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Abstract. In this paper we present a new discrete implementation of
ridgelet transforms based on Reveillès discrete 2D lines. Ridgelet trans-
forms are particular invertible wavelet transforms. Our approach uses the
arithmetical thickness parameter of Reveillès lines to adapt the Ridgelet
transform to specific applications. We illustrate this with a denoising and
a compression algorithm. The broader aim of this paper is to show how
results of discrete analytical geometry can be sucessfully used in image
analysis.

1 Introduction

Image analysis is traditionally aimed at understanding digital signals obtained
by sensors (in our case cameras). Digital information is considered as sampled
continuous information and the theoretical background for it is signal theory.
This is sometimes referred to as “digital geometry” in opposition to “discrete
geometry” for computer graphics. These last ten years, since J-P. Reveillès has
introduced it [1], discrete analytical geometry has made an important progress
in defining and studying classes of discrete objects and transformations. This
greatly enhanced our understanding of the links between the discrete world Z

n

and the continuous world R
n. In the same time, a new discrete signal decomposi-

tion has been developed in image analysis: the wavelet representation. This new
representation has many applications such as denoising, compression, analysis,
etc. One of the aims of this paper is to apply this new insight in discrete geom-
etry to image analysis and more specifically to a particular wavelet transform:
the ridgelet transform.

Wavelets are very good at representing point singularities ; however they are
significantly less efficient when it comes to linear singularities. Because edges are
a extremely common phenomena in natural images, an efficient multiresolution
representation of images with edges would be quite advantageous in a number of
applications. A team of Stanford has recently developed an alternative system
of multiresolution analysis specifically designed to efficiently represent edges in
images [2]. Their attempt was to design a new system, called ridgelet transform,
in the continuous domain so that an image could be approximated within a
certain margin error with significantly fewer coefficients than would be required

A. Braquelaire, J.-O. Lachaud, and A. Vialard (Eds.): DGCI 2002, LNCS 2301, pp. 417–427, 2002.
c© Springer-Verlag Berlin Heidelberg 2002
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after a wavelet decomposition. However, most of the work done with ridgelets
has been theoretical in nature and discussed in the context of continuous func-
tions. The important bridge to digital implementation is tenuous at best. To
our knowledge, we can find in the literature only two solutions for the digital
ridgelet decomposition [3], [4] (notice that the study proposed by Guédon et al is
similar [5]).This paper presents a new approach that aims at representing linear
singularities with a discrete ridgelet transform based on Reveillès discrete lines.

In this article, we propose a new approach of the ridgelet transform based
on several types of Reveillès discrete lines definitions in the Fourier domain. Our
decomposition has an exact inverse reconstruction process and the redundancy
of our Ridgelet representation can be adjusted with the arithmetical thickness
of the Reveilles discrete lines. To illustrate this new decomposition, we propose
a method of restoration of noised images which uses a wavelet undecimated
method defined in [6].

2 The Ridgelet Transform

2.1 The Wavelet Transform

The discrete wavelet transform (DWT) stems from the multiresolution analy-
sis and filter bank theory [7]. The multiresolution analysis is a decreasing se-
quence of closed subspace {Vj}j∈Z that approximates L2 (�) (f ∈ L2 (�) if∫∞
−∞ ‖f (x)‖2 dx < ∞). A function s ∈ L2 (�) is projected, at each step l, onto

the subset Vl. This projection is defined as the scalar product, noted cl, of s with
a scaling function, noted φ that is dilated and translated:

cl(k) =
〈
s(x), 2−l/2φ

(
2−lx− k

)〉
= 〈s(x), φl,k (x)〉 (1)

k is the translation parameter and l is the dilatation parameter with k, l ∈ Z.

