Computing the Diameter of a Point Set

Grégoire Malandain and Jean-Daniel Boissonnat

INRIA, 2004 route des lucioles, BP 93, 06 902 Sophia-Antipolis Cedex, France
{gregoire.malandain, jean-daniel.boissonnat}@sophia.inria.fr

Abstract. Given a finite set of points P in R?, the diameter of P is
defined as the maximum distance between two points of P. We propose
a very simple algorithm to compute the diameter of a finite set of points.
Although the algorithm is not worst-case optimal, it appears to be ex-
tremely fast for a large variety of point distributions.

1 Introduction

Given a set P of n points in R?, the diameter of P is the maximum Euclidean
distance between any two points of P.

Computing the diameter of a point set has a long history. By reduction to
set disjointness, it can be shown that computing the diameter of n points in R?
requires {2(nlogn) operations in the algebraic computation-tree model [PS90].
A trivial O(n?) upper-bound is provided by the brute-force algorithm that com-
pares the distances between all pairs of points. In dimensions 2 and 3, better
solutions are known. In the plane, it is easy to solve the problem optimally in
O(nlogn) time. The problem becomes much harder in R®. Clarkson and Shor
gave a randomized O(n logn) algorithm [CS89]. This algorithm involves the com-
putation of the intersection of n balls (of the same radius) in R® and the fast
location of points with respect to this intersection. This makes the algorithm
less efficient in practice than the brute-force algorithm for almost any data set.
Moreover this algorithm is not efficient in higher dimensions since the intersec-
tion of n balls of the same radius has size ©(nl%)). Recent attempts to solve
the 3-dimensional diameter problem led to O(nlog®n) [AGR94JRam97b] and
O(nlog®n) deterministic algorithms [Ram97alBes98]. Finally Ramos found an
optimal O(nlogn) deterministic algorithm [Ram00]. All these algorithms use
complex data structures and algorithmic techniques such as 3-dimensional con-
vex hulls, intersection of balls, furthest-point Voronoi diagrams, point location
search structures or parametric search. We are not aware of any implementation
of these algorithms. We suspect that they are very slow in practice compared to
the brute-force algorithm, even for large data sets.

Some of these algorithms could be extended in higher dimensions. However,
this is not worth trying since the data structures they use have sizes that depend
exponentially on the dimension: e.g. the size of the convex hull of n points of R?
can be as large as 2(nl2)).

Our algorithm works in any dimension. Moreover, it does not construct any
complicated data structure; in particular, it does not require that the points are

A. Braquelaire, J.-O. Lachaud, and A. Vialard (Eds.): DGCI 2002, LNCS 2301, pp. 197-[208] 2002.
© Springer-Verlag Berlin Heidelberg 2002

198 G. Malandain and J.-D. Boissonnat

in convex position and therefore does not require to compute the convex hull of
the points. The only numerical computations are dot product computations as
in the brute-force algorithm.

The algorithm is not worst-case optimal but appears to be extremely fast
under most circumstances, the most noticeable exception occuring when the
points are distributed on a domain of constant width, e.g. a sphere. We also
propose an approximate algorithm.

Independently, Har-Peled has designed an algorithm which is similar in spirit
to our algorithm [Har(T]. We compare both methods and also show that they
can be combined so as to take advantage of the two.

2 Definitions, Notations, and Geometric Preliminaries

We denote by n the number of points of P, by h the number of vertices of the
convex hull of P, and by D the diameter of P. §(-,-) denotes the Euclidean
distance, and §2(-,) the squared Euclidean distance.

A pair of points of P is called a segment. The length of a segment pq is
the euclidean distance 6(p, q) between p and ¢. A segment of length D is called
mazimal.

For p € P, FP(p) denotes the subset of the points of P that are at maximal
distance from p. The segment joining two points p and ¢ is called a double normal
if pe FP(q) and g € FP(p). If pq is a maximal segment, pq is a double normal.
The converse is not necessarily true.

