length of the shortest path that leads to an error (with the hope of
helping EXH as much as possible).

Table 1 summarizes our results. For PHIL, we run GA 50 times (each run
starts with a randomly-generated seed), and let it evolve for 50 generations
in each run. More than 50% of the runs identify a deadlock. In contrast, both
RAND and EXH are unable to find a deadlock in 8 hours of search. For AUTH,
we run GA 100 times (each run uses a randomly-generated seed), and let it
evolve for 100 generations in each run. Only 3 runs identify an attack on the
C implementation of the Needham-Schroeder protocol. Again, both RAND and
EXH are unable to find an attack in 8 hours.

Despite that GA is able to find an attack in AUTH, its performance is worse
than when analyzing PHIL. This may be due to our choices of fitness functions:



Exploring Very Large State Spaces Using Genetic Algorithms 275

550

600

650

700

750

800

0 5 10 15 20 25

f
i
t
n
e
s
s

generation

"max.dat"
"ave.dat"

Fig. 4. GA deadlock-detection performance. The maximum and average fitness among
the parent chromosomes in a generation is plotted against the generation number.

the heuristic for finding deadlocks may be a better measure of fitness, than the
simple heuristic of maximizing message exchanges used when exploring the state
space of AUTH. We chose to use and evaluate these particular heuristics in our
experiments because they are application-independent and hence can be used to
analyze other applications.

Figure 4 illustrates a run of GA on PHIL. Typically, a genetic algorithm
makes quick progress in the beginning stages of evolution. Then, there are phases
when it hits local maximas before mutations further improve its performance.
Notice how the average fitness of the parents steadily increases. This indicates
that the genetic operators are effective in maximizing fitness while exploring the
state space. It should not come as a surprise that the maximum (average) fitness
among parents never decreases since we are using the so-called elitist model, in
which the best chromosomes always survive to the next generation.

Search Deeper. We now investigate how the effectiveness of a genetic search
varies as we increase the maximum depth of the search. In these experiments, we
consider a simplified version of AUTH where the first two message exchanges
from a known attack (involving a path of 42 steps in the state space) are hard-
wired into the search algorithm and the algorithm needs only to find the last 4
message exchanges necessary to complete the attack. We call this simpler prob-
lem AUTH2, and use it in the experiments below in order to amplify differences
between results we observe.

Table 2 tabulates our results. We run GA on PHIL for 50 generations. We
compare the results of 20 runs using each of the depths 34, 51 and 68, where
34 is the minimum depth required to find a deadlock in PHIL. When using
depths 34 and 51, GA is unable to detect a deadlock, whereas when we increase
the depth to 68, 14 out of 20 runs detect a deadlock. When exploring the state
space of AUTH2 using a depth of 42, GA is unable to find an attack in 20 tries,
whereas when we increase the depth to 60, GA finds an attack 6 times.



276 P. Godefroid and S. Khurshid

Table 2. GA performance as maximum search depth changes

error #errors runtime average time depth

found? #runs (hrs) to find error searched

no 0/20 0:25:33 - 34
PHIL no 0/20 0:30:01 - 51

yes 14/20 0:33:44 2 min 24 sec 68
AUTH2 no 0/20 0:33:47 - 42

yes 6/20 0:28:31 4 min 45 sec 60

Table 3. Genetic search with (GA) and without (GAM ) crossover operator

error #errors runtime average time depth

found? #runs (hrs) to find error searched

PHIL GA yes 26/50 1:16:21 2 min 57 sec 65
GAM yes 26/50 0:59:16 2 min 16 sec 65

AUTH2 GA yes 16/50 1:11:18 4 min 27 sec 60
GAM yes 3/50 1:27:07 29 min 2 sec 60

The reason why a deeper maximum search depth can actually help a genetic
search may be the following. From most reachable states in the state spaces of
PHIL and AUTH, there exists a path that leads to an error state. Chromosomes
that encode “bad” initial segments are therefore not necessarily penalized since
their tails may contain a path that leads to an error state and are sufficient to
detect the error. If the exploration was limited to the minimum depth necessary
to find an error, chromosomes that encoded the “wrong” first moves would have
a very low probability of producing an offspring that corrects these first moves.

On the other hand, increasing the depth of the search should be done with
caution since it obviously increases the search space and hence the length of
chromosomes, which in turn leads to slower genetic operations and convergence
of the algorithm.

