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Abstract. Industrial software companies developing safety-critical sys-
tems are required to use rigorous safety analysis techniques to demon-
strate compliance to regulatory bodies. While analysis techniques based
on manual inspection have been successfully applied to many industrial
applications, we demonstrate that inspection has limitations in locating
complex errors in software requirements.
In this paper, we describe the formal verification of a shutdown system
for a nuclear power plant that is currently operational in Korea. The
shutdown system is an embedded real-time safety-critical software, and
has a description in a Software Cost Reduction (SCR) style specification
language. The key component of the work described here is an automatic
method for translating SCR-style Software Requirements Specifications
(SRS) into the language of the PVS specification and verification system.
A further component is the use of property templates to translate natural
language Program Functional Specifications (PFS) into PVS, allowing
for high-assurance consistency checking between the translated SRS and
PFS, thereby verifying the required functional properties.

1 Introduction

Various approaches have been suggested for developing high-quality require-
ments specifications and conducting cost-effective analysis. Although inspection
[1] can, in principle, detect all types of errors in requirements, experience in
conducting inspections on the Software Requirements Specification (SRS) for
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the Wolsung1 shutdown system number 2 (SDS2) revealed that inspection has
potentially lethal limitations in demonstrating safety.

The Wolsung SDS2 is designed to continuously monitor the reactor state
(e.g., temperature, pressure, and power) and to generate a trip signal (e.g., shut-
down command, and display) if the monitored variables exceed predetermined
safety parameters. The SDS2 SRS specifies 30 monitored variables (inputs from
the environment), 59 controlled variables (outputs to the environment), and 129
computational functions relating them. The SRS is 374 pages in length and was
subject to four relatively minor releases in less than a year. Inspection of the ini-
tial release of the SRS, conducted by four staff members, to validate consistency
between the SRS and the natural language Program Functional Specification
(PFS) took about 80 staff hours of formal inspection meetings, during which
only 17 trivial notational errors and incomplete definitions in the PFS and SRS
were discovered.

This experience with manual inspection motivated research to explore more
robust and rigorous methods of analysis. To this end, (1) we provide an auto-
matic method for translating SRS into the language of the PVS specification and
verification system [2], and we implemented a tool for editing and translating,
and (2) we translate from PFS into PVS using property templates and cross
reference. Last, (3) we verify the consistency between translated SRS and PFS.
In this case study, we concentrate on one trip condition (PDL trip), among three
trip conditions, for which SRS is 22 pages, and PFS is 4 pages. The whole SRS
for SDS2 is 374 pages, and the whole PFS is 21 pages.

Even though our example case study is in the nuclear domain, we believe the
verification procedures we propose are general and applicable to wide range of
safety-critical systems.

The rest of our paper is organized as follows. In Section 2, we review how an
SCR-style software requirements specification, which is used in Wolsung SDS2, is
organized. Section 3 describes the verification procedure developed, detailing the
case study of the Wolsung SDS2, and Section 4 discusses results and comparisons
with other approaches. Finally, Section 5 concludes this paper.

2 Background

2.1 SCR-Style SRS

An SCR-style formal specification [3] has four key attributes:

– Variable definitions
– Functional overview diagrams (FODs)
– Structured decision tables (SDTs)
– Timing functions

1 The Wolsung nuclear power plant in Korea, used as a case study in this paper, is
equipped with a software-implement emergency shutdown system.
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It is slightly different from the SCR specification language developed by re-
searchers at the Naval Research Laboratory and supported by the SCR∗ toolset
[4]. The difference lies in how primitive functions are described - where SCR
style uses a time-triggered AND-OR table, the SCR∗ uses an event-action table
format. A system written in SCR-style requirements is designed to read monitor
variables for an external environment (e.g., temperature, pressure, and power)
and to generate control values (e.g., a shutdown command).

The detailed description of the attributes of an SCR-style SRS as follows:

Variable definitions : The interface between the computer system and its en-
vironment is described in terms of monitored and controlled variables. Mon-
itored variables, whose names start with the m prefix, refer to the inputs to
the computer system, and controlled variables, whose names start with the
c prefix, refer to the outputs from the computer system. A variable may be
analog or digital.

