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Abstract. Although surfaces are more and more often represented by
dense triangulations, it can be useful to convert them to B-spline sur-
face patches, lying on quadrangles. This paper presents a method to
construct coarse topological quadrangulations of closed triangulated sur-
faces, based on theoretical results about topological classification of sur-
faces and Morse theory. In order to compute a canonical set of generators,
a Reeb graph is constructed on the surface using Dijkstra’s algorithm.
Some results are shown on different surfaces.

1 Introduction

Surfaces of arbitrary shape and topology are often represented in computer
graphics by large fine triangle meshes, obtained with complex data acquisition
hardware. Such discrete surfaces are not easy to store and handle because of the
huge amount of data. Many works trying to reduce the number of triangles have
been carried, see e.g. [9] for a survey. Other approaches convert these dense trian-
gle meshes representation to other suitable models, such as parametric surfaces
[5,12].

Our goal is to create a new discrete representation of the surface by large non
planar quadrangles, in order to later set B-spline surface patches on them (one
patch per quadrangle). Constructing a quadrangulation can be a very different
task depending on whether we try to optimize the shape of the quadrangles
(i.e. we try to maximize the minimum angle among quadrangles), the number of
quadrangles, or the number of extraordinary vertices. Minimizing the number of
extraordinary vertices can be an important point since problems generally occur
at their vicinity, when analyzing continuity between B-spline surface patches or
the limit surface of a subdivision scheme for example.

On one hand, most of existing techniques try to construct good shaped quad-
rangles with few extraordinary vertices (see e.g. [15] for a survey), but, as a
result, the constructed quadrangulations are often fine. On the other hand, even
if some theoretical results exist concerning the minimal number of quadrangles
in a quadrangulation of a surface [8], there exists no algorithm able to construct
such a minimal quadrangulation for a surface of arbitrary topology.
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Unlike most of the previous works, we focus on the number of quadrangles,
in order to reduce the amount of data used to describe the surface. This paper
presents an algorithm to construct a coarse topological quadrangulation of a
closed triangulated surface with strictly positive genus. First, we recall some
theoretical definitions and give a theoretical topological quadrangulation of the
surface based on its canonical polygonal schema (Section 2). Then we describe
an algorithm to construct first a Reeb graph, then a canonical set of generators
and finally a coarse topological quadrangulation of a closed triangulated surface
(Section 3). Some results are shown in Section 4. Finally we conclude and discuss
future work in Section 5.

2 Theoretical Background

2.1 Quadrangulations

We call surface a connected compact 2-manifold of IR3. A quadrangle designates
any subset of IR3 homeomorphic to a closed square of IR2. In this paper, we
consider special decompositions of surfaces into vertices, edges and quadrangles
that we call pre-quadrangulations.

Definition 1 (Pre-quadrangulation). A pre-quadrangulation Q of a surface
M is a decomposition of M into a finite number of vertices, edges and quadran-
gles such that:

1. Q is a cell complex;
2. any pair of vertices is joined by at most two edges;
3. any two quadrangles of Q are either disjoint or meet in a common vertex

or intersect along one common edge or intersect along two non-consecutive
common edges;

Our definition includes quadrangulations as defined in [8]. But, unlike usual
quadrangulations, two vertices in a pre-quadrangulation can be joined by two
edges and two quadrangles can intersect along two edges. Figure 1 shows a pre-
quadrangulation of the torus: we have four distinct quadrangles, all having the
same four vertices A, B, C and D.

A vertex in a pre-quadrangulation is said to be ordinary if its valence (or
degree) is 4. Vertices with a valence different from 4 are said to be extraordinary.
We have the following remarkable relation:

Property 2. Let Q be a pre-quadrangulation of M , Ve the number of extraordi-
nary vertices in Q, and v1, . . . , vVe the valences of these extraordinary vertices.
We have:

∑Ve
i=1(vi − 4) = 8(g − 1), where g is the genus of M .

