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Abstract. We challenge the problem of the reconstruction of a
bicolored domino tiling of a rectangle from its horizontal and vertical
projections. We give two N P-completeness results after having defined
two non equivalent and very natural notions of projections on a generic
bicolored domino tiling. The more general problem of the reconstruction
of monochromatic domino tilings is still left open.
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1 Introduction

The aim of Discrete Tomography is the reconstruction of a discrete finite set
of points in the d-dimensional integer lattice Z® using projections on lower di-
mensional subspaces. Important applications of Discrete Tomography are in im-
age processing, in reconstructing structures from data get by an electronic mi-
croscopy, in data security and data compression (regarding the projections as an
encoding process and reconstruction as a decoding process of a given object),
and in computer-aided tomography.

Interesting results have been achieved in reconstructing planar sets using pro-
jections on one, two or more mono-dimensional subspaces. In [2], Ryser studies
the problem of how to reconstruct a binary matrix (which models bidimensional
sets) from its projections and finds a P-time algorithm for it. In [I] the authors
extend the above result to matrices with a finite number of different entries
(which models colored bidimensional sets) and find the N P-completeness when
n > 3 (n — colors problem). These results become relevant when applied to the
algorithms for the reconstruction of polyatomic crystal structures.

In this paper we use standard techniques of Discrete Tomography in order to
reconstruct tilings of rectangular subsets of the plane with two colored dominoes.
The horizontal and vertical projections of the tilings are a priori knowledge. In
[b] the author shows that the reconstruction problem of a bicolored domino
tiling is at least as hard as the reconstruction problem of a three entries matrix
(3—colors problem) and leaves as an open problem its computational complexity.
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Furthermore in [6] a polynomial time algorithm which reconstructs a bicolored
domino tiling from one projection is given.

The paper is organized as follows: in Section ] we give some general defini-
tions about bicolored domino tilings, in Section [3] we find the computational
complexity of the reconstruction problem on such a class using two orthogonal
projections. This problem arose in [5]. In the last section we consider and solve
the same reconstruction problem using the different and non equivalent notion
of horizontal and vertical projections introduced in [6].

2  Definitions

Let us consider an infinite squared surface S composed by cells and consider a
two length horizontal or vertical bar called dominoes. A rectangular subset of S
of dimension m x n has a domino tiling if it could be completely covered with non
overlapping dominoes. Furthermore, a bicolored domino tiling, is a domino tiling
which use two different kinds of dominoes: white and black ones. Columns are
numbered from 1 to n, starting from the leftmost one, while rows are numbered
from 1 to m, starting from the topmost one. A vertical domino covering two cells
ci,j and c;11 5 is said to start on line ¢ and end on line ¢ + 1, while an horizontal
domino covering two cells ¢,/ ;7 and ¢y j/41 is said to start on column 4’ and end
on column 5’ + 1.

4,1) (2,2) (2,3) (4,0) (3,2)
(4,0) (3,2) (1,3)

(3,2) (2,3)
(3.3)

“4.4)
(6.,1)
(3.3)
(5.4)
(6,2)

Fig. 1. A bicolored domino tiling of size 6 x 10 and its horizontal and vertical projec-
tions.

Let B be a bicolored domino tiling of dimension m x n, we define

H = ((w1,b1),...,(wm,bn)) the vector of the horizontal projections of B,
where w; is the number of white dominoes which intersect at least one cell
of line ¢ and b; is the number of black dominoes which intersect at least one
cell of line 7, for each 1 < ¢ < m.

V = ((wi,b)),..., (w,,b),)) the vector of the vertical projections of B, where
wé is the number of white dominoes which intersect at last one cell of column
7 and b’j is the number of black dominoes which intersect at least one cell of

column j, for each 1 < j < n.
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The two vectors H and V' do not univocally determine the number of horizontal
(vertical as well) white dominoes on each row. The same holds for the black
dominoes.

Through the paper we will indicate with B a bicolored domino tiling of dimension
m X n; the vectors of horizontal and vertical projections of B will be denoted
with H and V in Section [3] and with R and C in Section [4l.

3 The Reconstruction of a Bicolored Domino Tiling
Consistent with Two Given Projections

We define the two problems:

CONSISTENCY (g7,v(b.d.t).

Instance: two vectors H € (N x N)™ and V € (N x N)™.

Question: does there exist a bicolored domino tiling such that its horizontal
and vertical projections are H and V respectively?

RECONSTRUCTION g7,y (b.d.1).

Instance: two vectors H € (N x N)™ and V € (N x N)™.

Output: a bicolored domino tiling such that its horizontal and vertical pro-
jections are H and V.