At each step (if l is growing), the signal is smoothed. The lost informations
can be restored using the complementary subspace Wl+1 of Vl+1 in Vl. This
subspace is generated by a wavelet function ψ with integer translation and dyadic
dilatation; the projection of s on Wl is defined as the scalar product, noted dl:

dl(k) =
〈
s(x), 2−l/2ψ

(
2−lx− k

)〉
= 〈s(x), ψl,k (x)〉 (2)

Then, the analysis is defined as :

cl(k) =
1√
2

∑
n

h(n− 2k)cl−1(k), dl(k) =
1√
2

∑
n

g(n− 2k)cl−1(k)

with cl the coarse approximation, dl the decimated wavelet coefficients at scale
l and c0 the original signal, the sequence {h (k) , k ∈ Z} is the impulse response
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of a low-pass filter and the sequence {g (k) , k ∈ Z} is the impulse response of
a high-pass filter. Notice that with conditions required on the filters, we get an
exact restoration.

Mallat’s multiresolution analysis is connected with so called ”pyramidal” al-
gorithms in image processing [8]. Because of decimation after filtering, the Mal-
lat’s decomposition is completely time variant. A way to obtain a time-invariant
system is to compute all the integer shifts of the signal. Since the decomposi-
tion is not decimated, filters are dilated between each projection. This algorithm
presents many advantages, particularly a knowledge of all wavelets’ coefficients:
coefficients removed during the downsampling are not necessary for a perfect
reconstruction, but they may contain information useful for the denoising.

2.2 Continuous Theory of Ridgelet Transform

A substantial foundation for Ridgelet analysis is documented in the Ph.D. thesis
of Candès [2]. We briefly review the ridgelet transform and illustrate its con-
nections with the radon and wavelet transforms in the continuous domain. The
continuous ridgelet transform of s ∈ L2

(�2) is defined by :

r(a, b, θ) =
∫
R2

ψa,b,θ(x)s(x)dx

with ψa,b,θ(x) the ridgelet 2-D function defined from a wavelet 1-D function
ψ as:

ψa,b,θ(x) = a−1/2ψ
(
x1 cos θ + x2 sin θ − b

a

)
b is the translation parameter, a is the dilatation parameter and θ is the

direction parameter.
The function is oriented at the angle θ and is constant along lines x1 cos θ +

x2 sin θ = cst. Transverse to these ridges it is a wavelet. In comparison, the
analysis continuous 2-D wavelet function are tensor products of 1-D wavelet
ψa,b:

ψa,b(x) = ψa1,b1(x1)ψa2,b2(x2)

The Radon transform seems to be similar to the 2-D wavelet transform but
the translation parameters (b1, b2) are replaced by the line parameters (b, θ).
Then, the wavelets are adapted to analyse isolated point discontinuities, while
the ridgelets are adapted to analyse discontinuities along lines.

A basic tool for calculating ridgelet coefficients is to view ridgelet analysis
as a form of wavelet analysis in the Radon domain: in 2-D, points and lines are
related via the radon transform, thus the wavelet and ridgelet transforms are
linked via the Radon transform.

The Radon transform of s is defined as:

Rs(θ, t) =
∫
R2

s(x)δ(x1 cos θ + x2 sin θ − t)dx1dx2
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where δ is the Dirac distribution. The ridgelet coefficients r(a, b, θ) of s are given
by the 1-D wavelet transform to the projections of the Radon transform where
the direction θ is constant and x is varying:

r(a, b, θ) =
∫
R

ψa,b(x)Rs(θ, x)dx

Notice that the Radon transform can be obtained by applying the 1-D inverse
Fourier transform to the 2-D Fourier transform restricted to radial lines going
through the origin (this is exactly what we are going to do in the discrete Fourier
domain with help of discrete Reveillès lines):

ŝ(ω cos θ, ω sin θ) =
∫
R

e−jωxRs(θ, x)dx

with ŝ(ω) the 2-D Fourier transform of s.
This is the projection-slice formula which is used in image reconstruction

from projection methods. We deduce that the Radon transform can be obtained
by applying the 1-D inverse Fourier transform to the 2-D Fourier transform
restricted to radial lines going through the origin. These relations are shown in
figure 1.

Fig. 1. Relation between transforms

2.3 Discrete Ridgelet Transform

As we have seen, a basic strategy for calculating the continuous ridgelet trans-
form is first to compute the Radon transform Rs(θ, t) and secondly, to apply
a 1-D wavelet transform to the slices Rs(θ, .). The discrete procedure uses the
same principle.