Property 2 shows that the sum of the orders (that is to say, the valences minus
four) of all extraordinary vertices is a surface invariant. This also shows that,
except for surfaces with genus equal to 1, any pre-quadrangulation of a surface
contains extraordinary vertices.

Since a pre-quadrangulation is a cell complex, we have the Euler relation
χM = V − E + F = 2− 2g.
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Fig. 1. Pre-quadrangulation of a torus.

Proposition 3. Let Q be a pre-quadrangulation of a surface M . Let V be the
number of vertices in Q, E the number of edges, F the number of faces (quad-
rangles) and χM the Euler characteristic of M : χM = 2−2g = V −E+F where
g is the genus of M .
A lower bound for the number of quadrangles needed to construct Q is
� 12 (
√

9− 8χM + 3)� − χM = � 12 (
√

16g − 7− 1)�+ 2g.

Example 4. For a torus (g = 1), we have F ≥ 3. For a 2-torus (g = 2), we have
F ≥ 6.

Proof. According to rule nr. 2 of the definition, E is lower or equal to twice the
number of pairs of vertices in Q, which is V (V−1)

2 : E ≤ V (V − 1).
Since each edge belongs to two faces, and each face has four distinct edges,
2E = 4F . We thus have F = V − χM and F ≤ V (V−1)

2 . Consequently,
2V − 2χM ≤ V (V − 1). This quadratic inequality has the solution:
V ≥ � 12 (

√
9− 8χM + 3)�. Finally, F = V −χM ≥ � 12 (

√
9− 8χM + 3)�−χM . ��

We do not know if a general formula gives the minimum number of
quadrangles in a pre-quadrangulation of a surface. We now construct a pre-
quadrangulation of a surface with only 4g quadrangles, based on the canonical
polygonal schema of the surface.

2.2 Canonical Polygonal Schema of a 2-Manifold

We assume here that the reader knows some basic notions of combinatorial
topology. We recall here the classification theorem for surfaces [6].

Theorem 5. An orientable 2-manifold M with genus g > 0 can be represented
canonically using a 4g-gon G, where all 4g vertices represent the same vertex
on M and edges are oriented. The labels of the edges around the polygon are of
the form: a1b1a−11 b−11 ...agbga

−1
g b−1g . Curves formed by partnered edges (e.g. a1

and a−11 ) are called canonical generators of M , and G is called the canonical
polygonal schema (or canonical fundamental polygon) of M .

A canonical set of generators is composed of two kinds of generators: g generators
surround the g holes (we will call them longitudinal generators) and g other
turn around each handle associated with a hole (we will call them latitudinal
generators). See Fig. 2 for an example and [4] for more details.
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Fig. 2. Canonical set of generators, canonical polygonal schema, and pre-
quadrangulation of a 2-torus. a1 and a2 are the longitudinal generators, and b1 and b2
are the latitudinal ones.

2.3 Quadrangulation of the Canonical Polygonal Schema

We present here a simple pre-quadrangulation of a surface with genus g > 0,
with 4g quadrangles and 2g + 2 vertices. This pre-quadrangulation is based
on the canonical polygonal schema of the surface: half the edges of the pre-
quadrangulation follow the canonical generators.
First, we choose an arbitrary vertex on the surface, O, to be the base-point of the
canonical polygonal schema. We then choose 2g other vertices A1, B1, . . . , Ag,
Bg, and join twice O and each Ai (resp. each Bi) together, along a longitudinal
(resp. latitudinal) canonical generator. We eventually choose a final vertex C
(which is not on an edge) and join twice C and each Ai (resp. each Bi) together.
We end up with 2g + 2 vertices, 8g edges and 4g quadrangles. An example is
shown on Fig. 2 (right).

The number of quadrangles, 4g, is close to the lower bound of Prop. 3. The
only extraordinary vertices of the pre-quadrangulation we propose are O and
C, which valences are equal to 4g (if g = 1, our pre-quadrangulation does not
contain any extraordinary vertex). We have chosen to minimize the number of
extraordinary vertices (with respect to the number of vertices), but it implies
the valence of these extraordinary vertices to be high, according to Prop. 2.
We will now call this pre-quadrangulation of the surface based on a quadrangu-
lation of its canonical polygonal schema a topological quadrangulation.

