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Abstract. In a recent study [I], we proposed a new methodology to
build thinning algorithms based on the deletion of P-simple points. This
methodology may permit to conceive a thinning algorithm A’ from an
existent thinning algorithm A, such that A" deletes at least all the points
removed by A, while preserving the same end points.

In this paper, by applying this methodology, we propose a new 6-subitera-
tion thinning algorithm which deletes at least all the points removed by
the 6-subiteration thinning algorithm proposed by Paldgyi and Kuba [2].

1 Introduction

Some graphical applications require to transform objects while preserving their
topology [2I8]. That leads to the well-known notion of simple point: a point in
a binary image is said to be simple if its deletion from the image “preserves the
topology” [HRGTRQTOTTIT2IT3T4]. A process deleting simple points is called
a thinning algorithm. During the thinning process, certain simple points are
kept in order to preserve some geometrical properties of the object. Such points
are called end points. The result obtained by a thinning algorithm is called a
skeleton.

A process deleting simple points in parallel may not preserve the topology.
For example, a two-width ribbon may vanish because all its points are simple.
Therefore, a parallel thinning algorithm must use a “certain deletion strategy”
in order to preserve the topology. For example, we may consider a deletion
strategy based on subiterations, which consists in dividing a deletion iteration
into several subiterations. These subiterations may be based on directions [I5]
T6IT7J2/T8] or on subgrids [19)20]. Another example of deletion strategy consists
in using an extended neighborhood; such a strategy may lead to fully parallel
thinning algorithms [2113/22].

One of the authors has proposed the notion of P-simple point [23]. A subset
composed solely of P-simple points may be deleted in one time while preser-
ving the topology. Furthermore, a P-simple point may be locally characterized,
once P is known. In a recent paper [I], we proposed a set P*, locally defined
for each point z and from a set P. That has permitted us to propose a new
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Fig. 1. (a) The 6-, 18-, and 26-neighbors of z, (b) the six major directions, (c) the used
notations

thinning scheme, based on the deletion of P*-simple points, which needs neither
a preliminary step of labelling nor the examination of an extended neighborhood,
in contrast to the already proposed thinning algorithms based on P-simple points
23].

In this paper, our purpose is to design a new 3D 6-subiteration thinning al-
gorithm based on the deletion of P*-simple points. We apply our general metho-
dology proposed in [I]: from the 6-subiteration thinning algorithm devised by
Paldgyi and Kuba [2], we conceive a first thinning algorithm deleting P*-simple
points; then we improve it in such a way that it may delete at least all the
points removed by the Palagyi and Kuba’s thinning algorithm, while preserving
the same end points.

2 Basic Notions

A point z € ZZ% is defined by (z1,22,23) with x; € ZZ. We consider the three
neighborhoods: Nog(z) = {2’ € Z* : Max||z, — x|, |x2 — x|, |23 — 24|] < 1},
No(z) = {2’ € ZZ° : |o1—a|+|wa—ab|+|rs—ah] <1}, and Nig(x) = {2’ € Z° :
|z — )|+ w2 — 25|+ |25 — 25| < 21N Nag(x). We define N (z) = Ny (z)\ {z}. We
call respectively 6-, 18-, 26-neighbors of x the points of N (z), Nis(x) \ Ng(z),
Nis(z) \ Nig(z); these points are respectively represented in Fig. [l (a) by black
triangles, black squares, and black circles. The 6-neighbors of = determine six
major directions (Fig. I (b)): Up, Down, North, South, West, East; respectively
denoted by U, D, N, S, W and E. Each point of Njs(z) may characterize one
direction amongst the 26 that we can obtain from the 6 major ones; e.g. SW,
USW ... Let Dir denote one of these 26 directions. The point in Njg(x) along
the direction Dir is called the Dir-neighbor of x and is denoted by Dir(z). In
the following, points in Nag(x) are often denoted by p;, with 0 < i < 26 (Fig.
[ (c)); for example, po is the USW-neighbor of pi3, i.e. po = USW (p13). Let
X C ZZ3. The points belonging to X (resp. X, the complement of X in ZZ°%) are
called black points (resp. white points).