As presented in the first section, the discrete wavelet decomposition is easy to
implement, is stable and invertible, and can be associated to a discrete orthogonal
representation.

The discretization of the Radon transform is more difficult to achieve. The
majority of methods proposed in the literature have been devised to approxi-
mate the continuous formula. But, none of them were specifically designed to
be invertible transforms for discrete images and can not be used for the discrete
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Ridgelet transform. Recently, some articles studied the implementation of the
digital Ridgelet transform. Two approaches have been developed:

– Spatial strategy for digital Radon transform: the Radon transform is defined
as summations of image pixels over a certain set of lines. Those lines are
defined in a finite geometry in a similar way as the line for the continuous
Radon transform in the Euclidean geometry.

Rs(p, q, b) =
∑
x

∑
y

s(x, y)δ (b + px− qy) with (p, q) direction of projection

In [5] an inverse transform based on erosion and dilatation operations is
proposed. Vetterli et al. proposed in [3] an orthonormal ridgelet transform.

– Fourier strategy for digital Radon transform: the projection-slice formula
suggests that approximate Radon transforms for digital data can be based
on discrete Fast Fourier transforms (FFT). This is a widely used approach
in the literature of medical imaging and synthetic aperture radar imaging.
The Fourier-domain computation of an approximate digital radon transform
is defined as:
1. Compute the 2-D FFT of f
2. Extract Fourier coefficients which fall lines Lθ going through the origin.
3. Compute the 1-D FFT on each line Lθ (defined for each value of the

angular parameter).
In this strategy too, discrete lines must be defined. In [4], Starck et Al pro-
posed to use an interpolation scheme which substitutes the sampled value
of the Fourier transform obtained on the square lattice with sampled value
of ŝ on a polar lattice. In this paper, we propose to define the lines Lθ with
the discrete geometry in the Fourier domain. This solution allows us to have
different Ridgelet decompositions according to the arithmetical thickness of
the discrete Reveillès lines. Our transformation is redundant but the repeti-
tion of information depends on the type of the discrete lines used and can be
adapted with the application. Moreover we obtain an exact reconstruction.

3 Digital Radon Transform Based on Reveillès Discrete
2D Lines

3.1 Definition of Discrete Lines

The discrete lines that are used in our application are not classical discrete lines
such as, for instance, Bresenham lines nor the classical Reveillès lines. These lines
are not suitable for our purpose because they do not provide a central symmetry
in the Fourier domain. Without central symmetry, the inverse Fourier transform
would produce imaginary values during the Radon transform. Central symmetry
is obtained easily by using closed Reveillès discrete lines defined as follows:

Lω(p,q) =
{

(x, y) ∈ Z
2 ||px + qy| ≤ ω/2

}
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with (p, q) ∈ Z
2 the direction of the line (direction of Radon projection) and ω

the arithmetical thickness.
The parameter ω defines the connectivity of the discrete lines. The closed

discrete lines have many interesting properties. One of the most important ones
is that each type of closed discrete line is directly linked to a distance: for instance

L

√
p2+q2

(p,q) =

{
(x, y) ∈ Z

2

∣∣∣∣∣|px + qy| ≤
√
p2 + q2

2

}

is equal to
{
M ∈ Z

2
∣∣d2 (M,L(p,q)

) ≤ 1
2

}
where L(p,q) : px + qy = 0 is the

Euclidean line of direction (p, q) and d2 the Euclidean distance [9].

