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Abstract. A new definition of closed curves in n-dimensional discrete
space is proposed. This definition can be viewed as a generalization of
closed quasi curves and is intended to overcome the limitations of known
definitions for practical purposes. Following the proposed definition, a
set of points forms a closed curve in discrete space if the set admits a pa-
rameterization, i.e. there exists a Hamiltonian cycle in the set. Adjacen-
cies that do not indicate the parameterization are allowed only between
points that are “close to each other” along the parameterization. Addi-
tionally, it is proven that discrete curves satisfying the new definition in
two-dimensional discrete space have the Jordan property.

1 Introduction

Curves are basic objects in geometry and play an important role in modeling.
New application fields of volume data have been emerging during the last years,
which require modeling of synthetic discrete objects, i.e. geometrically defined
objects in ZZ3 or data sets generated by rastering [1,16] geometric descriptions of
objects given in IR3. Such application fields are, e.g., virtual reality in medicine
[17], volume-based interactive design and sculpturing [15,14].

Curves in two-dimensional discrete space, i.e. in ZZ2, are a well explored
subject [12,7,4]. The certainly best known definition is the one of simple closed
curves [10,11]. This definition is very restrictive for many practical purposes. To
overcome this problem, closed quasi curves have been introduced [7]. Although,
the definition of closed quasi curves works well in many cases in ZZ2, it is still
rather limited in higher dimensional space. This point is further discussed in
Sect. 4.

In this paper, a new definition of closed quasi curves is proposed. This defi-
nition can be viewed as a generalization of quasi curves as introduced in [7] and
overcomes the limitations of them. Moreover, the definition is given for curves
in n-dimensional discrete space.

The paper is organized as follows: Section 2 gives some definitions and nota-
tions used throughout the paper. In Sect. 3 simple closed curves are explored,
� This work has been supported by a postdoctoral grant of the DFG (Deutsche For-
schungsgemeinschaft).

A. Braquelaire, J.-O. Lachaud, and A. Vialard (Eds.): DGCI 2002, LNCS 2301, pp. 34–44, 2002.
c© Springer-Verlag Berlin Heidelberg 2002



Curves in ZZn 35

and Sect. 4 deals with closed quasi curves. Afterwards, the new definition of
closed quasi curves is suggested and discussed in Sect. 5. Finally, Sect. 6 sum-
marizes the paper.

2 Definitions and Notations

The n-dimensional discrete space ZZn is constituted by the n-dimensional array
of points with integer coordinates in the Cartesian coordinate system. A few
definitions are given below particularly regarding ZZ2 and ZZ3. These defini-
tions can be easily modified and extended to a discrete space of higher dimension.

Adjacency relations. Two points p(xp, yp) and q(xq, yq) of ZZ2, where (|
xp − xq |≤ 1) ∧ (| yp − yq |≤ 1), are said to be 4-adjacent if | xp − xq | + |
yp − yq |= 1, and 8-adjacent if 0 <| xp − xq | + | yp − yq |≤ 2.

Two points p(xp, yp, zp) and q(xq, yq, zq) of ZZ3, where (| xp − xq |≤ 1) ∧ (|
yp−yq |≤ 1)∧ (| zp−zq |≤ 1), are said to be 6-adjacent if | xp−xq | + | yp−yq |
+ | zp − zq |= 1, 18-adjacent if 0 <| xp − xq | + | yp − yq | + | zp − zq |≤ 2, and
26-adjacent if 0 <| xp − xq | + | yp − yq | + | zp − zq |≤ 3.

Points k-adjacent to p, where k ∈ {4, 8, 6, 18, 26}, are called k-neighbours of
p. The points in the k-neighbourhood of a point p are the points k-adjacent to p
and p itself, and are denoted with Nk(p).

In ZZn, n different types of adjacency relations can be defined, similarly
as stated above for n = 2, 3. Following the definitions of adjacency relations
as introduced for ZZ2 and ZZ3, one type of adjacency relation is a subset of
the other. For example, in ZZ3, the set of 6-adjacencies is a subset of the set
of 18-adjacencies, which in turn is a subset of the set of 26-adjacencies. This
correlation of the types of adjacency relation can be used as criterion for an
ordering, such that for a point p in ZZn the adjacency relation of the sth-order
with 0 < s ≤ n covers all neighbouring points of ZZn that vary in exactly s
coordinates from p.