Functional Overview Diagrams (FODs) : An FOD illustrates, in a nota-
tion similar to data flow diagrams, a hierarchical organization of functions.
A group, denoted by the g prefix, consists of subgroups or basic functions.
Each basic function name starts with the f prefix. For example, the group
g Overview, illustrated in figure 1.(a), is refined into g ProcessInputs,
g PDL, g PZL, g SLL groups as shown in figure 1.(b). The g ProcessInputs
is a preprocessor for the system. g PDL, g PZL, and g SLL are trip signals for
returning the system to a safe state.
Similarly, the group g PDL is composed of six basic functions and two timing
functions as shown in figure 1.(c). A basic function is a mathematical function
with zero delay and are specified in a structured decision table. Outputs are
synchronous with inputs in a basic function. The s prefix denotes a state
name, used to store the previous value of a function, that is, with one clock
delay. Timing functions are drawn as a bar (|), for example, t Pending and
t Trip in figure 1.(c).
In addition to the hierarchical relations, the FOD specifies inputs, outputs,
and internal data dependencies among various components. Such data depen-
dencies implicitly dictate the proper order of carrying out a set of functions.
For example, in figure 1.(c), the output of the f PDLSnrI function is used as
an input to the f PDLTrip function, and the latter function therefore may be
invoked only when the former is completed. This is the same concept used
in dataflow languages such as LUSTRE [5].

Structured Decision Table (SDT) : The required behavior of each basic
function is expressed in a tabular notation, called SDT, as shown in fig-
ure 2. The function f PDLCond produces an output, whose value is either
k CondOut or k CondIn. The k prefix indicates a constant value.
Condition macros are a substitution for specific conditions. For ex-
ample, lines 2–5 of the condition macros in figure 2 define the
macro w FlogPDLCondLo [f Flog]. If f Flog<k FlogPDLLo-k CondHys,
w FlogPDLCondLo[f Flog] is denoted “a” according to line 3.
As shown in the second column in the SDT, this function returns the value
k CondOut when the value m PDLCond is equal to k CondSwLo and
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Fig. 1. Examples of the function overview diagram
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1: Condition Macros:
2: w FlogPDLCondLo[f Flog]
3: a f Flog < k FlogPDLLo - k CondHys
4: b f FlogPDLLo - k CondHys <= f Flog < k FlogPDLLo
5: c f Flog >= k FlogPDLLo
6: w FlogPDLCondHi[f Flog]
7: a f Flog < k FlogPDLHi - k CondHys
8: b f FlogPDLHi - k CondHys <= f Flog < k FlogPDLHi
9: c f Flog >= k FlogPDLHi
Structured Decision Table:

CONDITION STATEMENTS
m PDLCond = k CondSwLo T T T T F F F F
w FlogPDLCondLo[f Flog] a b b c - - - -
w FlogPDLCondHi[f Flog] - - - - a b b c
s PDLCond = k CondOut - T F - - T F -
ACTION STATEMENTS

f PDLCond = k CondOut X X X X
f PDLCond = k CondIn X X X X

Fig. 2. The SDT for f PDLCond

w FlogPDLCondLo[f Flog] is equal to a. The ‘-’ entries denote the ‘don’t
care’ condition.

Timing function : Timing functions are used for specifying timing constraints
and real-time behavior. A prototype of a timing function is t Wait is
t Wait( C (t), Time value, tol ), where C (t) is a logical condition at
time t, the Time value is a time interval, and tol is an acceptable time
deviation. Intuitively speaking, the function stays true during Time value
when the immediately previous value of the function is false and C (t)
is true at time t. The t Wait at time 0 is FALSE. The formal semantic
definition of a timing function is

t Wait(C(t), Time value, tol)

=



true if there exists an instant in time, t s ∈ [t− Timer value, t]

such that C(t s) AND ¬t Wait(C(t s−ε), Time value, tol)
false otherwise, including at t = 0