Observe that the endpoints of a maximal segment or of a double normal
belong to the convex hull of P. Observe also that, if the points are in general
position, i.e. there are no two pairs of points at the same distance, the number
of double normals is at most h/2.

B(p,r) denotes the ball of radius r centered at p, X (p, r) its bounding sphere.
The ball with diameter pq is denoted by B[pg] and its boundary by X[pg].

Since the distance between any two points in B[pg] is at most d(p,q), we
have:

Lemma 1 Ifp,q € P and if pq is not a mazximal segment, any mazimal segment
must have at least one endpoint outside Blpq].

As a corollary, we have:

Lemma 2 Ifp,q € P and if P\ Blpq] = 0, pq is a mazimal segment of P and
5(p,q) is the diameter of P.

3 Computation of a Double Normal

Algorithm [[below repeatidly computes a furthest neighbour of a point of P until
a double normal DN is found. To find a furthest neighbour of p € P, we simply
compare the distances between p and all the other points in P (F'P scan). Point
p is then removed from P and won’t be considered in further computations.

Computing the Diameter of a Point Set 199

1: procedure DOUBLENORMAL(p, P) // p is a point of P
2: A2—0 i<—0

3: repeat // FP scan

4: increment ¢

5 A2 — A2,

6: P—P\{p} // remove p from P from any further computation
7: find g € FP(p), i.e. one of the furthest neighbours of p

8 if §%(p,q) > A? then

9: A? — 62%(p,q) and DN — pq

10: p—q

11: until (A? = A7)

12: return DN

Algorithm 1: Computes a double normal.

Lemma 3 Algorithm [1l terminates and returns a double normal.

Proof. A; can only take a finite number of different values and strictly
increases: this ensures that the algorithm terminates. After termination (after I
iterations) we have ¢ € FP(p) and all the points of P belong to B(p,d(p,q)).
Since Ar_1 = d(p, q), all the points of P belong also to B(q, d(p, q)) and therefore
p € FP(q). O

After termination of Algorithm [1], the original set P has been replaced by
a strictly subset P’ since some points have been removed from P (line [G of
algorithm [I)). By construction, the returned segment pq is a double normal of
the reduced set P’ (lemma [)), and it is also a double normal of the original set
P.

Lemma 4 The only numerical operations involved in Algorithm [are compar-
isons of squared distances.

Lemma 5 Algorithm [performs at most h FP scans and takes ©(nh) time.

Proof. The upper bound is trivial since all the points g that are considered
by Algorithm [belong to the convex hull of P and all points ¢ are distinct. As
for the lower bound, we give an example in the plane, which is sufficient to prove
the bound. Consider a set of 2n + 1 points pq, .. ., p2, placed at the vertices of a
regular polygon P (in counterclockwise order). For i > 0, we slightly move the
p; outside P along the ray Op; by a distance &' for some small € < 1. Let p} be
the perturbed points It is easy to see that the farthest point from p} is always
Pitnmod (2n+1) €XCEPS for p;,, ;. Therefore, the algorithm will perform F'P scans
starting successively at ps,, ..., Po,,,, Where o; =i xn (modulo 2n +1). O

Although tight in the worst-case, the bound in lemma [0 is very pessimistic
for many point distributions. This will be corroborated by experimental results.

200 G. Malandain and J.-D. Boissonnat

4 Iterative Computation of Double Normals

Assume that Algorithm [I] has been run and let @ = P\ Blpg]. If @ = 0, pq
is a maximal segment and §(p, q) is the diameter of P (lemma [2). Otherwise,
we have to determine whether pqg is a maximal segment or not. Towards this
goal, we try to find a better (i.e. longer) double normal by running Algorithm [I]
again, starting at a point in Q rather than in P, which is sufficient by lemma
M Although any point in @ will be fine, experimental evidence has shown that
choosing the furthest point from E[pq is usually better.

Algorithm 21 below repeats this process further until either Q becomes empty
or the current maximal distance A does not increase.