Two points  and y are said to be n-adjacent if y € Nj(z) (n = 6, 18, 26).
An n-path is a sequence of points zg, ..., Tk, with z; n-adjacent to x;_; and
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Fig. 2. Points belonging to X and X are respectively represented by black discs and
white circles. Only the point « in (d) is 26-simple

1 < i< k. If xg = xp, the path is closed. Let X C Z3. Two points z € X
and y € X are n-connected if they are linked by an n-path included in X. The
equivalence classes relative to this relation are the n-connected components of X.
If X is finite, the infinite connected component of X is the background, the other
connected components of X are the cavities. In order to have a correspondence
between the topology of X and the one of X, we have to consider two differents
kinds of adjacency for X and for X [6]: if we use an n-adjacency for X, we have to
use another m-adjacency for X. In this paper, we only consider (n,7) = (26, 6).
The presence of an n-hole in X is detected whenever there is a closed n-path in
X that cannot be deformed, in X, into a single point (see [A], for further details).
For example, a hollow ball has one cavity and no hole, a solid torus has one hole
and no cavity, and a hollow torus has one cavity and two holes.

Let X C Z3 A point z € X is said to be n-simple if its removal does
not “change the topology” of the image, in the sense that there is a one to
one correspondence between the components, the holes of X and X and the
components, the holes of X \ {z} and X U {x} (see [5], for a precise definition).
The set composed of all n-connected components of X is denoted by C,,(X). The
set of all n-connected components of X and n-adjacent to a point x is denoted
by CZ(X). Let #X denote the number of elements which belong to X. The
topological numbers relative to X and x are the two numbers [I0]: T4(z, X) =
#CE[Nis(x) N X] and Tog(z, X) = #Ca6[Nig(x) N X]. These numbers lead to a
very concise characterization of 3D simple points [24]: © € X is 26-simple for X
if and only if The(x, X) = 1 and Tg(x, X) = 1. Some examples are given in Fig.
The topological numbers relative to # and X or X are: (Tys(x, X), Ts(x, X)) =
(1,2), (2,1), (1,2), (1,1) for the configurations (a), (b), (c) and (d), respectively.
Only the configuration in Fig. 2] (d) corresponds to a 26-simple point.

3 P-Simple Points

Let us introduce the notions of P-simple point and P-simple set [23]. In the
following, we consider a subset X of ZZ3, a subset P of X, and a point z of
P. The point z is P-simple (for X) if for each subset S of P\ {z}, = is 26-
simple for X \ S. Let S(P) denote the set of all P-simple points. A subset D
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Fig. 3. Points belonging to R, P and X are respectively represented by black discs,
black stars and white circles. Only the points = in (a) and (b) are P-simple

of X is P-simple if D C S(P). We have the remarkable property that any
algorithm removing only P-simple subsets (i.e. subsets composed solely of P-
simple points) is guaranteed to keep the topology unchanged [23]. We give a
local characterization of a P-simple point [25] (see also [26]):

Proposition 1. Let R denote the set X \ P. The point x is P-simple iff:
TQG(.I, R) =1 y
Tﬁ(m’y) =1 )
Yy € Nig(z) N P, 3z € R such that z is 26-adjacent to x and to y ,
Vy € N;(z)NP,3z€ X and It € X such that {x,y,z,t} is a unit square .

Some examples are given in Fig.[3} only the points x in (a) and (b) are P-simple.
Let us consider the subset X depicted in Fig. 3] (¢). The subset S = {p,q,r} is
a subset of P\ {z}; and « is non-simple for X \ S. Therefore, by definition, the
point = cannot be a P-simple point; or directly with the Proposition[d], the first
P-simplicity condition is not verified because Thg(z, R) = 2.

For each = of Z*, we consider a finite family 7 of pairs of subsets of Z3
(B*(x), WF(z)) with 1 < k <[, such that B*(x) N W*(2) = () and = belongs to
B¥(z); T is said to be a family of templates. In the following, we consider a subset
X of Z3. Let P(T,X) = {x € Z* : Fk with 1 < k < [ such that B¥(x) C
X and W¥(z) € X}. In fact, P(7,X) corresponds to a Hit or Miss transform
of X by T [2728].