For example, t Trip in figure 1.(c) is defined such that
t Trip = t Wait(C, k PDLTrip, k PDLTripTol)

where C = (f FaveC >= k FaveCPDL AND
t Pending = false AND s Pending = true)

This means that t Trip is true between time t and time t + k PDLTrip
when t Trip is false at time t-ε, and f FaveC >= k FaveCPDL AND
t Pending = false AND s Pending = true. The k PDLTripTol is the tol-
erance of
k PDLTrip.
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2.2 Program Functional Specification (PFS)

A program functional specification (PFS) is a system specification written in
natural language (English for Wolsung SDS2), as prepared by domain experts.
The structure is highly intuitive, and an example is shown in figure 3. The PFS
for SDS2 is 21 pages, and PDL trip in this case study accounts for 4 pages.

PHT Low Core Differential Pressure (PDL)

1: The PHT Low Core Differential Pressure (∆P ) trip parameter includes both
2: an immediate and a delayed trip setpoint. Unlike other parameters, the ∆P
3: parameter immediate trip low power conditioning level can be selected by the
4: operator. A handswitch is connected to a D/I, and the operator can choose
5: between two predetermined low power conditioning levels.
6: The PHT Low Core Differential Pressure trip requirements are:
7: · · · · · ·
8: e. Determine the immediate trip conditioning status from the conditioning level
9: D/I as follows:

10: 1. If the D/I is open, select the 0.3%FP (Full Power) conditioning level.
11: If φLOG < 0.3%FP − 50mV , condition out the immediate trip.
12: If φLOG >= 0.3%FP , enable the trip.
13: · · · · · ·
14: g. If no PHT ∆P delayed trip is pending or active then execute a delayed
15: trip as follows:
16: 1. Continue normal operation without opening the parameter trip D/O for
17: nominally three seconds.
18: 2. After the delay period has expired, open the parameter trip D/O
19: if fAV EC equals or exceeds 80%FP .
20: Do not open the parameter trip D/O if fAV EC is below 80%FP .
21: 3. Once the delayed parameter trip has occurred,
22: keep the parameter trip D/O open for one second.
23: · · · · · ·
24: h. Immediate trips and delayed trips (pending and active) can occur simultaneously.
25: · · · · · ·

Fig. 3. Example of program functional specification

3 Verification of SCR-Style SRS

3.1 Translation from SCR-Style SRS to PVS

We describe a translation procedure of SCR-style SRS as embodied in our tool,
and its application to the specific case study of the Wolsung SDS2 SRS. The
translation procedure consists of five steps:
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1. Definition of time (tick) model elements
2. Definition of types and constants
3. Definitions of types for monitored and controlled variables
4. Translation of SDTs
5. Definition and translation of timing functions

Step 1. Definition of Time Model Elements:
Time increases by a fixed period, so time can be specified using a tick, a positive
number. A time is represented by the set of successive multiples of that period,
starting from 0. This part is common through different specifications and is
denoted in figure 4.2 Time is described in the type tick definition in line 1, being
declared as a nat (natural number). Line 2 defines t, representing a variable of
type tick. In line 3, a constant init is defined to be 0, for use as the initial
value of tick.

1: tick : TYPE+ = nat CONTAINING 0
2: t : VAR tick
3: init : tick = 0

Fig. 4. Step 1. Definition of model elements

Step 2. Definition of Types and Constants:
The type of a variable in SCR-style SRS is different for analog variables and
digital variables. The type for an analog variable is declared to be a real number
(or subtypes of real), and the type for a digital variable is a given enumeration.
Trajectories of the value of variables with time are declared as functions from
tick to the variable type.