1: A2—0 stop—0

2: pick a point m € P

3: repeat // DN scan

4: DOUBLENORMAL(m, P) // yields a double normal pq of length 4(p,q)
5. if 6%(p,q) > A? then

6: A? — §%(p,q) and DN « pq

7 Q «— P\ Blpq]

8: if Q # 0 then

9: find m € Q a furthest point from X[pq]
10: else
11: stop«— 1 // terminates with Q # (.
12: until Q@ =0 or stop=1
13: return DN — pq, A% — 6*(p, q)

Algorithm 2: Iterated search for double normals.

Lemma 6 Algorithm [2 can be implemented so that the only numerical compu-
tations are comparisons of dot products of differences of points.

Lemma 7 Algorithm[2 performs O(h) DN scans. Its overall time-complexity is
O(nh).

Proof. The first part of the lemma comes from the fact that the algorithm
enumerates (possibly all) double normals by strictly increasing lengths.

Let us prove now the second part of the lemma. Each time Algorithm [
performs a F'P scan starting at a point p (loop BHIT), p is removed from further
consideration (line B). Moreover, except for the first point p to be considered, all
these points belong to the convex hull of P. It follows that the total number of
FP scans is at most h+ 1. Since each F'P scan takes O(n) time, we have proved
the lemma. O

' This point is the furthest point from 2£¢ outside B|pq].

Computing the Diameter of a Point Set 201

5 Diameter Computation

Assume that Algorithm 2]terminates after I iterations. Since, at each iteration, a
new double normal is computed, the algorithm has computed I double normals,
noted p;q;, i = 1,...,1I, and we have 0(p1,q1) < ... < d(pr-1,qr-1).- Each time
Algorithm [l is called, some points are removed from the original data set. We
rename the original data set P(®) and denote by PU) the set of points that
remain after the j-th iteration, i.e. the one that computes p;g;. Hence set P ig
strictly included in P~1. Moreover, each segment p;g; is a double normal for
all the sets P, j =i —1,..., 1A

It is easily seen that, at each iteration j, the length of the computed double
normal p;g; is strictly greater than the distances 6(z, F'P(z)) computed so far, or
equivalently, than the lengths of all the segments in P\ PU) x P since Algorithm
[removed the corresponding = from P .

When Algorithm Bl terminates, we are in one of the two following cases :

Case 1 : §(pr,qr) > 0(pr—1,qr-1) and Q@ = P\ Blp;q] = 0.
In this case, prqr is a maximal segment of P: by lemma [2, it is a maximal
segment, of pU), and, as mentionned above, no segment with an endpoint in
P\ PD can be longer.

Case 2 : §(pr,q1) < 0(pr—1,q1-1)-

In this case, PU=1\ Blp;_1 q;_1] was not empty before the computation of
[pr,qr]- We have to determine whether pr_1gr—; is a maximal segment or not.
Thanks to lemma[Il if a longer double normal exists, one of its endpoints lies in
PO\ Blpr_1 qr_1]. If this last set is empty, which is checked by Algorithm [3]
pr—1qr—1 is a maximal segment of P.

Required: PY) and pr_1qr—1 (provided by Algorithm [2])
1: Q= PYN\Blpr-1qr-1]
2: if QO = (0 then
3: pr—i1qi—1 is a maximal segment of P

Algorithm 3: Checks whether Q = P\ Bp;_1 qr_1] = 0.

If 9 =pdh \ Blpr—1qr-1] # 0, we have to check whether there exists a
maximal segment with an endpoint in this set. To search for such maximal
segments, we propose two methods. For clarity purpose, we will write P instead
PU) in the following.

5.1 Exhaustive Search Over Q X P

The first method (Algorithm M) simply considers all segments in Q x P.

2 Strictly speaking, as p; and ¢; do not belong to P(j>, we should say that p;q; is a
double normal for all the sets P U {p;,q:}, j=i—1,...,1.

