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Abstract. This paper discusses the use of Recursive Neighbourhoods in
Mathematical Morphology. Its two notable applications are the recursive ero-
sion / dilation, as well as the detection of foreground-background changes to be
used in skeletonization. The benefit of the latter over an extension of the neigh-
bourhood or the use of sub-cycles is emphasized. Two applications are pre-
sented that use the recursive neighbourhood in a 3D surface and a 3D curve an-
chor-skeleton variant.

1   Introduction

In previous papers [3], [4], [5], we have described a general principle for morphologi-
cal operations on cubic tessellated binary images NX . For the sake of clarity we will
briefly repeat this in sections 1 and 2, and in examples use images of dimensions 2 and
3. In section 3 we elaborate on the principle of recursive neighbourhoods. The use of
recursive neighbourhoods is not new, however, its principle of work and its possibili-
ties are often not well understood. In section 3 we show that from the four alternatives
to circumvent the problem of detecting the topology change of a two pixel/voxel thick
structure in a 3N neighbourhood, as is necessary in skeletonization, the recursive
neighbourhood approach is generally the fastest. The recursive neighbourhood detects
change, either foreground changed to background or background changed to fore-
ground. This change detection can be fruitfully used in a number of applications, but
also give rise to problems, e.g., excessive protrusions in skeletons, when the recursive
neighbourhood is not correctly used. In chapter 4 we present two examples of its use.
The essence of both examples is the use of a surface, and a curve skeleton, forced
through anchor points, whereas its surface and curve protrusions are recursively
eroded due to the use of the recursive neighbourhood.

From [3], [4], [5], we derived that using a recursive neighbourhood is based on
scanning an image with a set of masks that comprises a structuring element S. The
masks contain foreground, background and don’t-cares. On each element of the image
X an inexact match ( ≅ ) between all masks of the set and the neighbourhood extracted
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from the image can be performed, whereas the result written to the output image Y is
the union of all matches. A second input image Z can be used in the same match to
perform dyadic operations. Dyadic operations can be used to locally enable or disable
the morphological operation, using the points from a second input image.

To elaborate on this: Let x, y, and s be the elements of images X, Y, and S. Let S,
e.g., be a 3 x 3 structuring element and kM an equivalent 3 x 3 neighbourhood around
pixel kx . For binary morphology, the transformation Y X S← ≅ , is informally:

If for any pixel kx  in an input image X, its neighbourhood kM  matches inexactly with
a structuring element S, the pixel ky of output image Y is set to one. If kM  doesn’t
match S, ky is set to zero.

In the inexact neighbourhood match the foreground pixels in S should match with
foreground pixels in kM at the same positions AND the background pixels in S should
match with background pixels in kM at the same positions, whereas in the don’t care
positions of S a match is not required. This inexact match can be extended to:

If for any pixel kx in an input image X, its neighbourhood kM matches one mask S
iS

from a set of masks SS  the pixel ky of output image Y is set to one, else to zero.

Meaning that the union of all mask matches is taken. A further extension is:

If for any pixel kx in an input image X, its neighbourhood kM matches any mask S
iS

from a given set of masks SS  the pixel ky of output image Y is set to one, else set to
zero, OR if its neighbourhood matches any mask R

iS  from a given set of masks RS , the
pixel ky  is set to zero, else to one.

The image transformation Y X S← ≅ is now implemented with a set of masks S
consisting of a subset SS (the SET-masks) and a subset RS  (the RESET-masks), one
of which may be empty. This means that either a pixel ky  is set to zero, if one of the
RESET masks fits, or the pixel is set to one, if one of the SET mask fits, where the
SET masks are chosen to dominate over the RESET masks. A second input image Z
can be used to locally enable/disable the transformation, yielding a dyadic operation.
If a "mask-bit" z  of a mask of the set S is set to don’t care, the transformation is en-
abled. If z  is do-care, then if the pixel kz of Z  matches with z , the operation is
disabled, else enabled. Operations that use Z  to locally mask-off, or insert seeds, are
the propagation operation and the anchor-skeleton. Finally, an operation on an image
can be done by performing a transformation with a mask-set once, twice or more, or
until the image is idempotent (does not change) under the operation.