Paths. A k-path P in ZZn is a sequence of distinct points P = {p0, p1, ..., ph}
of ZZn such that any two consecutive points pi and pi+1 with 0 ≤ i < h along
the sequence are k-adjacent. The k-path P is said to be a closed path if p0 is
k-adjacent to ph.

Connectivity. Two points p, q are said to be k-connected in a subset A of
ZZn if there exists a k-path from p to q consisting entirely of points of A. A set
A of ZZn is said to be k-connected if every two points of A are k-connected in A.
A component A is k-adjacent to a point p, and equivalently p is k-adjacent to
A, if A contains some k-neighbour of p. The tth-order of connectivity is defined
by the types of adjacency of sth-order with 0 < s ≤ t. For example, a set in ZZ3

connected in the 2nd-order is 18-connected.
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Graph-theoretical approach. Considering ZZn as the set of vertices V of a
non-oriented graph G(V,A) and the adjacencies between the points of ZZn as set
of edges A is commonly defined as graph-theoretical approach [2] and the graph
G itself is referred to as adjacency graph. An object O ⊂ ZZn then becomes a
subgraph G′(V ′, A′) of G with O = V ′ ⊂ V and A′ ⊂ A where A′ is the set of
edges representing the adjacencies between the points of O.

3 Simple Closed Curves

A curve in continuous space IRn is denoted with γ and, in contrast, a curve in
ZZn is denoted with γd throughout the paper.

In continuous space, the Jordan Curve Theorem considers a closed curve γ
homeomorphic to a circle in IR2 [9] and states that such a curve γ separates IR2

into two disjoint connected sets. This feature of γ is known as Jordan property,
which is an important property of closed curves in IR2 and shall be kept for closed
curves in discrete space. The Jordan curve theorem was originally proposed for
discrete curves in ZZ2 by Rosenfeld [10,11] for pairs of adjacency relations
(k, l) where k represents the connectedness of a curve γd and l represents the
connectedness of ZZ2− γd. The Jordan curve theorem holds for (8, 4) and (4, 8).

Theorem 1 (Discrete Jordan Curve Theorem [2]). Let γd be an k-
connected set of ZZ2 containing at least five points and any point p of γd is
k-adjacent to exactly two other points of γd. Then ZZ2 − γd has exactly two
l-components, each of which is l-connected to every point of γd.

A curve for which Theorem 1 holds is called a simple curve. Since a Jordan
curve in IR2 is a one-manifold, it is possible to derive an analogous definition of
“one-manifold” discrete closed curves from the theorem. These are finite curves
in ZZ2 for which the theorem holds:

Definition 1 (Simple Closed Curve in ZZ2 [13]). A simple closed curve γd
is a finite set of points in ZZ2 for which the following conditions hold.

SCC1 γd is k-connected.
SCC2 γd consists of at least five points.
SCC3 Each point of γd is k-adjacent to exactly two other points of γd.

Condition SCC2 was intended to rule out cases for which ZZ2 − γd is not sep-
arated into two non-empty subsets as illustrated in Fig. 1(a) for a 4-connected
curve, and in (b) for an 8-connected curve. Note, that this condition is actually
too restrictive for 8-connected curves. An example is given in Fig. 1(c) for which
an 8-connected curve separates ZZ2 into two components and consists itself of
four points. Using the terminology of the graph-theoretical approach, a simple
closed curve γd is a connected graph in which any vertex has degree two.

An arc is defined as an k-connected set of points, denoted with α, with each
of its points satisfying the conditions SCC1-3, except two points which are k-
adjacent to just one other point of α. In [13], Rosenfeld has shown that no
simple closed curve in ZZ2 is both a 4-connected curve and an 8-connected curve.
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(a) (c)(b)

Fig. 1. Simple closed curves: (a) a 4-connected set to be ruled out, (b) an 8-connected
set to be ruled out, (c) a valid 8-connected curve.