A thinning algorithm, based on the deletion of P-simple points, usually con-
siders subsets P which may be characterized by a certain family 7 of templates.
Such an algorithm must decide whether a point z is P(7, X )-simple or not: it
must check if the point x belongs to P(7,X), and in order to check the four
conditions of the Proposition [[ it must check if the points y of Njg(x) belong to
P(7,X). Such an algorithm may operate according to different ways to detect
the points belonging to P(7,X) and the points being P(7, X)-simple: it use
either a preliminary step of labelling or the examination of an extended neigh-
borhood [23] (see details in [I]). Note that a general strategy has already been
proposed to design different thinning schemes and algorithms based on P-simple
points [29] (see also [30J31]).
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Let us introduce a subset P*, locally defined for each point z of ZZ% and from
a set P (described as previously by a family 7 of templates) [1}32]. From this
subset, we will derive the notion of a P*-simple point. For each z of Z3, we define
a new subset P*(7T, X) of ZZ*, determined by P*(7, X) = {y € Nog(z) : Ik with
1 <k <1 such that [B*(y) N Nog(z)] € X and [W*(y) N Nog(z)] € X}. In fact,
P*(T,X) is constituted by the points y of Nag(z) N X which “may belong” to
P(T, X), by the only inspection of membership to X or to X of points belonging
to [B¥(y) U Wk(y)] N Nag(x). We have P*(7,X) D [P(T,X) N Nag(z)].

We have proven that a P*(7, X)-simple point is P(7, X)-simple [32]. This
implies that an algorithm deleting in parallel P*(7, X )-simple points is gua-
ranteed to preserve the topology, because it deletes P(7, X )-simple subsets. In
addition, since P*(7,X) is completely known in Nag(z) for each point z, that
permits us to propose a new thinning scheme, based on the deletion of P*(7, X)-
simple points z, which needs neither a preliminary step of labelling nor the
examination of an extended neighborhood, in contrast to the already proposed
thinning algorithms based on P(7, X )-simple points (see [I] for further details).
In Sect. B we will propose a thinning algorithm deleting P* (7, X)-simple points.

Notations: In the following, we write P (resp. P*) instead of P(7, X) (resp.
P*(7,X)) and “z is a P-simple point (resp. P®-simple point) means “z is a
P(T, X)-simple point (resp. P*(7, X )-simple point)”.

4 Description of the Used Thinning Algorithms

A thinning scheme consists in the repetition until stability of deletion iterations.
In the case of 6-subiteration thinning algorithms, an iteration is divided into 6
subiterations, each of them successively corresponding to one of the 6 following
directions: Up, Down, North, South, East and West (see Fig. I (b)). Let «
denotes such a direction. The stability is obtained when there is no more deletion
during 6 successive subiterations. Such a thinning scheme can be described by
X = X711\ DEL(X*! a) for the ith deletion subiteration (i > 0), with
X% = X, and DEL(Y, ) being the set of points to be deleted from Y, according
to the direction « corresponding to the ith subiteration. The stability is obtained
when X* = X*+6,

Paldgyi and Kuba have proposed a 6-subiteration thinning algorithm [2],
denoted by PK in the following. A set of 3 x 3 x 3 matching templates is given for
each direction. For a given direction «, a point is deletable by PK if at least one
template (or theirs rotations around the axis along the direction «/) in the set of
templates matches it. The set of templates used by PK along the direction «, is
denoted by 7, and is represented in Fig. Bl for the direction o = U; see notations
in Fig. @ The templates for the other directions can be obtained by appropriate
rotations and reflections of these templates. Sometimes, we will write that “7,
deletes a point” to mean PK deletes this point during a subiteration along the
direction «v. We recall the definition of an end point, adopted in [2], that we will
also use in our proposed algorithm. A black point x is an end point if the set
N3 () contains exactly one black point. We note that end points are prevented
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A position marked by a @ matches a black point. A position marked by a O
matches a white point. At least one position marked by a [ belongs to X. Every
position non marked matches either a black or a white point. A position marked
by a % matches a black point belonging to a considered set P.