In many cases practical use can be made of the intermediate results in the output
image. This is called (spatial) recursion. For instance, if the transformation is per-
formed by a raster scan over the image, i.e., from top-left to bottom-right, the fact that
some neighbours of pixel ky have already obtained a new value can be utilized. For
this purpose, the neighbourhood kM  of pixel kx is as well as the structuring element S
is extended. Both the Local Neighbourhood (LN) and the Recursive Neighbourhood
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(RN) can be used in a neighbourhood matching procedure, referred to as local neigh-
bourhood operations (LNO) and recursive neighbourhood operations (RNO).

Fig. 1. Drawing conventions for a neighbourhood match. Here shown for 2D images and 3 x 3
neighbourhoods. The LN is taken from input image X, the RN from output image Y. For dyadic
operations a second input image Z is used.

Figure 1 shows the matching process with a single mask from a set S, whereas the
neighbourhood kM  is extracted from the three different images. Note that when using
a software raster scan over the image, it is beneficial for RNOs to scan in all odd scans
from top-left to bottom-right and in all even scans from bottom-right to top-left. In this
case, the RN should be transposed to match with the scan direction.

Fig. 2. Structuring elements for simple operations in 3X . Opaque elements are don’t cares, light
grey are background elements, and dark grey are foreground elements.

Figure 2 shows some structuring elements or mask-sets for simple Local Neighbour-
hood Operations in 3X , while Figure 3 shows an example of a dyadic Recursive
Neighbourhood Operation; the propagation operation, a recursive conditional dilation:
Objects in an image are recursively dilated (the first mask), wherever foreground in
image Z and background in X was found (the second mask).

r1
kyr2

kyr3
ky
r4
ky ky

Y

kz

O

k
�

Z

8
kx

0
kx

6
kx 7

kx

4
kx

1
kx

2
kx3

kx

5
kx

X

LN

RN

z

   Dilate26cct       Detect 26cct       Erode26cct  Erode18cct   Erode6cct

   RESET      RESET      RESET        SET          SET            SET



190         P.P. Jonker

2 Skeletonization, Shape Primitives

Erosions can be described as a match on fore-
ground area in 2X and on foreground volume
in 3X . Skeletonization can be seen as conditional
erosion [3]. Figure 4 shows that in 3X  a volume
is eroded to a curved surface -the surface skele-
ton-, where after the surface is eroded to a space
curve -the curve skeleton-. The condition for the
erosion is that surfaces, or curves, should not be
eroded. Those conditions are also known as shape
primitives in NX . The sets of shape primitives
and how they can be found are described in [5]. In
3D one set is called Surf26, which represents the
surface primitives: On all possibilities of a curved
surface to interesect a 33 neighbourhood, one of
these masks (or a rotated and/or mirrored version)
will hit. The set Curv26 represents likewise the
space curve primitives: On all possibilities of a
space curve to interesect a 33 neighbourhood one of these masks (or a rotated and/or
mirrored version) will hit. Iterating over an image 3X  with the erosion mask
Erode26cct of Figure 2 and a set of surface primitives (Surf26) and the set of curve
primitives (Curv26) yields a skeleton. Erode26cct erodes surfaces from volumes (it
hits only on the core of the volumes, not on their boundaries). The set Surf26 detects
surfaces and thus may be used to prevent the erosion of surfaces (the masks only hit
on the core of the surface, not on the surface boundaries). The set Curv26 detects
curves and can be used to prevent the erosion of curves (the masks only hit on the
kernel of the curves). Consequently, as volumes, surfaces and curves cannot be eroded
from their kernels, they are eroded from their boundaries. So only closed surfaces and
curves will remain.

a) b) c) d)

Fig. 4. Original1, surface skeleton, curve skeleton, and the topological kernel.

To prevent the erosion of boundaries, from the set Curv26 a set Curv26e can be de-
rived that contains all surface edge situations. Similarly, a set Curve26e can be made
from the set Curv26 containing all curve end situations [4],[5].