202 G. Malandain and J.-D. Boissonnat

Required: A? (provided by Algorithm) and Q (provided by Algorithm [3)
1: if Q # () then // Exhaustive search with an endpoint in Q

2: for all points p; € Q do

3 for all points p; € P do

4: if 6%(pi,p;) > A? then

5: A% — 5%(pi, pj)

6: return A2

Algorithm 4: Exhaustive search over Q x P.

5.2 Reduction of Q

As it might be expected and is confirmed by our experiments, the observed total
complexity is dominated by the exhaustive search of the previous section. It is
therefore important to reduce the size of Q. For that purpose, we propose to
reuse all the computed segments p;q;, i = 1,...,I — 2, and pyq;.

Principle. Assume that we have at our disposal an approximation A of the
diameter of set P and a subset Q@ C P that contains at least one endpoint of
each maximal segment longer than A (plus possibly other points). To identify
such endpoints in Q (i.e. to find the maximal segments longer than A), we may,
as in Algorithm H] exhaustively search for a maximal segment over @ x P. The
purpose of this section is to show how this search can be reduced.

Under the assumption that the diameter of P is larger than A, we know, from
lemma [[] that any maximal segment will have at least one endpoint outside any
ball of radius A/2.

Consider such a ball B’ of radius A/2. The exhaustive search over Q x P can
then be reduced to two exhautive searches associated to a partition of Q into
QN B and Q\ B’. More precisely, if p € Q, searching for a point ¢ such that
d(p, q) > A reduces to searching ¢ in P\ Q\ B’ if p belongs to B’, and searching
q in P otherwise.

This way, instead of searching over Q x P, we search over (Q N B’) x (P \
Q\ B’) and (Q\ B’) x P, therefore avoiding searching a maximal segment in
(QNB") x (PNB").

B’ should be chosen so as to maximize the number of points in PN B’, which
reduces the cost of searching over (QNB’) x (P\ Q\ B’). The idea is to reuse the
already found segments p;q; (which are double normals of P) and to iteratively
center the balls of radius A/2 at the points %

Algorithm. Assume that Algorithm [2] terminates under case 2, yielding the
segment PrazGmaz (1.€. pr—1gr—1) of length A = 6(Pmaz, Gmaz) Which is con-
sidered as an estimation of the diameter. Moreover, we assume that the set Q
computed by Algorithm [J is not empty.

All the double normals p;q; that have been found by Algorithm Pl except
pr_1qgr—1, are collected into a set S.

Computing the Diameter of a Point Set 203

Required: A? = §2 (pmaz, Gmaz) and S provided by Algorithm
Required: Q¥ = Q provided by Algorithm[3]

1: for all segments p;q; € S, i1 =1...|5| do

2: B« B(Z}tu A)2)

3 d® —maxd’(p,q) (¢,p) € (Q(i_l) N B') X (73\ Ql~b \B')

4: if d®> > A® then // A better diameter estimation was found
5: A% — d?

6: Add segment pq to set S

7. QW — QU=YU\ B" //new set Q

8: if Q") = then

9: return A? // diameter has been found

Algorithm 5: Iterative reduction of Q by successive examination of all segments p;g;.

If Algorithm [5] terminates with Q5D £ @, one still must run Algorithm
with Q = Q(‘SD, i.e. the exhaustive search over QU5 x P.

6 Diameter Approximation

Our algorithm provides a lower bound A def Apmin on the diameter. It also

provides an upper bound A .« = AminV/3. Indeed, let pg be the double normal
whose length is A, All the points of P belong to the intersection of the two
balls of radius A, centered at p and q.

With only slight modifications, our algorithm can also be used to compute a
better approximation of the diameter. More precisely, for any given e, we provide
an interval [Amin, Amax) of length < e that contains the true diameter.

Since the algorithm provides a lower bound A, we simply need to ensure that
A + ¢ is an upper bound of the true diameter.

We will just indicate where the necessary modifications must take place.