The generalization of Def. 1 to simple closed curves in ZZn is straightforward.
Subsequently, we talk about simple curves if we do not care about closeness of
γd, i.e. a simple curve is a closed curve or it is an infinite set of points, for which
SCC1-3 are true.

4 Closed Quasi Curves

Often, a discrete curve γd is the result of a rasterization of a continuous curve γ
or it is the border of a two-dimensional object rastered in ZZ2. The generation
of a simple curve γd as a discrete representation of a continuous curve γ, that
possesses high curvature, is a well-known problem. It has been shown in [5],
that a simple curve cannot be obtained generally even in areas of γ with almost
no curvature, unless γ is a straight line. This may necessitate an elimination of
“additional” points of the rasterization to obtain a simple curve. That problem
in discrete space has been already reported, e.g., in [7]. An example is given in
Fig. 2(a) for a rastered circle. The points in light grey would have been eliminated
to obtain a simple closed 8-connected curve in ZZ2.

(b)(a)

Fig. 2. (a) 8-connected closed quasi curve, (b) adjacency graph.
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As shown above, the definition of simple curves is too restrictive for many
cases. To overcome the problem, a generalization of simple closed curves has been
proposed by Malgouyres in [7], which were named closed quasi curves. Closed
quasi curves admit – like simple closed curves – a unique parameterization, that
has been identified as one of the fundamental features of curves to be kept
in discrete space. Loosely speaking, a closed quasi curve is obtained by adding
“triangles” to the adjacency graph of simple closed curves following certain rules.
This is illustrated for an example in Fig. 2(b). The notation of closed quasi curves
are generally stated for graphs in [8] and for 18-connected closed quasi curves
in [7]. The latter one is given below and can be easily adapted to 8-connected
curves in ZZ2.

Definition 2 (18-connected Closed Quasi Curve). A set γd of ZZ3 is said
to be an 18-connected closed quasi curve iff the cardinality of γd is greater or
equal to four and γd satisfies the following properties.

CQC1 γd is 18-connected.
CQC2 Any point of γd is 18-adjacent to either two, three or four points of γd.
CQC3 For any subset α of γd consisting of three points such that the elements

of α are pairwise 18-adjacent, there is a point p ∈ α which is 18-adjacent
to no point in γd − α. If q and r are the two points of α − p, then q and r
satisfy the following conditions.
CQC3a q and r are 18-adjacent to a point in γd − α.
CQC3b No point in γd − α is 18-adjacent to both q and r.

CQC4 For each point p in γd which is 18-adjacent to at least three points of γd,
there exists a non-trivial partition of N18(p)∩γd into two non-empty subsets
α and β such that the following conditions hold.
CQC4a The points of α are pairwise 18-adjacent.
CQC4b The points of β are pairwise 18-adjacent.
CQC4c No point of α is 8-adjacent to a point of β.

It has been shown [6], that an 8-connected closed quasi curve γd in ZZ2

satisfies the Jordan property, i.e. ZZ2 − γd consists of exactly two 4-connected
components.

The definition of closed quasi curves as given above works well for many cases
in ZZ2 but is still rather limited in higher dimensional space, i.e. ZZ3 as shown
in Fig. 3. This example does not satisfy the Def. 2 as can be seen from the 18-
adjacency graph in Fig. 3(b). Either the point q or p must be deleted such that
Def. 2 holds. Even more, considering the same curve as a 26-connected curve, the
points q and p and the two points adjacent to them are mutually 26-adjacent as
shown in the 26-adjacency graph in Fig. 3(c). The points p and q can be viewed
as “additional” points of a simple closed 26-connected curve, which can arise
only in dimension three or higher. The point r is covered by the Def. 2 as some
“additional” point to simple closed curves. Consequently, we need some further
generalization of closed curves.
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Fig. 3. (a) Closed curve in ZZ3, (b) 18-adjacency graph, (b) 26-adjacency graph.