Fig. 2. Redundancy on the cover of the Fourier lattice by (a) closed näıve lines (b)
supercover lines

3.2 Closed Reveillès Discrete Lines for Digital Radon Transform

Our Digital Radon transform is defined by:

Rωs(p, q, b) =
K∑
k=0

ŝ(fk)e2πj
k
K b with fk =

(
fk1
fk2

)
such that

∣∣pfk1 + qfk2
∣∣ ≤ ω/2

and K the length of a line segment of Lωp,q

We must define the set of discrete directions (p, q) in order to provide a
complete representation. The set of line segments must cover all the square
lattice in Fourier domain. For this, we define the direction (p, q) according to
pairs of symmetric points from the boundary of the 2-D Discrete Fourier Spectra.
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Proposition 1. Let a square lattice be defined as Ω2N = [−N,N ] × [−N,N ].
Let us consider the set of directions (pm, qm) with, for 0 ≤ m ≤ 2N, (pm, qm) =
(N,m−N) and for 2N + 1 ≤ m ≤ 4N − 2, (pm, qm) = (m− 3N + 1, N).
The set of all the closed lines defined by |pmf1 + qmf2| ≤ ωm/2 with ωm ≥
sup (|pm| , |qm|) provides a complete cover of the lattice Ω2N .

The proof of this proposition is obvious because of a well known result in
discrete analytical geometry that states that a closed discrete line of direction
(p, q) is connected if and only if ω ≥ sup (|p| , |q|) [1]. For thinner (non connected)
discrete lines, with values of ω < sup (|p| , |q|) , it is possible but not certain that
we also achieve a complete cover of the lattice Ω2N depending on the value of
ω compared to N . However, for our applications, we preferred working with
connected discrete lines.

Figure 2 illustrates the cover of the Fourier lattice (on the first octant) by
two different types of discrete lines. The grey value of the pixels represents the
redundancy in the projection (number of times a pixels belongs to a discrete line).
One isolated line is drawn to shown the illustrate the arithmetical thickness of
each type of line.

Three different types of closed discrete lines have been tested:

– closed naive discrete lines: ω = sup (|p| , |q|). These lines are the thinnest con-
nected closed discrete lines. They are 8-connected. They provide therefore the
smallest redundancy as we can see on figure 2(a). Closed naive discrete lines
are related to the distance d1: L

sup(|p|,|q|)
(p,q) =

{
M ∈ Z

2
∣∣d1 (M,L(p,q)

) ≤ 1
2

}
where d1 (A,B) = |xA − xB |+ |yA − yB |;

– supercover lines: ω = |p|+ |q|. These lines are the thickest connected closed
discrete lines that have been considered in our applications. They are the
thinnest closed lines that are 4-connected and that cover the Euclidean
line they approximate. They provide of course an important redundancy
as we can see on figure 2(b). Supercover lines are related to the distance
d∞: L|p|+|q|(p,q) =

{
M ∈ Z

2
∣∣d∞ (M,L(p,q)

) ≤ 1
2

}
. The supercover lines have an

important theoretical importance.
– closed Pythagorean lines: ω =

√
p2 + q2. These lines are 8-connected and

offer a medium redundancy, in between the naive and supercover lines. The
lines are related to the Euclidean distance d2:

L

√
p2+q2

(p,q) =
{
M ∈ Z

2
∣∣∣∣d2 (M,L(p,q)

) ≤ 1
2

}
.

These lines possess the property of having a number of pixels per period
close to its length. This means, in practice, that if pixels of the discrete line
would hold energy, this energy would be distributed evenly along the line in
the same way independently of the slope of the line.
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3.3 Discrete Ridgelet Transform

Now, to obtain the Ridgelet transform, we simply apply the 1-D wavelet trans-
form on each discrete Radon coefficients Rωs(p, q, b) obtained on the line segment
Lωp,q.

This transform is easily invertible. The reconstruction procedure works as
follows:

1. Compute the inverse 1-D wavelet transform followed by the inverse 1-D FFT
transform for each set Rωs(pm, qm, .) with m ∈ [0, 4N − 2]

2. Substitute the sampled value of f̂ on the lattice where the points fall on lines
Lωp,q with the sampled value of f̂ on the square lattice.

The precedent procedure permits one to obtain an exact reconstruction if the
set of M = 4N − 2 lines provides a complete cover of the square lattice.