First, during the iterative search of double normals (line @in Algorithm [2])
the ball centered at % and passing through the furthest point m contains all
the points of P. The diameter Ay, of that ball is given by

A2 = dmp.ng + A

where A = §(p,q). Therefore, when A2, < (A+¢)?, we have found an e-
approximation of the diameter and we stop.

Second, the intermediate step (Algorithm [B]) checks if P(!) contains the end-
point of some potential maximal segment. Here the set Q has to be replaced by

A better estimate than A + ¢ of the upper bound Ay, is then obviously

2><max5<

qER

Pr—1+4qr-1
s »q

204 G. Malandain and J.-D. Boissonnat

with R_pU)m{B (’”—1”’—1 A“) \B<pf_1+q1_1 A)}.

2 2 2 72
If Q is empty, we stop.

The exhaustive search over Q x P described in Algorithm [will possibly
update both A and Ay ax.

Required: A? provided by algorithm B,
Required: Q, A2, and provided by modified algorithm [3]

1: if Q # () then // Exhaustive search with an endpoint in Q
2: for all points p; € Q@ do

3 for all points p; € P do

4 if 6%(pi, p;) > A? then

5: A% — 5%(pi, pj)

6: if 6%(pi,pj) > A2 .. then

T A?nax — o7 (pi:pj)

8: return A? and A2,

Algorithm 6: Modified exhaustive search over Q x P.

Finally, in Algorithm [l (line B), we will use Anax instead of A and update
both A% and A2 when necessary (lines [3Hg).

max

7 Experiments

We conduct experiments with different point distributions in R%:

Volume based distributions: in a cube, in a ball, and in sets of constant
width (only in 2D);
Surface based distributions: on a sphere, and on ellipsoids;

and with real input The interested reader will find detailed results and discus-
sion in [MBQ1] for our own method.

8 Comparison with Har-Peled’s Method

The most comparable approach to ours is the one developed very recently by
S. Har-Peled [Har01]. Although it is similar in spirit, Har-Peled’s algorithm is
quite different from ours. We first summarize his method and then compare ex-
perimentally the two methods. Since the two methods have different advantages
and drawbacks, it is worth combining them, leading to good hybrid algorithms
with more stable performances.

3 Large Geometric Models Archive,
http://www.cs.gatech.edu/projects/large models/, Georgia Institute of Tech-
nology.

Computing the Diameter of a Point Set 205

Table 1. CPU times for 3D volume based synthetic distributions.

Running time in seconds
3D Volume Based distributions
Inputs Cube | Cube | Cube | Ball | Ball Ball
Points 10,000{100,000|1,000,000{10,000{100,000|200,000
our method 0.01 0.19 0.53] 0.04 0.79 1.20
HPM - original 0.01 0.18 1.96| 0.31| 18.16] 53.88
HPM - our implementation|| 0.02 0.18 1.92| 0.20 5.121 20.57
hybrid method #1 0.01 0.18 2.00{ 0.13 2.25 5.26
hybrid method #2 0.02 0.35 1.50(0.07 1.05 3.29

In his approach, Har-Peled recursively computes pairs of boxes (each enclos-
ing a subset of the points). He throws away pairs that cannot contain a maximal
segment.

To avoid maintaining too many pairs of boxes, Har-Peled does not decompose
a pair of boxes if both contain less than np;, points (initially set to 40 in Har-
Peled’s implementation). Instead, he computes the diameter between the two
corresponding subsets using the brute-force method. Moreover, if the number of
pairs of boxes becomes too large during the computation (which may be due to
a large number of points or to the high dimension of the embedding space), nmin
can be doubled: however, doubling n,,;, increases the computing time.

Differently from our method, Har-Peled’s algorithm depends on the coordi-
nate axes (see table).

Table 2. CPU times for 3D surface based synthetic distributions. The points sets in
the second and the third columns are identical up to a 3D rotation.