Fig. 4. Notations used in the following of the paper
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Fig. 5. The set 7y of thinning templates for the direction U, up to rotations around
the vertical axis (see notations in Fig. H)

to be deleted by the templates of 7. According to the previous general thinning
scheme (described in the beginning of this section), DEL(Y,«) is the set of
points of Y such that at least one of the templates of 7, matches them, for the
direction « corresponding to the deletion subiteration.

A 6-subiteration thinning algorithm removing P-simple points, has already
been proposed [23]. Now, we give a general scheme for 6-subiteration thinning
algorithms deleting P”-simple points. It can be described by the scheme of the
beginning of this section with DEL(Y, «) = S(P®); S(P*) being the set of P?-
simple points for Y which are not end points and according to the direction «
corresponding to the deletion subiteration. From this scheme, we will propose our
algorithm by defining an appropriate P (Sect.[H), in the sense that we investigate
P such that our algorithm deletes at least all the points removed by PK. In the
following, we write LB to indicate our final algorithm which deletes P®-simple
points, while preserving end points.

See [I] for details concerning the efficient implementation of such algorithms,
with the use of Binary Decision Diagrams [33J34]35]; in fact, PK and LB have the
same computational complexity.
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Fig. 6. This configuration (a) is not Pf-simple (b), and is P5-simple (c)

5 Our Thinning Algorithm (LB)

In this section, we give the entire reasoning which leads us to propose two suc-
cessive conditions of membership to a set P. The used methodology consists in
proposing successive “refinements” of P, until to obtain a set P such that at
least all points deleted by PK are P-simple. This is achieved with our second
proposal of a set P. We note that the first proposal, detailed in Sect. B1] is
directly deduced from PK.

We first deal with the direction U until a general comparison of our results.
In the following, when we write “a point belongs to P*” then x is the point
p13 for the considered configuration (see Fig. [ (c)). We write “a configuration
is P*-simple” to mean that the central point x(= p;3) of this configuration is
P*-simple. Let y be a point of a configuration, y belongs to {po,... ,p2s}, see
Fig. M (c); we write “a point y verifies a template 77 to mean that the template
T matches the configuration whose central point is y.

5.1 First Membership Condition

We observe that any point of X deleted by 7y is such that its U-neighbor belongs
to X (see templates in Fig. B). Thus, we propose to consider P, = {z € X : the
U-neighbor of 2 belongs to X }. Among all 226 possible configurations, we obtain
4423 259 ones corresponding to P-simple and non end points, for the direction
U.

Let us consider the configuration in Fig. [fl (a). The three points ps, p;y and
p13 belong to Pf (Fig.[@ (b)) because they belong to X, and each U-neighbor
of these points belongs to X. The first and the third P{-simplicity conditions
are not verified for the central point p13. Thus, the point p;3 is not Py-simple.
Nevertheless, it is matched by a rotation around the vertical axis of M5 of 7y .
Therefore, it should be deleted by our wanted algorithm.

Let us examine the behavior of the other points of this configuration with
the templates 7 (see Fig. [ (a)). The point ps may verify a rotation around
the vertical axis of Mj or of Mg. The point p; cannot be deleted, because pg(=
W (p7)) belongs to X and p3(= U(ps)) belongs to X, and the templates are such
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Fig. 7. A point x belongs to P iff it verifies at least one of these templates, according
to the direction «

that for any point x deleted by 7y and for any y belonging to Ng(x) N X,y
being neither U(z) nor D(z), then the point U(y) must belong to X.
With these remarks, we can propose a new set Ps.

5.2 Second Membership Condition

We first introduce some notations. We recall that oo denote one of the six deletion
directions. Let @ denote the opposite direction. Let NS(x) denote the four 6-
neighbors of # which belong to the 3 x 3 window perpendicular to the direction
a and containing x (in fact, NS(z) = Ng(z) \ {a(z),a(z)}). We propose to
consider P, = {x € X : the a-neighbor of x belongs to X and for any point y
belonging to NS(z), if y belongs to X then a(y) must belong to X}, according
to the direction «a.

With notations used in Sect. B] the set P» can be described by the family
composed of 16 pairs of subsets of ZZ° (B*(z), W*(z)) with 1 < k < 16, depicted
in Fig. [ for the direction o« = U; in fact, there are 6 main templates, up to
rotations around the axis (a(x),@(x)).