Figure 5 shows the types and constant definitions used in the Wolsung
SDS2. Line 1 shows the definition of millivolt, defined in the SCR style as
an analog variable, so it is translated to the real type. Line 2 is a definition of
t Millivolt as a function from tick to millivolt. Line 4 is a definition of
the zero one type for a digital variable, defined as set type whose membership
includes 0 and 1. In line 5, undef will be used for constants whose values are
undefined. An undefined value will be assigned a value during later phases
of the software development process. k Trip and k NotTrip in lines 6 and 7
are constants of the digital variable type. Line 11 defines to TripNotTrip as
an enumeration of k Trip and k NotTrip. Lines 12 and 13 define a function
t TripNotTrip from tick to to TripNotTrip. This type includes the trivial
function mapping from any tick value t to the constant k Trip. to CondInOut
is a enumeration type whose members are k CondIn and k CondOut. Line 15 is
a function t CondInOut from tick to to CondInOut. Line 17 defines enumabc
used within SDT. enumabc is an enumerative type for a, b, and c.

2 The numbering on the left is merely a line number for reference in this paper, and
is not part of the translation procedure or translated specification.
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1: millivolt : TYPE = real % analog variable
2: t_Millivolt : TYPE = [tick -> millivolt]
3:
4: zero_one : TYPE+ = {x:int | x=0 OR x=1} CONTAINING 0 % digital var.
5: undef : TYPE+ % undefined-value constant
6: k_Trip : zero_one = 0
7: k_NotTrip : zero_one = 1
8: k_CondIn : undef
9: k_CondOut : undef
10:
11: to_TripNotTrip : TYPE = {x:zero_one | x = k_Trip OR x = k_NotTrip}
12: t_TripNotTrip : TYPE+ = [tick -> to_TripNotTrip]% function type from
13: CONTAINING lambda (t:tick) : k_Trip % tick to_TripNotTrip
14: to_CondInOut : TYPE = {k_CondIn, k_CondOut} % incl. t->k_Trip
15: t_CondInOut : TYPE = [tick -> to_CondInOut]
16:
17: enumabc : TYPE = {a,b,c}

Fig. 5. Step 2. Definition of types and constants

Step 3. Definition of Types for Monitored and Controlled Variables:
This step defines the types of the monitored and controlled variables using the
definitions from step 2. The variables are defined in the form variable : type.
Figure 6 is an example for monitored variable m Flog and controlled variable
c PDLTrip. m Flog is a type t Milivolt in line 1 and c PDLTrip is a type
t TripNotTrip.

1: m_Flog : t_Milivolt % Type definition for monitored variable
2: c_PDLTrip : t_TripNotTrip % Type definition for controlled variable

Fig. 6. Step 3. Definition of types for monitored and controlled variables

Step 4. Translation of SDTs:
Functions in an SCR-style SRS are structured in a hierarchy. The lowest level
of the hierarchy is an internal computation function expressed as an SDT or a
timing function. The hierarchical information is not needed in the translation
for checking functional correctness; hence, this step translates only the SDT and
timing functions.

There are two kinds of function. One is a function that reads values at tick
t and writes values at tick t. The other is a function which reads both values
at tick t and at t-1 and writes values at tick t. SCR-style SRS assumes that it
takes zero time to execute a function.
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Let f output, f input1, f input2, and s output be function names or variable
names. The first kind of function is

f output(t) = compute(f input1 (t), f input2 (t))
To compute f output, it reads the values of the f input1 and f input2 at tick t

and then compute f output at tick t. For this function, the translation template
is

1: f_output (t:tick):value_type = compute(f_input1 (t),f_input2 (t))

If the condition macro is defined within compute, the macro should be locally
defined by the LET · · · IN construct. In this case, the translation template is3

1: f_output (t:tick) : value_type =
2: LET
3: w_condition_macro : enumeration_type = condition_macro
4: IN
5: compute(f_input1 (t), f_input2 (t))

The second kind of function is
f output(t) = compute(f input1 (t), s output(t))

s output(t) =
{

initial value when t = 0
f output(t− 1) when t �= 0

In the second kind of a function, there is a circular dependency among the
f output and the s output. The type checking of PVS does not admit circular
dependencies in an explicit manner, so we use a definitional style with local
definitions embedded within a recursive function, in this paper. The transla-
tion template for this kind of function introduces a local copy of the mutually
dependent function.