                                                          
1 Courtesy Dr. K. Katada, Fujita Health University Japan
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3 On the Necessity and Use of Recursive Neighbourhoods

A recursive neighbourhood can be used for a number of reasons.
First it can be used to erode or dilate objects or background in one or two passes

over the image. For instance the masks of Figure 3 can be used to quickly select ob-
jects. With objects stored in image X and seed voxels stored in image Z, starting from
the seed voxel, a wave front dilation starts over objects that are connected to the seed.
Figure 5 shows how such dilation evolves in a 2D situation. The dilation mask (5a) is
assumed to make a raster scan over the image from top-left to bottom down. A part of
an image X is shown in 5b…5e. In 5b and 5c the mask does not fit and hence the pix-
els are reset to foreground in the output image Y. When the scan runs over the image
at one row lower, shown in Figure 5d and 5e, in situation 5d the pixel swaps value
from background to foreground but the swap in 5e depends on which neighbourhood is
used. Using the recursive neighbourhood (partially using output image Y), the pixels
swaps value, as the mask does not match, but when using the Local Neighbourhood
(only using input image X) the mask fits and the pixel remains background. Of course,
an unconditioned recursive dilation in a downward scan followed one in an upward
scan over the image would fill the whole image. Likewise, a recursive erosion would
erode a convex object in two of such scans over the image. Hence its application is
found in conditional erosions and dilations.

a) b) c) d) e)

Fig. 5. Recursive dilation

Secondly, the Recursive Neighbourhood can be used to detect change within a
skeletonization procedure2.

a) b) c) d) e)

Fig. 6.  Topology check using the local (b, c, d) or recursive (b,c,e) neighbourhood

The problem with a topology check (e.g., a mask) that works on a N3  neighbourhood
is that it cannot detect two element (pixel, voxel, …) thick structures. Figure 6 shows a
situation in which the mask of Figure 6a is used to detect a straight single pixel thick

                                                          
2 The first one known to me that used it for this purpose was Hilditch (1969) [2]
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vertical line. This curve primitive (6a) is one of the masks that are used as topology
check for a 2D skeleton. A raster scan is assumed. The sequence 6b, c, d shows what
happens if the local neighbourhood is used for a topology check. 6b, c, e shows what
happens if the recursive neighbourhood is used. In situation 6d the topology is broken,
in 6e it is preserved as now the output image is partly used in the mask match.

An alternative to the use of the recursive neighbourhood is to use only the Local
Neighbourhood, but to erode from one direction at a time -explicitely or implicitely-
[1]. This technique is called sub-cycling. In the example of Figure 6, the tests of 6c
and 6d would then have been done in subsequent cycles through the image, first an
erosion from the left, and secondly an erosion from the right. The same effect can be
obtained by first processing all odd lines of the image followed by the processing of
all even lines in the image. This is often done on parallel hardware such as massively
parallel processor arrays [7]. In literature [10], often the terminology sequential algo-
rithm versus parallel algorithm is used for the use of the recursive neighbourhood
versus the local neighbourhood with sub-cycles. However, both approaches can be
implemented on sequential as well as parallel machines. A third method is the exten-
sion of the neighbourhood -for instance in 2D to 3 x 4- to detect the two element thick
structures [8]. This lets the number of masks (or topology tests), as well as the number
of image elements to be tested grow considerably. When a recursive neighbourhood
can be addressed, this is the fastest method, as it diminishes the number of tests within
the neighbourhood, the number of topology tests as well as the total number of cycles
through the image.

When the skeleton is made, the topology checks can be split into checks on the inte-
rior of the object and checks on the boundary. In 3D playing with the subsets: erosion
mask (Erode26cct), surface detection mask-set (Surf 26), curve detection mask-set
(Curv26), the mask-sets for surface ends (Surf26e) and curve ends (Curv26e) skeleton
variants can be made. The set {Erode26cct, Surf26, Surf26e, Curv26} is used for the
surface skeleton. The set {Erode26cct, Surf26, Curv26, Curv26e} was used to obtain
the curve skeleton. The set {Erode26cct, Surf26, Curv26} was used to obtain the last
skeleton of Figure 4.  The recursive neighbourhood should be used, only for the Surf
26 and Curv26 sets and not for Erode26cc and the Surf26e and Curv26e sets.