Mutation Alone. Here, we investigate the effectiveness of the crossover oper-
ator by comparing the performance of GA and GAM , i.e., GA without crossover
operations, when exploring the state spaces of PHIL and AUTH2. The same
parameter values are used for both GA and GAM .

Table 3 summarizes our results. The performances of GA and GAM are
comparable on PHIL: both algorithms find the deadlock 26 times out of 50
runs. This may be explained as follows. A deadlock in PHIL results from a set
of choices made by the philosophers, namely that they all choose to pick their
left forks or they all choose to pick their right forks. In particular, it does not
matter in which order the philosophers pick their forks; what matters is which
fork they pick. Mutations alone seem effective in finding a deadlock since each



Exploring Very Large State Spaces Using Genetic Algorithms 277

Table 4. GA performance with and without partial-order reduction

error #errors runtime average time depth

found? #runs (hrs) to find error searched

PHIL yes 26/50 1:16:21 2 min 57 sec 65
PHILPO yes 5/50 1:07:32 13 min 30 sec 65
AUTH2 yes 16/50 1:11:18 4 min 27 sec 60
AUTHPO

2 yes 1/50 1:24:34 1 hr 24 min 34 sec 60

mutation alters some philosopher’s choice and once the right set of choices is
attained, a deadlock is reached.

In contrast, GA is more effective than GAM in finding an attack on AUTH2.
An attack on the protocol is formed by a specific sequence of message exchanges
that allows intrusion: the messages have to be exchanged in a precise order,
simply finding the exact set of messages involved in the attack is not sufficient.
Since crossovers combine and preserve sub-sequences (of messages in this case),
their effect in converging quickly toward a solution becomes more important.

Therefore, it seems preferable to use GA over GAM when exploring arbitrary
state spaces, since GA is effective irrespective of the search being for a set or a
sequence of transitions.

Partial-Order Reduction. Finally, we investigate how the use of partial-order
reduction techniques (e.g., see [7]) affects the performance of a genetic search.
Roughly speaking, partial-order reduction algorithms can dynamically prune
the state space of a concurrent system in a completely reliable way (i.e., with-
out missing any errors) by taking advantage of independent (i.e., commutative)
actions executed by concurrent processes, hence avoiding to consider all their
interleavings during a state-space exploration. The pruned state space defined
with partial-order algorithms is thus a subset of the full state space. In the
following experiments, we consider a partial-order reduction algorithm using a
combination of the persistent-set and sleep-set techniques as implemented in
VeriSoft (see [8]). Let PHILPO and AUTHPO

2 denote the reduced state spaces
of PHIL and AUTH2, respectively, that are explored when partial-order reduc-
tion is used.

Results of experiments are tabulated in Table 4. When exploring PHILPO,
GA detects a deadlock only 5 times out of 50 runs. Recall that GA detected
a deadlock 26 times during a same number of runs when exploring PHIL. A
similar decrease in performance is observed when GA explores AUTHPO

2 .
A possible explanation for this phenomenon is the following. In the reduced

state space resulting from partial-order reduction, most reachable states have
few outgoing transitions that can be selected to be explored next (thanks to
the pruning). Hence, the set of actions corresponding to a set of possible next
transitions can vary a lot from state to state. This means that selecting tran-
sition number i in a state s may result in executing a program action totally
different from the action executed when selecting transition i in another state



278 P. Godefroid and S. Khurshid

s′. In other words, same transition choices made in different context may yield
totally different program actions, especially when using partial-order reduction.
After a crossover or mutation operation, the tail of each resulting chromosome
may be interpreted in an entirely different context, which harms the beneficial
effect of these operators.

5 Conclusion and Related Work

We have shown in this paper that, when exploring very large state spaces
of concurrent reactive systems, genetic algorithms using simple application-
independent heuristics can significantly outperform traditional random and sys-
tematic state-space searches used in current model checkers. We have discussed
in detail the engineering challenges faced when extending a model checker with
a genetic search algorithm. We believe the use of heuristics in model checking
could contribute to broadening its applicability by several additional orders of
magnitude. Further experiments and studies are needed to validate this claim.