1: f_output (t:tick) : RECURSIVE value_type =
2: LET
3: s_output :[tick->value_type ]=LAMBDA (tt:tick):
4: IF tt = 0 THEN initial_value
5: ELSE f_output (tt-1)
6: ENDIF
7: IN
8: output(f_input1 (t), s_output (t))
9: MEASURE t
10: s_output (t:tick) : value_type = IF t = 0 THEN initial_value
11: ELSE f_output (t-1)
12: ENDIF

The definition of f output is given in lines 1–9. Line 8 refers to s output,
but as s output is not defined until lines 10–12, so a local definition of s output

3 In SCR-style SRS, functions and condition macros are defined as tabular notation,
so condition macro and computes in translated PVS specification are expressed as
a TABLE · · · ENDTABLE construct.
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is given within the function f output at lines 3–6. The keyword RECURSIVE is
used to indicate a recursive function, and a MEASURE function provided to allow
the type checker to generate proof obligations to show termination.

The translation of f PDLCond in figure 2 is shown in figure 7. f PDLCond
at line 4 is recursively defined, so we define f PDLCond as a recursive func-
tion using RECURSIVE. And we define condition macro w FlogPDLCond and
w FlogPDLCondHi in lines 6–11.

We also explored an approach using AXIOMs to introduce mutually recursive
functions. The approach separates the definition part and declaration part in a
way similar to high-level languages, so it does not need local definition. However,
a step-by-step proof may be required for safety auditing, so there is a tradeoff
between automation and auditability. We chose to prefer automation, as an aid
to finding errors quickly, rather than fully auditable verification.

The translated specification in this paper is more complex than the declar-
ative style because of the local definition and recursive definition for circular
dependent functions. The major advantage of the definitional style is that it en-
ables greater automation of proofs. However, the step-by-step proof that may be
required for safety auditing is sometimes difficult. The declarative style supports
less automation for proving, but allows for auditing the proof. We recommend
the declarative style for early prototyping and the definitional style for full spec-
ifications.
Step 5. Definition and Translation of Timing Functions:
The semantics of timing functions in SCR-style SRS is given in figure 8. The
function twf at lines 1–7 defines the output as FALSE when tick t = 0 and TRUE
for a specified time interval tv after triggering a condition to TRUE (i.e., that
ts is a current tick, the output at ts-1 is FALSE, and the condition at ts is
TRUE). The function twfs at lines 9–10 specifies a function from tick to an
output(bool) to specify a sequence of the function twf

An example of translating a specific timing function is given in figure 9. Lines
1–2 define the condition used in timing function t Trip. cycletime in line 3 is
an interval between two consecutive executions.

3.2 Translation from PFS to PVS

The Program Functional Specification (PFS) is translated into PVS to check
consistency between the PFS and the SRS. In this paper, we extract properties
to be checked from the PFS, but generally they are not limited to those from the
PFS. FMEA (Failure Mode and Effects Analysis) results and domain experts’
knowledge also could be used to generate putative theorems that may be proven
of the system under analysis.