Fig. 3. (a) Noisy image “object” (b) denoised by ridgelet decomposition with
pythagoricean discrete lines, ω =

√
q2 + p2(c) noisy image woman (d) denoised by

ridgelet decomposition with näive lines, ω = max(|p| , |q|) (e) denoised by ridgelet de-
composition with supercover lines, ω = |p|+ |q| .

Now with our invertible discrete Radon transform, we can obtain an invert-
ible discrete Ridgelet transform by taking the discrete wavelet transform on
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each Radon projection sequence {Rωs(pm, qm, k)}b∈[0,K−1] where the direction
(pm, qm) is fixed. This wavelet transform can be decimated or undecimated and
the wavelet base can be adapted according to the application, as for the classi-
cal wavelet decomposition. Notice that our strategy generalizes and unifies the
methods proposed in the litterature that use particular forms of discrete lines
(see section on discrete ridgelet transform).

4 Illustration and Discussion

To illustrate the different applications that can be achieved with the new discrete
ridgelet transform based on closed Reveillès discrete lines, we have developed two
examples: a denoising and a compression algorithm.

The procedure of denoise by Ridgelet transform consists simply in threshold-
ing the Ridgelet coefficients and computing the inverse Ridgelet transform. The
thresholding is performed with help of an undecimated method developed for
the wavelet decomposition [6]. The redundancy of the wavelet decomposition,
associated with this method, reduces artifacts which appear after thresholding
[6].

Fig. 4. (a) Original image (b) noisy image (c) denoising with näıve lines (d) denoising
with pythagoricean lines (e) denoising with supercover lines

We present in the figure two results of our denoising method. With the first
example, we can see that this method can reconstruct very noisy images. Be-
cause of the adaptation of this decomposition to linear singularities, the edges of
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objects are preserved and the noise seems to be removed. The second example
illustrates the results for different definition of the lines Lωp,q. As for the first im-
age, the features are generally correctly reconstructed and the noise is smoothed.
But if we study more precisely the result on the woman’s hat, we see that the
denoising is better for ω = |p|+ |q|, supercover lines, than for ω = max(|p| , |q|),
naive discrete lines. The first choice of arithmetical thickness ω introduces more
redundancy into the decomposition. Due to this redundancy we obtain an aver-
age value during the reconstruction process that reduces the artifacts.

In order to illustrate more precisely the result of the denoising algorithm
with different type of discrete closed lines we have generated an artificial image
(Figure 4 (a)) and added important white noise (Figure 4 (b)). To show the
effect of the noise we have added a vertical slice of each image (at the left of (a)
and right of (b)). Figures 4 (c), (d) and (e) are the results obtained with the
denoising algorithm for the three definitions of closed discrete lines. As we can
see, for a more redundant decomposition (supercover discrete lines, figure 4 (e))
the denoising is better than for a lesser redundant decomposition (4 (c)).

Fig. 5. (a) Original image (b) image compressed at 70% with näıve discrete lines (c)
image compressed at 70% with supercover lines
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Contrary to the denoising algorithm problematic, for an efficient compres-
sion algorithm, redundancy is of course not interesting (more redundancy means
more information and thus less compression). In our example, Figure 5, in order
to obtain a compression of the image, we have selected in the ridgelet decom-
position, the 30% most important (highest) coefficients. This leads to a 70%
compression rate. Of course, this is not a very sophisticated procedure and post-
processing would be applied in real applications. This illustrates however how
the arithmetical thickness of the discrete lines employed in our ridgelet trans-
form influences the quality of the compressed image. As expected, the lower
redundancy representation (naive discrete lines) preserves all the features of the
original image after thresholding (Figure 5 (b)). On the other hand, with the
higher redundancy representation (supercover lines) we loose features and the
image is globally of lower quality.

This work can be extended in several directions. One of the more theoretical
discrete geometry question that is the question of the smallest value of ω for
which we one could obtain a full cover of the Fourier lattice. This is still an open
and it seems difficult arithmetical problem. We are also considering extending
our denoising and compression algorithms with more sophisticated filters and
parameters. It is clear that, for instance, the quality of the result of compression
algorithm, where we have performed a simple thresholding, can be increased.
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