5 A New Definition of Closed Quasi Curves in ZZn

5.1 Properties of Closed Quasi Curves

Before we come to the new definition of closed quasi curves in ZZn, basic prop-
erties of closed curves are identified, which we wish to ensure by our definition
of a discrete curve γd in ZZn.

The parameterization is a natural and fundamental property of continuous
manifold curves and, of course, must be kept for the representation of such curves
in ZZn. The necessity of a unique Hamiltonian cycle in the graph of a curve – and
with it a unique parameterization of the curve – is very restrictive, particularly
in three or higher dimensional discrete space. This is illustrated in the example
of Fig. 3. On the other hand, a curve connected in the 1st-order meets our
understanding of a maximal connected curve, i.e. whenever a point p is added to
a simple closed curve connected in the 1st-order, e.g. a 4-connected curve γd in
ZZ2, the set γd∪p does not corresponds to the common understanding of a curve
anymore. Hence, the Hamiltonian cycle in the graph of a curve should contain
all adjacency relations of the 1st-order.

Fig. 4 illustrates a further problem. In both cases, (a) and (b), a Hamiltonian
cycle exists (thick lines) which is not unique. The point r can be viewed as some
“additional” point with respect to a simple closed curve. However, in (a) the
adjacency between the points r and q violates the understanding of a curve since
the neighbours p and q of r have a common neighbour which is not adjacent to
r. Hence, in Fig. 4(a) r is not a valid “additional” point of a curve, but in (b)
it is. Consequently, a specification of the adjacencies, that do not indicate the
parameterization, is required.

5.2 Definition of Closed Quasi Curves

Assume the graph G(γd, B) of a k-connected curve γd where B are the edges
representing the k-adjacencies between the points of γd. The properties of closed
curves as discussed in the previous section are kept using the following definition.
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Fig. 4. Hamiltonian cycle in a closed curve (a) invalid (b) valid.

Definition 3 (Closed Quasi Curve in ZZn). A k-connected subset γd of ZZn

is a closed quasi curve in ZZn iff γd satisfies the following properties.

CQC1’ There exists a Hamiltonian cycle H(γd, A) in the graph G(γd, B), where
A ⊂ B and A contains all edges representing the adjacencies of the 1st-order
between points of γd.

CQC2’ For each point p of γd the subgraph H ′(Nk(p) ∩ γd, A′) of H(γd, A)
induced by the points of γd in the k-neighbourhood of p, constitutes a k-path.

CQC3’ If for H(γd, A) A represents exclusively adjacencies of the 1st-order,
the cardinality of γd is greater or equal to five and it is greater or equal to
four, otherwise.

Condition CQC1’ can be verified as follows. Associate each element of B
of the graph G with the order of the adjacency represented. Then the problem
of finding any Hamiltonian cycle in G is replaced by finding a Hamiltonian
cycle H of minimal length in the weighted graph G. This is a special case of
the traveling salesman problem [3]: each pair of vertices with an edge between
them has a distance depending on the weight, while pairs of vertices without
an edge between them are separated by a distance of infinite length. When a
Hamiltonian cycle of minimal length has been obtained in G, the cycle must
contain all adjacencies of the 1st-order. Otherwise, the set is not a quasi curve.

Since each point of γd has degree two in H(γd, A) and A contains all ad-
jacencies of the 1st-order, no point of a closed quasi curve has more than two
neighbours adjacent in the 1st-order.

Remark 1. If any point in the set γd has more than two neighbours of the 1st-
order of adjacency, the set is not a quasi curve.

Condition CQC2’ of Def. 3 ensures that any additional adjacency with re-
spect to a simple curve arise only between points that are “close to each other”
along the parameterization. Such additional adjacencies may arise in areas where
curves perform high curvature.

Finally, condition CQC3’ rules out cases, e.g. as shown in Fig. 1(a), in which
ZZ2 − γd is not separated.