As mentioned in the introduction, genetic algorithms have already been used
for a broad range of applications. In particular, genetic algorithms have been
used to perform structural and functional testing of sequential programs. For
instance, Pargas et al. [16] present a goal-oriented technique for automatic test-
data generation using a genetic algorithm guided by program control depen-
dencies; their implementation aims at achieving statement and branch coverage.
Jones et al. [12] use genetic algorithms to generate test sets that satisfy the re-
quirements for test-data-set adequacy of structural testing. More recently, Bueno
et al. [2] build upon [12] and present a tool for the automation of both test-
data generation and infeasible-path identification. In [13], a framework using
genetic algorithms is developed for testing methods manipulating complicated
data structures; this framework was successfully applied to identify several flaws
in a naming architecture for dynamic networks of devices and computers.

In contrast with all this previous work, the problem addressed in this paper
is the exploration of (very large) state spaces of concurrent reactive systems
as defined with a model checker. This requires the use of original chromosome
encodings and fitness functions suitable for the application domain considered
here. We are not aware of any other work where genetic algorithms have been
used for state-space exploration.

Heuristics for choosing a search order that favor visiting first successor states
that are most likely to lead to an error (“best-first search”) are discussed in [21]
in the context of symbolic model checking and in [5] in the context of explicit
model checking. It is worth noting that a best-first search (BFS) can be viewed
as a particular case of genetic search (GS). Indeed, the latter can simulate the
former as follows: GS uses the same fitness function as that of BFS; crossover
and mutation rates are set to 0; the effective length of chromosomes is set to n
where n is the current generation; only a single best chromosome in a generation
produces the next generation; the number of offsprings produced by this unique
parent is the number of outgoing transitions at the last state visited by the par-
ent and each offspring contains the entire parent path plus one more (unique)
transition. Backtracking strategies (breadth-first, depth-first, etc.) that can be



Exploring Very Large State Spaces Using Genetic Algorithms 279

used in conjunction with BFS can also be simulated by dynamically adapting
parameters of GS and appropriately defining the creation of next generation.
In contrast, a best-first search cannot simulate a genetic search in general since
its “fitness function” is restricted to local heuristics based on the current state
and next possible transitions, and hence lacks the ability to simulate the global
evaluation of an entire chromosome. Intuitively, a best-first search is also more
“deterministic” than a genetic search since it is less general and does not include
randomized operations like crossovers and mutations, which improve robustness
with respect to sub-optimal fitness functions by helping the search avoid being
trapped in local maxima. Further studies are needed to determine which pa-
rameter values of a genetic search (including BFS) are best suited for analyzing
specific classes of programs and properties.

Heuristics for over and under approximating BDD representations when these
become too large or for finding pseudo-optimal BDD-variable orderings are also
commonly used in symbolic verification. Such heuristics tackle different problems
related to model checking and are of different nature than the ones used here.

The issue of changing parameter values during the run of a genetic algorithm
is an active area of research in genetic algorithms. A recent survey is given in [6].
The “1/5 rule” of Rechenberg [17] constitutes a classical adaptive method for
setting the mutation rate. This rule states that the ratio of mutations in which
the offspring is fitter than the parent, to all mutations should be 1/5, hence if
the ratio is greater than 1/5, the mutation rate is increased, and if the ratio is
less than 1/5, the mutation rate is decreased.

The “Dynamic Parameter Encoding” [20] (DPE) algorithm provides the abil-
ity to encode real-valued parameters of arbitrary precision. DPE first searches
for optimal values of more significant digits of the parameters. Next it fixes the
values discovered and progressively searches for lesser significant digits. This way
the same fixed length chromosome encodes different digits of parameters at dif-
ferent points during the algorithm execution. Notice that DPE requires a priori
knowledge of an upper bound on parameter values.

Our dynamic encoding of paths in a state space is novel to the best of our
knowledge; it does not require a priori knowledge of the maximum number of
enabled transitions in any given state of a state space.

Acknowledgments. We thank John Havlicek for sharing with us his imple-
mentation of the Needham-Schroeder protocol. We also thank Darko Marinov
and Audris Mockus for helpful comments on this paper, and Enoch Peserico for
inspiring discussions on genetic algorithms. The work of the second author was
done partly while visiting Bell Laboratories and was also funded in part by ITR
grant #0086154 from the National Science Foundation.

References

1. B. Boigelot and P. Godefroid. Model checking in practice: An analysis of the
ACCESS.bus protocol using SPIN. In Proceedings of Formal Methods Europe’96,
volume 1051 of Lecture Notes in Computer Science, pages 465–478, Oxford, March
1996. Springer-Verlag.



280 P. Godefroid and S. Khurshid

2. Paul Marcos Siqueira Bueno and Mario Jino. Identification of potentially infeasi-
ble program paths by monitoring the search for test data. In Proceedings of the
15th IEEE International Conference on Automated Software Engineering (ASE),
Grenoble, France, September 2000.