The PFS is written in unconstrained natural language, so the translation can-
not be easily automated. However, we propose a systematic two-phase process—
the first phase is to define a cross-reference between terms in PFS and SRS.
The second phase is to translate sentences in PFS into PVS. During the first
phase, we can often find inconsistent terms, that must be resolved by the origi-
nal specification authors. The second phase also cannot be automated, but there
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1: f_PDLCond(t:tick) : RECURSIVE to_CondInOut =
2: LET
3: s_PDLCond : t_CondInOut = LAMBDA (tt:tick):IF tt=0 THEN k_CondIn
4: ELSE f_PDLCond(tt-1)
5: ENDIF,
6: w_FlogPDLCondLo : enumabc = TABLE
7: ... % similar to if-then-else
8: ENDTABLE,
9: w_FlogPDLCondHi :enumabc = TABLE
10: ... % similar to if-then-else
11: ENDTABLE,
12: X = (LAMBDA (x1: pred[bool]),
13: (x2: pred[enumabc]),
14: (x3: pred[enumabc]),
15: (x4: pred[bool]) :
16: x1(m_PDLCond(t) = k_CondSwLo) &
17: x2( w_FlogPDLCondLo) &
18: x3( w_FlogPDLCondHi) &
19: x4( s_PDLCond(t) = k_CondOut)) IN TABLE
20: % | | | |
21: % v v v v
22: %-------|----|----|----|------------%
23: | X( T , a? , dc , ˜ )| k_CondOut ||
24: %-------|----|----|----|------------%
25: | X( T , b? , dc , T )| k_CondOut ||
26: %-------|----|----|----|------------%
27: | X( T , b? , dc , F )| k_CondIn ||
28: %-------|----|----|----|------------%
29: | X( T , c? , dc , ˜ )| k_CondIn ||
30: %-------|----|----|----|------------%
31: | X( F , dc , a? , ˜ )| k_CondOut ||
32: %-------|----|----|----|------------%
33: | X( F , dc , b? , T )| k_CondOut ||
34: %-------|----|----|----|------------%
35: | X( F , dc , b? , F )| k_CondIn ||
36: %-------|----|----|----|------------%
37: | X( F , dc , c? , ˜ )| k_CondIn ||
38: %-------|----|----|----|------------%
39: ENDTABLE
40: MEASURE t
41:
42: s_PDLCond(t:tick):to_CondInOut = IF t = 0 THEN k_CondIn
43: ELSE f_PDLCond(t-1)
44: ENDIF

Fig. 7. Example of definitional style of SRS (f PDLCond and s PDLCond)
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1: twf(C:pred[tick], t:tick, tv:tick): RECURSIVE bool =
2: IF t = 0 THEN FALSE % initial value is FALSE
3: ELSE EXISTS (ts: {t:tick | 0 < t}):
4: (t-tv+1) <= ts AND ts <= t AND % During a time interval
5: (C(ts) AND NOT twf(ts-1)) % if it starts TRUE
6: ENDIF % with just before FALSE,
7: MEASURE t % output is TRUE
8:
9: twfs(C:pred[tick], tv:tick) : pred[tick] =
10: (LAMBDA (t:tick):twf(C,t,tv))

Fig. 8. Step 5 (1). The semantics of timing functions

1: C_Trip(t:tick) : bool = f_FaveC(t) >= k_FaveCPDL AND
2: (NOT t_Pending(t)) AND s_Pending(t)
3: t_Trip(t:tick) : bool = twfs(C_Trip,k_trip/cycletime)(t)

Fig. 9. Step 5 (2). Translation of timing function

are three distinct classes, or ‘patterns,’ in the text of the PFS. Because of the
real-time constraints involved, these patterns cannot be described in temporal
logic classes such as LTL (Linear Temporal Logic) or CTL (Computational Tree
Logic), so we directly encode in a classical logic. Many researches have proposed
real-time extension of temporal logics, but there is no standard notation for this.
(Pattern 1) Input-Output specifications are requirements relating the in-
put and output of functions. If f condition(t) = k condition at tick t, the output
f output is k output. They can be described as an implication (with implicit
universal quantification over tick t) as a relation:

theorem_input_output : THEOREM
(f_condition (t) = k_condition ) => f_output (t) = k_output

(Pattern 2) Time-Duration specifications are real-time requirements such
that if certain inputs are satisfied, the certain outputs should be maintained for
a specified duration. If f condition(t) = k condition at tick t, the output of the
f output is k output between tick t and t + duration.

theorem_duration : THEOREM FORALL (t:{ts:tick|ts>0}) :
(f_condition (t) = k_condition ) =>

(FORALL (ti: tick): (t <= ti and ti <= t+duration ) =>
f_output (ti) = k_output )

(Pattern 3) Time-Expiration specifications are real-time requirements
such that if certain inputs are satisfied and a specified duration has elapsed,
then a certain output should be generated. If f condition(t) = k condition at
tick t and tick duration has elapsed, the output of the f output is changed to
k output.
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theorem_expiration : THEOREM FORALL (t:{ts:tick|ts>0}) :
(f_condition (t) = k_condition ) =>
(( 0 <= duration ) => f_output (t+duration +1) = k_output )