Running time in seconds
3D Surface Based distributions
Inputs Ellipsoid | Ellipsoid | Ellipsoid |Sphere| Sphere | Sphere
(regular) (rotated)
Points 1,000,000({1,000,000|1,000,000{10,000{100,000| 200,000
our method 1.34 2.02 1.61| 1.08] 358.21|not computed
HPM - original 1.78 3.84 37.70| 2.13| 95.49 328.90
HPM - our implementation 1.81 3.51 23.88| 0.63| 39.97 166.26
hybrid method #1 1.82 3.38 6.38| 0.33 6.99 16.75
hybrid method #2 2.30 3.10 1.79| 0.44 8.58 19.75

We provide an experimental comparison of both approaches, using the orig-
inal Har-Peled’s implementationﬁ which only works for 3D inputs. In order to

4 Available at
http://wuw.uiuc.edu/ sariel/papers/00/diameters/diam _prog.html.

206 G. Malandain and J.-D. Boissonnat

be able to deal with inputs in higher dimensions, we have re-implemented his
algorithm, following the same choices that were made in the original implemen-
tation.

8.1 Hybrid Methods

It should be first notice that both methods can easily be modified to compute
the diameter between two sets, i.e. the segment of maximal length with one
endpoint in the first set and the other in the second set.

Both methods have quadratic parts. Ours with the final computation over
Q x P, and Har-Peled’s one when computing the diameter for a pair of small
boxes.

We have implemented two hybrid methods that combines Har-Peled’s method
and ours. We first modified Har-Peled’s algorithm by replacing each call to the
brute-force algorithm by a call to our algorithm. We also tested another hybrid
method where we modified our algorithm by replacing the final call to the brute-
force algorithm by a call to the first hybrid method. The two hybrid methods
can be tuned by setting several parameters. The experimental results presented
here have been obtained with the same values of the parameters.

The results show that the hybrid methods are never much worse than the
best method. Moreover, their performances are more stable and less sensitive to
the point distribution.

Table 3. CPU times on real inputs.

Running time in seconds
Inputs Bunny| Hand |Dragon|Buddha| Blade
Points 35,947|327,323|437,645| 543,652 |882,954
our method 5.73 0.29 8.51| 172.91 0.49
Har-Peled’s method (HPM) - original|| 0.08] 0.45] 0.90 0.72| 1.00
HPM - our implementation 0.07 0.43 0.89 0.69 0.94
hybrid method #1 0.07 0.41 0.86 0.67 0.90
hybrid method #2 0.10 0.32 1.37 1.09 0.50

9 Discussion

Our method is based on the computation of double normals. Computing a double
normal appears to be extremely fast under any practical circumstances and in
any dimension (despite the quadratic lower bound of lemma [H). Moreover, the
reported double normal is very often the true maximal segment. This is not too
much surprising since, on a generic surface, the number of double normals is finite
and small. In any case, having a double normal provides a v/3-approximation of
the diameter in any dimensions.

Computing the Diameter of a Point Set 207

However, even if the reported double normal is a maximal segment s, it may
be costly to verify that this is indeed the case. A favourable situation is when the
point set is contained in the ball B of diameter s. The bad situation occurs when
there are many points in set P\ B since we verify that none of these points is the
endpoint of a maximal segment. This case occurs with sets of constant width but
also with some real models: e.g. bunny, dragon and buddha (see tables [MBOT].

For these three cases, the first double normal found by the algorithm was
the maximal segment. The second found double normal was shorter. After Al-
gorithm Bl Q contains respectively 1086, 2117, and 2659 points for the bunny,
dragon, and buddha models. For both the bunny and the buddha, the second
double normal was very close to the first one, then very few points were removed
from Q (respectively 7 and 36), and most of the points of Q will undergo the
final quadratic search. This explains why there is a so little difference between
our method with and without the reduction of Q for these two models [MBO1].

For the dragon model, the second double normal is quite different from the
first one, hence the noticeable improvement of our method with the reduction

of Q.

Table 4. CPU times for synthetic distributions in higher dimensions.