In many cases a closed quasi curve connected in the 1st-order is also a closed
quasi curve connected in some higher order. This fact is illustrated by examples
in Fig. 5(a) and (c) for a curve in ZZ2 and ZZ3, respectively. The thick lines in
the adjacency graphs represent the adjacencies of the 1st-order. Note that the
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example in Fig. 5(a) is not an 8-connected closed quasi curve according to the
definition by Malgouyres.
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Fig. 5. (a) Closed quasi curve in ZZ2 with (b) the adjacency graph for the 8-
connectedness, and (c) closed quasi curve in ZZ3 with adjacency graph for the (d)
18-connectedness and (e) 26-connectedness.

The examples in Fig. 5 suggest that any closed quasi curve connected in
the 1st-order is also a closed quasi curve connected in some higher order and,
inversely, for each closed quasi curve γd connected in an order greater than one
there exists a closed quasi γ′d connected in the 1st-order such that γd ⊂ γ′d. This
reasoning is not true, as can be seen from the examples in Fig. 6: in (a) and
(c) closed quasi curves connected in the 1st-order are shown that are not quasi
curves for any higher order of connectivity, because condition CQC2’ of Def. 3
would not be satisfied in these cases. For the example in Fig. 6(b), there does
not exist any 4-connected closed quasi curve γ′d, of which the shown curve γd is
a subset. Indeed, it is impossible to identify two 4-neighbours of p - call them q
and r - which connect p with the set γd− p in the 1st-order such that each point
q and r has exactly two 4-neighbours in γ′d.

For a closed quasi curve that satisfies Def. 3 and is connected in the 1st-order,
the following is true:
Theorem 2. A closed quasi curve γd in ZZn connected in the 1st-order is a
simple closed curve.

Proof. Assume the adjacency graph G(γd, A1) of a closed quasi curve γd con-
nected in the 1st-order. Then A1 covers all adjacencies of the 1st-order between
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(c)(a) (b)

p

Fig. 6. (a) 4-connected closed quasi curve, (b) 8-connected closed quasi curve, and (c)
6-connected closed quasi curve.

the points of γd. Since the Hamiltonian cycle H(γd, A) contains all adjacencies of
the 1st-order H(γd, A) = G(γd, A1). Consequently, each point of γd is adjacent
in the 1st-order to exactly two other points of γd. Moreover, following Def. 3 the
cardinality of G is equal or greater to five. ��

From Theorem 2 follows that a 4-connected closed quasi curves in ZZ2 that
satisfies Def. 3 is a 4-connected simple closed curve. The Jordan Curve Theorem 1
is true for a simple closed curve. Consequently, the Jordan Curve Theorem is
also true for a 4-connected closed quasi curves in ZZ2:

Corollary 1. A 4-connected closed quasi curve γd in ZZ2 separates ZZ2 − γd in
exactly two 8-components each of which is 8-connected to every point of γd.

Finally, it is left to show that an 8-connected closed quasi curve in ZZ2 sat-
isfying the new definition has the Jordan property. For this, the terms maximal
and minimal connected closed quasi curve are used and introduced below.

A maximal connected closed quasi curve is a closed quasi curve that satisfies
Def. 3 and to which no point can be added such that the result still fulfills the
conditions of Def. 3. For example, a 4-connected closed quasi curve in ZZ2 is a
maximal connected curve. As stated in Theorem 2, a 4-connected closed quasi
curve γd in ZZ2 is a simple closed curve. Thus, each point of γd has exactly two
4-neighbours. Adding a point p to γd such that p is 4-connected to γd leads to at
least one point of γd that has more than two 4-neighbours in γd ∪ p. As already
stated in Remark 1, then the set γd ∪ p is not a closed quasi curve.

In contrast, a minimal connected closed quasi curve is a closed quasi curve
that satisfies Def. 3 and from which no point can be deleted such that the result
still fulfills the conditions of Def. 3. A minimal 8-connected closed quasi curve
in ZZ2, which satisfies Def. 3 is a curve γd for which the Hamiltonian cycle
H(γd, A) = G(γd, B), i.e. all 8-adjacencies between the points of γd belong to
the Hamiltonian cycle. In this case, each point of γd has exactly two 8-neighbours
in γd. Thus, a minimal 8-connected closed quasi curve in ZZ2 is an 8-connected
simple closed curve.
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Theorem 3. An 8-connected closed quasi curve γd in ZZ2 that satisfies Def. 3
separates ZZ2 − γd in exactly two 4-components.