The translation from PFS to PVS THEOREMs follows the example in figure 10,
which shows the translation of the items from figure 3. Item e.1 in figure 3 is ‘If
the D/I is open, select the 0.3%FP (Full Power) conditioning level. If φLOG <
0.3%FP−50mV , condition out the immediate trip. If φLOG >= 0.3%FP , enable
the trip.’ This sentence matches (Pattern 1), input-output specifications. ‘The
D/I’ is described as ‘hand switch’ and ‘low power conditioning level’ in lines
3 and 4 in figure 3. So ‘the D/I’ is mapped to ‘m PDLCond.’ And ‘the D/I is
open’ means that m PDLCond(t) = k CondSwLo. In this state, ‘immediate trip’
is ‘condition out’ when φLOG < 0.3%FP − 50mV . φLOG is mapped f Flog and
0.3%FP is 2739 mv, that is, k FlogPDLLo. This information is described in an
appendix of PFS and SRS. In this state, immediate trip should not operate
(condition out). It can be written as f PDLCond = k CondOut. In a similar way,
‘enable trip’ when φLOG >= 0.3%FP translates THEOREM th e 1 2.

th_e_1_1 : THEOREM (m_PDLCond(t) = k_CondSwLo AND f_Flog(t) < 2739-50)=>
f_PDLCond(t) = k_CondOut

th_e_1_2 : THEOREM (m_PDLCond(t) = k_CondSwLo AND f_Flog(t) >= 2739) =>
f_PDLCond(t) = k_CondIn

Fig. 10. Example of translation from PFS to PVS THEOREMs

3.3 Verification

The translated specification is stored in a file for verification by PVS. The verifi-
cation in PVS cannot be entirely automated, but we found that there is a pattern
when we prove similar properties. A proof template is (expand* ". . .")(grind
:exclude (". . .")) or (grind :exclude (". . .")). The . . . is related to the
functions or definitions on the paths of dataflows. The PVS proof strategy grind
tries to rewrite the definitions in all possible cases, and for circular definition
it rewrites infinitely. So . . . in exclude are definitions are circular dependency
relations. expand is used for rewriting only one expansion of a definition. When
we prove THEOREM th e 1 1 and THEOREM th e 1 2 in figure 3.2, f PDLCond is a
recursive definition. So we can prove them by (expand "f PDLCond") (grind
:exclude ("f PDLCond")).

4 Discussion

During our verification experience, we discovered notational errors, different
terms for the same concepts, and hidden assumptions.
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First, we found that different terms were used in PFS during the construction
of the cross-references. For example, the m PDLCond is used as hand switch,
low power conditioning level, and conditioning level. The m PHTD is used as
Core Differential Pressure measurement, ∆Pi, and DP signal. The f PDLTrip, is
used as the state of PHT low core differential pressure parameter trip, ∆Ptrip,
and parameter trip(D/O). Our method can be therefore valuable in encouraging
that the PFS use terms in the same way that the SRS does.

Second, other different terms in the PFS are ‘condition out the immediate
trip’ and ‘enable trip.’ The ‘condition out’ is actually the opposite of ‘enable’,
but this is far from clear. Our analysis highlights such obfuscated wording, in
figure 11. We present a modified PFS term, e.‘the low power conditioning level’
from ‘the conditioning level’ in figure 3. The ‘condition in - enable’ is also mod-
ified to ‘disable - enable’.

e. Determine the immediate trip conditioning status from the low power conditioning
level D/I as follows:

1. If the D/I is open, select the 0.3%FP conditioning level. If φLOG < 0.3%FP −
50mV , disable the immediate trip. If φLOG >= 0.3%FP , enable the immediate
trip.