If the recursive neighbourhood is used for the erosion mask, the erosion will not be
performed boundary by boundary like peeling an onion skirt, but the erosion will im-
mediately propagate over the object. The final skeleton will not be on the medial axis,
but will lay on the bottoms of the objects, when raster scanning. If the recursive
neighbourhood and/or sub-cycling method is also used for the object boundary condi-
tions, e.g., Surf26e and Curv26e, this will lead to the sprouting of spurious protrusions.
This can be best explained when using the sub-cycle technique. Due to the first sub-
cycle, locally a noisy boundary may be formed, which may be cancelled out in the
subsequent sub-cycle by an erosion from another direction. However, a boundary
detection condition mask, may decide that this is the beginning of a protrusion and
decides to keep it. So object core conditions should be treated differently from object
boundary conditions, to avoid excess sprouting of protrusions. But even then, in the
object core conditions, e.g., (Surf26, Curv26), the recursive neighbourhood should
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only be checked to verify if a foreground is changed into background, where a back-
ground is expected in the mask. This is shown in Figure 7.

a) b) c) d)

Fig. 7. Using the recursive neighbourhood for foreground

Suppose the mask of Figure 7a is used to detect a skeleton curve in 2D. The pixel in
7b is reset to background as the mask does not fit. The pixel in 7c is correctly set to
foreground; the mask fits when foreground in the mask (the North pixel) is checked in
the input image X and the background in the mask (the West pixel) is verified using
the output image Y. 7d Shows what happens if both are verified using the output im-
age Y. The topology is broken. The use of the full recursive neighbourhood in the
sense of Figure 7b, can be profitably when a skeleton without end conditions is made.
For instance in a skeleton without end-voxel conditions, yielding the topological ker-
nel, as shown in Figure 4d, the space curve conditions are verified in the full recursive
neighbourhood. The benefit of this is that the non-closed curves are eroded recur-
sively, i.e., in a few passes through the image as the erosion propagates over the
skeleton branches within a single cycle through the image. This makes this skeleton
fast.

4 Advanced Examples

In this section two examples are presented of applications that make use of 3D mor-
phological operations, most notable of variants of the 3D skeleton operator and the
propagation operation. Both use the recursive neighbourhood in various ways.

Consider Figure 8. The original image3 is taken by an acquisition system -based on
multiple cameras- that produces a stream of 3D object data [11]. As the system pro-
duces imperfect data, each image of the stream has to be processed before rendering
texture and colour onto it. The lower images in Figure 8 are cross sections of the legs.

The procedure used to clean-up the original is the following sequence:
1) dilate the object with a 26 connected contour
2) dilate the object with a 6 connected contour, twice
3) erode a 26 connected contour from the object
4) erode a 6 connected contour from the object

                                                          
3 Courtesy Prof. Matsuyama, Kyoto University Japan

This is an old stream; currently his 3D streams have a far better quality [11]

SET
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Fig. 8.  Aerobic girl    original Aerobic girl   processed

5) iteratively erode a 6 connected contour from the object, (Erode6cct) but use also
the mask-sets Surf26 and Surf26e, thus performing a few cycles of the surface
skeleton. Anchor the original object into the skeleton; with a logic OR operation,
after each skeleton cycle the original data points are re-inserted, thus forcing the
skeleton through the original data points. Step 1 through 4 performs a 3D closing
operation. Due to step 5 the result is a closed single voxel thick surface that goes
through the original data points. Like alternating 4 and 8 connected in 2D, the
alternation of the 26 and 6 connected erosions/dilations in 3D leads to a better
erosion/dilation metric [3].

6) propagate the edge of the image into the image (Propagation26cct), stop at the
object boundary and invert the result. This makes the object solid.