Running time in seconds
volume distributions surface distributions
Inputs Cube Ball Regular Ellipsoid|Ellipsoid| Sphere
Points ‘ 100,000{ 100,000 100,000 100,000 100,000
Dimension = 6
our method 0.31 36.95 0.11 0.33|not computed
HPM - our implementation 0.85 466.44 0.97 0.87 465.08
hybrid method #1 0.67 77.20 0.79 0.73 118.06
hybrid method #2 0.66 63.31 0.19 0.65 142.38
Dimension = 9
our method 0.89 128.02 0.51 0.52|not computed
HPM - our implementation|| 139.23 568.99 264.96| 590.14 569.08
hybrid method #1 17.42 135.90 44.54 67.27 232.39
hybrid method #2 1.21 121.91 1.25 16.03 302.86
Dimension = 12
our method 3.87 445.03 1.08 7.88|not computed
HPM - our implementation|| 629.37 651.56 648.88| 650.98 647.74
hybrid method #1 44.45 354.14 58.53 56.11 511.41
hybrid method #2 19.72 380.41 13.00 24.62 745.60
Dimension = 15
our method 10.99 798.66 7.26 20.31|not computed
HPM - our implementation|| 734.69 735.26 731.76| 733.70 737.51
hybrid method #1 64.49 610.70 69.11 90.35 701.18
hybrid method #?2 44.37 782.20 21.30 70.41 1120.57

Har-Peled’s method does not suffer from this drawback. However, it depends
on the coordinate axes (since the boxes are aligned with the axes) and on the
dimension d of the embedding space.

The first hybrid method compensates for the quadratic search between small
bozes (boxes containing less than n.,i, points), i.e. one major drawback of original
Har-Peled’s method.

208 G. Malandain and J.-D. Boissonnat

The second hybrid method compensates for the major drawback of our
method, by building pairs of boxes from Q x P.

References

[AGR4]

[Bes98]

[CS89]

[Har01]

[MBO1]

[PS90]
[Ram97a]
[Ram97b]

[RamO00]

N. M. Amato, M. T. Goodrich, and E. A. Ramos. Parallel algorithms
for higher-dimensional convex hulls. In Proc. 35th Annu. IEEE Sympos.
Found. Comput. Sci., pages 683—-694, 1994.

S. Bespamyatnikh. An efficient algorithm for the three-dimensional diam-
eter problem. In Proc. 9th Annu. ACM-SIAM Symp. Discrete Algorithms,
pages 137-146, 1998.

K. L. Clarkson and P. W. Shor. Applications of random sampling in com-
putational geometry. Discrete Comput. Geom., 4:387-421, 1989.

S. Har-Peled. A practical approach for computing the diameter of a point-
set. In Symposium on Computational Geometry (SOCG’2001), pages 177—
186, 2001.

Grégoire Malandain and Jean-Daniel Boissonnat. Computing the diameter
of a point set. Research report RR-4233, INRIA, Sophia-Antipolis, July
2001. http://www.inria.fr/rrrt/rr-4233.html.

F.P. Preparata and M.I. Shamos. Computational Geometry: An Introduc-
tion. Springer Verlag, October 1990. 3rd edition.

E. Ramos. Construction of 1-d lower envelopes and applications. In Proc.
18th Annu. ACM Sympos. Comput. Geom., pages 5766, 1997.

E. Ramos. Intersection of unit-balls and diameter of a point set in R>.
Comput. Geom. Theory Application, 8:57-65, 1997.

Edgar A. Ramos. Deterministic algorithms for 3-D diameter and some 2-D
lower envelopes. In Proc. 16th Annu. ACM Sympos. Comput. Geom., pages
290-299, 2000.

	Computing the Diameter of a Point Set
	Introduction
	Definitions, Notations, and Geometric Preliminaries
	Computation of a Double Normal
	Iterative Computation of Double Normals
	Diameter Computation
	Exhaustive Search Over Q X P
	Reduction of Q

	Diameter Approximation
	Experiments
	Comparison with Har-Peled's Method
	Hybrid Methods

	Discussion
	References