2.4 The Reeb Graph

To construct a canonical set of surface generators on a triangulated surface, we
will use a topological structure for compact manifolds named the Reeb graph.
The Reeb graph, named after Reeb [16], and Morse theory are powerful tools to
describe topological features on surfaces. Both are increasingly used in computer
graphics, mainly for terrain analysis and shape modeling [17,11,18,1]. See [6] for
an introduction about Morse theory and the Reeb graph.
A Reeb graph is defined as follows:
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Definition 6. Let f : M → IR be a real-valued continuous function on a com-
pact manifold M . The Reeb graph of f is the quotient space of M by the equiv-
alence relation ∼ defined by:
x1 ∼ x2 ⇔ f(x1) = f(x2) and x1 and x2 are in the same connected component
of f−1(f(x1)).

Figure 3 shows a Reeb graph of a height function on a torus (figure inspired by
[6]).

f

A

B

C

F
D

E

Fig. 3. A torus and the critical points of its height function f (left), connected com-
ponents of some level sets for f (middle), and the Reeb graph of f on this torus.

There are two kinds of nodes in a Reeb graph:

– Extremal nodes are nodes incident to only one edge (e.g. nodes A, E and F
on Fig. 3). They represent local extrema of the Morse function.

– Internal nodes are nodes incident to at least three edges (e.g. nodes B, C
and D on Fig. 3). They represent saddle points of the Morse function.

To find a canonical polygonal schema of a surface, we just need to find a cycle
basis in the Reeb graph; then each cycle will give us two canonical generators of
the surface (one longitudinal generator and the associate latitudinal one).

3 Constructing Quadrangulations of a Triangulated
Surface

3.1 Construction of a Reeb Graph on a Triangulated Surface

To define our Reeb graph, we must choose a function f . As said before, the
Reeb graph is mainly used in terrain analysis. In this case f is often a height
function, because we have a given orientation where the height is meaningful. In
our case (surfaces) we do not have such a particular orientation, so we choose,
as Lazarus and Verroust did before us [13], the shortest path distance to a given
source point on the surface.
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Very recently Hilaga et al. [10] have chosen to integrate this function over the
surface, in order to avoid the choice of the source point. Since we are only
interested in detecting a cycle basis on the Reeb graph, that is to say on the
topology of the surface and not the exact location of the critical points of f ,
we do not need to choose a very subtle (but computationally more expensive)
function f .
We approach f in our discrete case by the shortest edge path to the source point
on the triangulated surface. The source point S is chosen as the furthest vertex
from an arbitrary vertex: in practice S will be at the end of some long branch of
the surface; consequently the direction induced by f is geometrically meaningful.

If f is a Morse function and if all its singularities are simple, we can prove
that the Reeb graph we construct using this function determines the genus of
the surface [20]. If singularities are not simple, we can use Carr et al. algorithm
[2] to break them into multiple simple singularities. This method turns f into a
Morse function.