Fig. 11. Unambiguous PFS

Third, there are hidden assumptions, such as in the following PFS. The g.2
and g.3 in figure 3 are translated into figure 12 in PVS. But we could not prove
the THEOREM th inappropriate g 3.

th_appropriate_g_2_1 : THEOREM FORALL (t:{ts:tick|ts>0}) :
f_FaveC(t)>= 80 AND t_Pending(t) = false AND
s_Pending(t) = true AND t_Trip(t-1) = false
=> t_Trip(t)

th_appropriate_g_2_2 : THEOREM FORALL (t:{ts:tick|ts>0}) :
f_FaveC(t)< 80 AND t_Pending(t) = false AND
s_Pending(t) = true AND t_Trip(t-1) = false
=> t_Trip(t)

th_inappropriate_g_3 : THEOREM FORALL (t:{ts:tick|ts>0}):
t_Trip(t-1) = false AND t_Trip(t) = true =>
FORALL(t1 : tick): ((t <= t1 and t1 <= 1000/cycletime +t) =>

t_Trip(t1) = true)

Fig. 12. Example of inappropriate translation of PFS

We investigated the reason and we concluded that there were hidden assump-
tions. Items g.2 and g.3 in figure 3 are not independent. In other words, the item
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g.3 can be true only if the item g.2 is true. ‘Once the delayed parameter trip
has occurred’ does not mean ‘the delayed parameter trip has occurred’ directly,
but it means ‘fAV EC equals or exceeds 80%FP and then the delayed parameter
trip has occurred’. So the assumption the delayed parameter trip has occurred
in item g.3 should be strengthened with items g.2.1 and g.2.2. As a result of this
investigation, we translated the above PFS into PVS specifications again, such as
in figure 13. Then we succeeded in the proof of THEOREM th appropriate g 3.
This error was not found through inspection, and is the kind of error that is
difficult to find without formal analysis.

th_appropriate_g_3 : THEOREM FORALL (t:{ts:time|ts>0}):
t_Trip(t-1) = false AND t_Trip(t) = true AND
%% strengthen assumption from th_appropriate_g_2_1˜g_2_2
f_FaveC(t) >= 80 AND t_Pending(t)=false AND s_Pending(t)=true =>
FORALL(t1 : time): ( (t <= t1 and t1 <= 1000/cycletime + t) =>

t_Trip(t1) = true)

Fig. 13. Example of appropriate translation

Related Work

The work presented here is complemented by ongoing work at McMaster Uni-
versity by Lawford et al. [6]. Using a similar case study, their work concentrates
on verification of the refinement of the requirements in the SRS into design el-
ements, also expressed in SCR, in the software design description (SDD). They
use an extension of the 4-variable model of Parnas [7] into a relational setting,
and claim that their approach is more intuitive for system engineers. Our goal
in the present work is essentially the same - to develop easier-to-use verifica-
tion approaches - for application to the earlier part of the software development
process.

Another approach for formal validation of requirements from PFS is done by
Gervasi and Nuseibeh [8]. It provides a systematic and automated method to
construct a model from a PFS, and then checking some structural properties (for
example, function’s domain is correct) of the constructed model. We think that
their extraction technique can help in extracting functional properties; however,
they do not check functional properties.

5 Conclusion

Based on our experience of inspecting the Wolsung SDS2 SRS, we have demon-
strated that inspection has limitations. To verify functional properties, we de-
veloped a software tool with a graphical user interface that converts SCR-style
requirements specifications into the PVS language. In addition, we provide a
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method for verifying functional properties in PFS using PVS. We believe that
the procedure helps to construct high-quality safety-critical software.

Users of our approach need not be experts on formal methods or power users
of PVS. Our graphical editor provides a user-friendly interface to allow edit-
ing of SCR-style specifications and automates the translation process. However,
the proof process can be completed with a limited study of the proof pattern.
The specifier translates PFS into PVS theorems manually, even though we can
translate systematically using a cross-reference table.

Although we strongly believe that our approach delivers significant benefits
to practitioners, the following further enhancements seem to be desirable:

– Development of translation rules so that a formal specification written in
statecharts or modecharts can be verified using the same approach

– More systematic method of translating from PFS to PVS theorems, to en-
hance completeness of the current cross-reference methods

– Additional study of proof patterns, to the verification
– Enhancements to the SRS-style editor, such as XML translation, to increase
its practical utility
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