Proof. Assume γd is a minimal connected closed quasi curve, i.e. γd is an 8-
connected simple closed curve. Then γd separates ZZ2−γd into two 4-components.

One can view any 8-connected closed quasi curve as a minimal 8-connected
closed quasi curve with added points. It will be shown below, that any point
added to γd neither removes one of the 4-components separated by the minimal
curve nor increases the number of 4-components by subdividing an existing 4-
component.

Assume an added point p removes one of the 4-components of ZZ2 − γd and
call this component I. Then I must consist of exactly one point q and all points
in N4(q)−q belong to γd. Consequently, p would have four 4-neighbours in γd and
this contradicts Def. 3, because in this case there does not exist a Hamiltonian
cycle in γd ∪ p containing all 4-adjacency relations between the points of γd ∪ p.

Assuming a point p ∈ ZZ2 − γd, that is added to a minimal connected closed
quasi curve γd, introduces at least one additional 4-component by subdividing
an existing one such that ZZ2−γd−p consists of at least one more 4-component
than ZZ2 − γd. To achieve this, N8(p) − γd must consist of m 4-components
and N8(p) − γd − p of at least m + 1 4-components. Hence, there are at least
two 8-components in N8(p) ∩ γd. Assume there exist a Hamiltonian cycle for
the set γd ∪ p which contains all edges representing 4-adjacencies between the
points of γd ∪ p. To satisfy condition CQC2’ of Def. 3, for any point p added
to a minimal 8-connected closed quasi curve γd, (N8(p)− p) ∩ γd must form an
8-path. However, this contradicts the conditions of a point p that subdivides an
existing 4-component of ZZ2 − γd. ��

6 Summary

It has been shown that simple closed curves and closed quasi curves proposed
in [7] might be too restrictive for practical purposes. This has motivated the new
definition of closed quasi curves introduced in this paper. The new definition
can be viewed as some generalization of quasi curves as introduced in [7] and
overcomes the limitations of them. Moreover, the definition is given for curves
in n-dimensional discrete space and is, therefore, not restricted to any certain
dimension of space. It has been proven that curves in ZZ2, which satisfy the new
definition, have the Jordan property.

It is a drawback of the new definition - in contrast to the known definition of
quasi curves - that it cannot be decided locally for a point p if this point belongs
to a quasi curve considering only the neighbourhood configuration of the point.
This is a point of future work. At the moment it can be stated only, that the
existence of a path in the subgraph of the Hamiltonian cycle induced by the
points of a quasi curve in the neighbourhood of each point of the quasi curve is
necessary. It has to be shown, if this condition is already sufficient or if further
local properties have to be identified.
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Consider the Jordan curve theorem for an 8-connected closed quasi curve
γd in ZZ2. It seems to be clear that each point of γd is 8-connected to the two
separated sets of ZZ2− γd. However, at the moment this is just a conjecture and
needs further investigations to provide a formal proof. This is also a point of
future work.
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16. Wüthrich, C. A. A model for curve rasterization in n-dimensional space. Com-
puters and Graphics 22, 2–3 (1998), 153–160.

17. Yagel, R., Stredney, D., Wiet, G. J., Schmalbrock, P., Rosenberg, L.,
Sessanna, D. J., and Kurzion, Y. Building a virtual environment for endoscopic
sinus surgery simulation. Computers and Graphics 20, 6 (1996), 813–823.


	Curves in ZZ^n
	Introduction
	Definitions and Notations
	Simple Closed Curves
	Closed Quasi Curves
	A New Definition of Closed Quasi Curves in ${mathchoice {hbox {$@mathsf textstyle Zkern -0.4em Z$}} {hbox {$@mathsf textstyle Zkern -0.4em Z$}} {hbox {$@mathsf scriptstyle Zkern -0.3em Z$}} {hbox {$@mathsf scriptscriptstyle Zkern -0.2em Z$}}}^n$
	Properties of Closed Quasi Curves
	Definition of Closed Quasi Curves

	Summary
	References