Proposed Algorithm. To avoid confusion between the nodes (resp. edges)
of the Reeb graph and the vertices (resp. edges) of the mesh, the first will be
called Reeb nodes (resp. Reeb edges) and the last just vertices (resp. edges).
To construct the Reeb graph of f on the surface, we must first compute the
value of f at all the vertices of the mesh, then detect the critical points of f
and finally link them to create the Reeb edges. Actually, we will do the three
steps at the same time, using Dijkstra’s algorithm.
With each vertex X of the triangulation we associate a value v(X) (at the
end of the algorithm v(X) will be equal to the value of f at X), and a list of
attributes. Attributes will be used to identify Reeb edges: two vertices X and Y
will have the same attribute if and only if the segment [f(X), f(Y )] contains
non critical value of f and X and Y belong to the same connected component
of f−1([f(X), f(Y )]). At the beginning, each vertex value is +∞ and vertices
have no attribute, except the source point which value is 0 and which has one
attribute.
At each step the current processed vertex is the vertex X with minimal value:
we know that f(X) = v(X). Values of all neighbouring vertices of X are
updated using Dijkstra’s algorithm.
We then compute the number of sign change n(X) for v − v(X) when we cover
all neighbouring vertices Y . Since we use Dijkstra’s algorithm, if v(Y ) < v(X)
then v(Y ) = f(Y ) and thus f(Y ) < v(X), otherwise v(X) < f(Y ). Thus n(X)
is also the number of sign change for f − f(X). Furthermore, note that n(X) is
always even (our triangulated surface is closed, so the neighbourhood of X is a
ring).
If n(X) = 0, X is a local extremum for f , that is to say an extremal Reeb node.
His only attribute will be equal to the (first) attribute of its predecessor (for
Dijkstra’s algorithm). If n(X) = 2, X is not a Reeb node. His only attribute
will also be equal to the (first) attribute of its predecessor. Finally if n(X) ≥ 4,
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X is an internal Reeb node. We compute its local level set and its connected
components (see below). Each vertex of each upper connected component will
be given a new attribute (the same for all vertices in the same connected
component). X will be given all attributes of its upper and lower connected
components.

A Reeb edge between vertices A and B with f(A) < f(B) will be computed as
a path made from B to its successive predecessors through Dijkstra’s algorithm
until A or a vertex with the corresponding attribute is found, and the path
made from this vertex to A following a connected component of A (if A is not
the source point, A is an internal node of the graph, so its local level set has
been computed).

Local Level Sets. The local level set LS(X) of X is a set of pairs of vertices
(Y,Z) where f(Y ) > f(X) and f(Z) < f(X) (see Fig. 4). An upper (resp.
lower) connected component of X will be a connected component of the set of all
Y (resp. Z) in LS(X) such that f(Y ) > f(X) (resp. f(Z) < f(X)). Note that
a connected component of X will be a set of vertices, and not a set of pairs of
vertices.

Y3Y4 Y2 Y1

Y ′2

X

′
1

Y17
Z17

Y ′3
Y18

Y28Y29Y30Y31

Z31Z32Z33Z34Z35Z1
Z2

Z3
Z4

Fig. 4. Local level set of an internal node X and its connected components. Here we
have two upper connected components (Y1...Y17Y

′
1Y
′
2 and Y18...Y31Y

′
3 ) and one lower

connected component (Z1...Z17...Z35).

To compute LS(X) and the connected components of X, we use a very simple
algorithm:

LS:=0
Repeat
Choose two adjacent vertices Y and Z in the neighbourhood of X
such as f(Y)>f(X) and f(Z)<f(X)
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Add (Y,Z) to LS
avoid_vertex:=X
new_vertex:=Y
While new_vertex is different from X do:
new_vertex:=the vertex adjacent to Y and Z which is not avoid_vertex
If f(new_vertex)<f(X) then
Add (Y,new_vertex) to LS
avoid_vertex:=Z
Z:=new_vertex

Elsif f(new_vertex)>f(X) then
Add (new_vertex,Z) to LS
avoid_vertex:=Y
Y:=new_vertex

End if.
End while.
We now have two new connected component of X (not complete)

Until it is no more possible to choose such two adjacent vertices.

To complete our connected components and possibly merge them, we com-
pute the vertex NV adjacent to X and Y (where Y is the last vertex of a
connected component) which is not the previous vertex of the connected compo-
nent. We add it to the connected component, replace Y by this new vertex and
do the same until NV is in LS(X). If the last vertex NV (which is in LS(X)) is
also in the connected component, this connected component is complete. If not,
we must merge it with the connected component where is NV .

3.2 Construction of a Canonical Set of Generators

Only a few algorithms have been proposed to construct a canonical set of
generators [19,3,14]. All three only use mesh properties and not the Reeb graph.
Providing that the genus of the surface is strictly positive, finding a cycle basis
B on our constructed Reeb graph will give us information about the location of
surface holes, and thus about surface generators.
To find B, we use a traditional graph theory algorithm: we find a maximal
forest1 on the Reeb graph, then for each edge which is not in this forest we find
a minimal cycle containing this edge. The set of all minimal cycles found is B.
Such algorithms are detailed in graph theory books, e.g. [7].