Let us consider the non P{-simple configuration in Fig. [ (b) (see notations
in Fig. [0 (c)). The point p13 belongs to Pg, as it verifies the template in Fig.
[ (a). The point ps belongs to P, as p3 may verify the templates in Fig. [
(a), (c), (e), or (g). The point p; does not belong to Py because there exists a
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Fig. 8. (a) This configuration cannot be deleted by PK whatever the deletion direction,
and is P-simple (b), in (c) (obtained from (a)) no point is deleted by PK nevertheless
x is deleted by LB

point y(= ps(= W(pr))) in N (p7) N Nag(z) which belongs to X, and such that
p3(= U(y)) belongs to X; or more directly because p; verifies no template in
Fig. [ So, this non P{-simple configuration (Fig. @l (b)) is now Py-simple (Fig.
6l (c)).

We obtain 6 129 527 configurations corresponding to Ps-simple and non end
points, for the direction U. The 2124 283 configurations deleted by 7y, are also
Pg-simple. The fact that the configurations deletable by PK are Py-simple (for
each direction and therefore for the whole algorithm) guarantees that the topolo-
gy is preserved by PK (as PK deletes subsets of Py-simple points, see Sect. 3.

For a better comparison between PK and LB, we generate the configurations
deleted by these algorithms for each direction: PK deletes 9916 926 configura-
tions, i.e. there exists at least one deletion direction such that a given configura-
tion among these ones is deleted for this direction by PK; LB deletes 23 721 982
configurations (139.2% “better”). We recall that there are 25985118 simple and
non end points amongst the 67 108 864(= 225) possible 3 x 3 x 3 configurations.

The configuration depicted in Fig.[§ (a) cannot be deleted by Pk, whatever
the deletion direction. This configuration is Py-simple (Fig. B] (b)), with a = U.
Indeed, the point py belongs to Py as ps may verify the templates in Fig. [ (a),
(b), (c) or (d); ps belongs to Py as p3 may verify the templates in Fig. [ (a),
(¢), (e) or (g); p13 belongs to Py as it verifies the template in Fig.[d (a); ps does
not belong to Py as pa(= U(ps)) belongs to X; and p; does not belong to Py
as there exists a point y(= ps(= W(p7))) in NG (p7) N Nag(x) which belongs to
X and such that U(y) (= p3) belongs to X (or more directly, as p; verifies no
template in Fig. [7).

The figure [§ (c) shows an image built from the configuration in Fig. Bl (a)
such that each point is either a non simple point (except ) or an end point, and
no point can be deleted by PK, nevertheless the point z is deleted by LB.
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Fig. 9. Skeletons of a synthetic object and of a vertebra, with Pk and LB. Under each
figure are given the number of the last subiteration of deletion and the number of

deleted points

5.3 Results

The skeletons of some images, obtained respectively by PK and LB are shown in
Fig.[@ We observe that the number of deletion subiterations required by LB is
less than or equal to the one of PK. The number of points deleted by LB is less
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than or equal to the one of PK. We recall that it is possible that LB needs more
subiterations to obtain a skeleton than PK needs (see Fig. Bl (c)).

6 Conclusion

We have conceived a new 6-subiteration thinning algorithm, based on the dele-
tion of P*-simple points, by applying a recent methodology that we proposed in
[T]. As it deletes solely P*-simple points, this algorithm is guaranteed to preserve
the topology. Furthermore, we have proposed some various sets P such that our
final algorithm deletes at least all the points removed by PK, while preserving
the same end points. This also implies that PK is guaranteed to preserve the
topology. In addition, our final algorithm also deletes points removed by the
Gong and Bertrand’s algorithm [I6] (in the variant proposed by Rolland et al.
[I7]) while preserving the same end points.

In another study [1182], we succeeded in proposing a new 12-subiteration thin-
ning algorithm for 3D binary images, which produces curve or surface skeletons,
and such that it deletes at least the points removed by one other 12-subiteration
thinning algorithm [18]. A future work will propose new fully parallel thinning
algorithms for 2D and 3D binary images.
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