7) extract the contour of the solid object. Steps 6 and 7 remove all inner data points
of the object.

8) take a surface skeleton without boundary conditions using {Erode26cct, Surf26}.
This finds the closed surface contour only, i.e., it removes sprouting surfaces.
The full recursive neighbourhood is used in Surf26 and consequently the bound-
ary surfaces are eroded recursively and two skeleton cycles are sufficient.

In Robot Soccer [6],[9] two teams of each 4 autonomous robots play soccer in a field
of 5 x 10 meter. One of the issues is to quickly plan collision free paths for the robot.
Moreover, if a robot should play together with a teammate, his presence is required on
a certain point in space AND time, e.g., to intercept a passed ball. A 3D im-
age 3X represents the universe of the robot with two space dimensions (x, y) and one
time dimension (t). Note that if the orientation of the robot should also be taken into
account, the problem should be solved in 4X  (x, y, , t). Figure 9 shows 12 pictures
of a soccer field. The soccer field is in this example divided into cubic voxels of 0.3 x
0.3 x 0.6 [m·m·s]. The robot speed is {0, 1, 2} · [0.5 m/s]. The image size [x, y, t] is
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17 x 35 x 35 voxels. The origin of the field is in the centre of the image at t = 0. As-
sume an attacker robot with ball wants to score, while the goal is defended by two
defender robots. The attacker is on point (-6,-6,0) and tries to get to point (6,-2,34) to
score, and the defenders are at points (15,7,0) and  (10,-6,0) and are perceived by the
attacker robot to head for the points (-10,6,34) and  (0,0,34). The path planning proce-
dure of the attacker robot consists of the following steps.

Fig. 9.  Search space moving objects       reduced search space     collision free path

1) Recursively dilate the start point towards the positive time direction. The re-
sulting cone indicates the points in the field that can be reached by the robot in
positive time direction, when using speed 1. See Figure 10a.

Fig. 10. a) Fully recursive neighbourhood (reset) mask to
propagate a cone in space-time and b) a fully recursive
neighbourhood (set) mask to erode objects in space-time

2) Recursively dilate the goal point towards the negative time direction
3) AND the results of 1) and 2). The top row, left column of Figure 9 shows the

result, the initial search space.
4)  From the two defender robots a speed and heading is perceived by the vision

system of the attacker robot. It assumes that for the duration of the path those
robots will linearly continue their path. The top row, second column in Figure 9
shows two objects, the linear paths of the defender robots in space-time, dilated
one step, to introduce a safety margin.

5) The EXCLUSIVE OR of search space and the moving object images yields the
reduced search space of the top row, third column of Figure 9.

6) The curve skeleton without end-curve conditions {Surf26, Curv26}, with start
and endpoint of the attacker robot anchored into the skeleton, yield the final
collision free path. Note that both Surf26 and Curv26 are used in the full recur-
sive neighbourhood. This enables the fast erosion of sprouting surfaces and
space curves. A problem in the planning is that the path to be found may not

y
    t

RESET         SET
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run backwards in time. To prevent this, first all skeleton scans over the image
are only applied in the forward time direction. Secondly, the erosion mask is
adapted, so that it does not erode backward in time (see Figure 10b). Thirdly,
masks in Curv26 that have configurations that allow connectivity’s backward in
time are omitted. Thus paths that run backward in time are never found, as their
topology is not preserved.

7) As the curve skeleton finds all possibilities to go from start to goal, a simple al-
gorithm is: go left at a branch point if y > 0, right if y < 0, leading the attack
over the wings. Alternatively, the distance can be propagated over the
branches, to find the shortest of the branches.

8) If no fixed end-time tend is assumed for the attacker robot, tend can be iteratively
reduced, until no path is found anymore. The three rows of Figure 9 show the
paths at end-times tend = 34, tend = 22 and finally tend = 16, the minimum time for
a collision free path. A start value for the end-time is tend=xend-xstart+yend-ystart.

9) For tend = 34, a path is found in 84 msec on a PIII, 600  Mhz .
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