3. E. M. Clarke, O. Grumberg, H. Hiraishi, S. Jha, D. E. Long, K. L. McMillan, and
L. A. Ness. Verification of the Futurebus+ cache coherence protocol. In Proceed-
ings of the Eleventh International Symposium on Computer Hardware Description
Languages and Their Apllications. North-Holland, 1993.

4. Edmund M. Clarke, Orna Grumberg, and Doron A. Peled. Model Checking. The
MIT Press, Cambridge, MA, 1999.

5. S. Edelkamp, A. L. Lafuente, and S. Leue. Directed explicit model checking with
hsf-spin. In Proceedings of the 2001 SPIN Workshop, volume 2057 of Lecture Notes
in Computer Science, pages 57–79. Springer-Verlag, 2001.

6. A. E. Eiben, R. Hinterding, and Z. Michalewicz. Parameter control in evolutionary
algorithms. IEEE Transactions on Evolutionary Computation, 3(2):124–141, 1999.

7. Patrice Godefroid. Partial-Order Methods for the Verification of Concurrent Sys-
tems – An Approach to the State-Explosion Problem, volume 1032 of Lecture Notes
in Computer Science. Springer-Verlag, January 1996.

8. Patrice Godefroid. Model checking for programming languages using VeriSoft. In
Proceedings of the 24th Annual ACM Symposium on the Principles of Programming
Languages (POPL), pages 174–186, Paris, France, January 1997.

9. Patrice Godefroid, Robert Hanmer, and Lalita Jagadeesan. Model Checking With-
out a Model: An Analysis of the Heart-Beat Monitor of a Telephone Switch using
VeriSoft. In Proceedings of ACM SIGSOFT ISSTA’98 (International Symposium
on Software Testing and Analysis), pages 124–133, Clearwater Beach, March 1998.

10. David E. Goldberg. Genetic Algorithms in Search, Optimization, and Machine
Learning. Addison-Wesley Publishing Company, Inc., Reading, MA, 1989.

11. John Holland. Adaptation in Natural and Artificial Systems. The University of
Michigan Press, Ann Arbor, MI, 1975.

12. B. F. Jones, H. H. Sthamer, and D. E. Eyres. Automatic structural testing using
genetic algorithms. Software Engineering Journal, pages 299–306, Sep 1996.

13. Sarfraz Khurshid. Testing an intentional naming system using genetic algorithms.
In Proceedings of the 7th International Conference on Tools and Algorithms for
Construction and Analysis of Systems (TACAS), Genova, Italy, April 2001.

14. Gavin Lowe. An attack on the Needham-Schroeder public-key authentication pro-
tocol. Information Processing Letters, 1995.

15. Roger Needham and Michael Schroeder. Using encryption for authentication in
large networks of computers. Communications of the ACM, 21(12):993–999, 1978.

16. Roy P. Pargas, Mary Jean Harrold, and Robert Peck. Test-data generation us-
ing genetic algorithms. Journal of Software Testing, Verification, and Reliability,
9(4):263–282, 1999.

17. Ingo Rechenberg. Evolutionsstrategie: Optimierung technischer Systeme nach
Prinzipien der biologischen Evolution. Frommann-Holzbog, Stuttgart, 1973.

18. Peter Ross and Dave Corne. Applications of genetic algorithms. AISB Quaterly
on Evolutionary Computation, pages 23–30, Autumn 1994.

19. H. Rudin. Protocol development success stories: Part I. In Proc. 12th IFIP WG
6.1 International Symposium on Protocol Specification, Testing, and Verification,
Lake Buena Vista, Florida, June 1992. North-Holland.

20. Nicol N. Schraudolph and Richard K. Belew. Dynamic parameter encoding for
genetic algorithms. Machine Learning, 9(1):9–21, 1992.

21. C. H. Yang. Prioritized Model Checking. PhD thesis, Stanford University, 1998.


	Exploring Very Large State Spaces Using Genetic Algorithms
	Introduction
	Genetic Algorithms
	Genetic Algorithms for State-Space Exploration
	Combining Genetic Algorithms and Model Checking
	Genetic Encoding
	Fitness Function
	Dynamically Adapting Parameters

	Experimental Evaluation
	Examples of Programs and Properties
	Experimental Results

	Conclusion and Related Work
	Acknowledgments
	References