Once we have found B we can construct a canonical set of surface generators:
for each cycle C in B there exists one longitudinal generator and one latitudinal
generator. The longitudinal generator is simply C. To construct the latitudinal
generator we find the cycle vertex V with the minimal value, and then follow
an upper connected component of V (we have computed the local level set of V
when we have constructed the Reeb graph).

1 A forest is a subgraph with no cycle.
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3.3 Topological Quadrangulations of a Triangulated Surface

To construct our pre-quadrangulation on the triangulated surface, we must first
choose which vertices will be O, the Ak, the Bk and C (cf. Section 2.3 for the
notations).
We take O equals to the source point and C equals to the vertex for which f is
maximum. Then for each k we define Bk as the internal node of the Reeb graph
with the lowest value and belonging to the kth latitudinal cycle of the basis,
and Ak as the internal node with the greatest value and belonging to the kth

longitudinal cycle of the basis.
To construct the edges OAk and OBk of the quadrangulation, we continuously
distort each generator of the constructed canonical set of generators so that O
belongs to it (this can be done in time O(g.n), n being the number of vertices
in the initial triangulation, since Dijkstra’s algorithm computes for each vertex
a path to the source point). Then we follow the distorted generators: the lon-
gitudinal ones for the edges OAk and the latitudinal ones for the edges OBk.
We can do the same to construct the edges CAk and CBk, since O and C
are dual points on the pre-quadrangulation (see Fig. 5 for an example): edges
CAk correspond to the latitudinal generators and edges CBk correspond to the
longitudinal generators.
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Fig. 5. Generators of a torus (top left), edges OAi and OBi of the topological quad-
rangulation (top middle), edges CAi and CBi of the topological quadrangulation (top
right). The bottom figure shows the quadrangulation “centered” either at C or at O
(quadrangles are numbered from 1 to 4).
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4 Results

Some results are shown on Fig. 6. Top left figure shows the Reeb graph computed
on a topological sphere (no hole, 1071 vertices, 2138 triangles). Note the local
(non global) extremum on the middle of the helix. The two other top figures
show the Reeb graph and a canonical set of generators computed on a rocker
arm with one hole (10044 vertices, 20088 triangles). This model is courtesy of
Cyberware (www.cyberware.com). The two bottom left figures shows canonical
sets of generators of a knot-shaped torus (4245 vertices, 8490 triangles; the lat-
itudinal generator is bottom left of the figure) and a topological 3-torus (1572
vertices, 3152 triangles). Finally bottom right figure shows the coarse topological
quadrangulation of a simple torus (400 vertices, 800 triangles) constructed with
our algorithm.
The computation time of our algorithm is O(n2). Time used by Dijkstra’s al-
gorithm to construct the Reeb nodes is O(n. log(n)), but then to construct the
Reeb edges we need to compute the local level sets of Reeb nodes. This takes
O(n2) time.

(a) (b) (c)

(d) (e) (f)

Fig. 6. Reeb graph (a,b), canonical set of generators (c,d,e), and topological quadran-
gulation (f) of some closed surfaces.

www.cyberware.com
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5 Conclusion and Future Work

We have presented theoretical results and a new algorithm to construct a new
discrete representation of a closed triangulated surface with strictly positive
genus by a coarse topological quadrangulation. Our method first construct a
Reeb graph on the surface using Dijkstra’s algorithm and then the generators of
this surface.
Further work includes quadrangulation refinement to take surface geometrical
singularities into account, and optimization (in terms of angles in quadrangles,
extraordinary vertices, . . . ). The choice of the function used to define the Reeb
graph can also be improved to fulfill these goals.

Acknowledgment. The authors would like to thank Francis Lazarus for fruitful
discussions and helpful comments, especially concerning the number of cycles in
the Reeb graph.
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