In [5] the author made a step towards the solution of the 3 — colors problem by
reducing its instances to instances of CONSISTENCY (g v (b.d.t.) so that if this
problem allowed a P-time solution, then also 3 — colors would.

Unfortunately in this paragraph we prove that CONSISTENCY (g, (b.d.t.) is N P-
complete: this prevent us from making any conjecture about the complexity
of the 3 — colors problem. We achieve the above mentioned result by using a
reduction which involves the N P-complete problem PARTITION (see [3]).

PARTITION

Instance: a finite sequence of integers A = {ay,...,ax).
Question: let J = {1,...,k}. Is there J' C J such that

Zaj: Z a;?

jeJ jeJ—J’

Lemma 1. Let B be a bicolored domino tiling and H its horizontal projection.
The number of white dominoes in B is lower bounded by % and upper
bounded by w1 + -+ + Wy,

Proof. We get the lower bound when in B there are only vertical white dominoes
so that each of them is counted in two different entries of H. We get the upper
bound when in B there are only horizontal white dominoes, so that each of them
is counted only in one entry of H. O



The Reconstruction of a Bicolored Domino Tiling from Two Projections 139

Theorem 1. CONSISTENCY 4,v)(b.d.t.) is N P-complete.

Proof. The problem obviously belongs to N P.

Let A= (a1,...,ax) be an instance I of PARTITION with >,  ;a; = 2s. We
want to define in polynomial time k — 1 instances I7,...,I;_; of the problem
CONSISTENCY (f7,v)(b.d.t.) such that a solution for I exists if and only if a solution
for at least one of the I7,...,I; , exists. The index i of the generic instance I
represents the cardinality (which is obviously less than, but not equal to k) of
the set J' .

Let us construct I] and let B; be one of its solutions, if it exists.

We define H € (N x N)** and V € (N x N)? as follows:

— H is composed by couples which can be arranged in k blocks, each of them
encoding a different element of A. The height of the j-th block is 2a;:

H=((1,1),2, 1), (2,1, (1,1), .., (1,1), (2,1),. ., (2,1), (1, 1))
block 1 of length 2aq block k of length 2ay

— V is composed by 3 couples:
V=((s,s+1),(2s — k,2k), (s,s + k — 1))

(see Figure[2 a)).

We make some useful remarks:

let us consider the first block of horizontal projections of H, and let B} be a
bicolored domino tiling consistent with it as shown in Figure 21b) and c), it holds:

i) by Lemma [0, the minimum number of white dominoes in B; which are
required by H is Zle 2a; —1 = 4s — k, which is also the maximum number
of white dominoes required by V' (we compute it by adding w} + w} + w}
of V, that is s + (2s — k) + s). It follows that B; has exactly 4s — k white
dominoes;

i) again by Lemma [l the minimum number of white dominoes in B} is

1
5(1+2+---+2+1):2a1—1.

2q4, times

Figure [ ¢) shows a solution having a higher number of white dominoes;

iii) since B; is composed by k blocks, using i) we get that, for each 1 < j < k,
B has exactly 2a; — 1 white dominoes, which are all vertical ones;

iv) from the previous remarks it follows that each Bf has two horizontal black
dominoes which are placed on the first and the last row of the block;

vi) since the number of black dominoes in the second column of B; is 2k and
remark 4ii) and iv) hold, we get that each B/ has only two horizontal black
dominoes in the first and on the last rows.
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Fig. 2. The tiling which leads to a solution of the instance A = (5, 3,2) of PARTITION
with ¢ = 2.

The above remarks imply that B; can assume only fixed configurations: each of
them leads us to a solutions of PARTITION.

On line 1, B; has a white vertical domino and a black horizontal domino; if the
white domino is placed on column 1, then the tiling of the whole first block B}
is univocally fixed. We can consider such a tiling as the coding of the belonging
or no-belonging of the index 1 to J' (see Figure Bl a)). If the white domino is
placed on column 3 we get a symmetrical tiling.

For the remaining k — 1 blocks a similar behavior holds: by placing the first line
of each of them we determine the whole tiling of the block.

On column 1, B; has only the white dominoes belonging to the coding of i
elements of A whose sum is s. The indexes of such elements forms the required
set J'.

On the other hand let J’ be a solution for I having cardinality i. We proceed
by coding each element having index in J’ by a block which has white dominoes
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in column 1 and each element having index in J — J’ by a block which has
white dominoes in column 3. The constructed tiling is one of the solutions of the
instance I; of CONSISTENCY g7,y (b.d.t.). O

Corollary 1. The problem RECONSTRUCTION g v)(b.d.t.) is N P-hard.

4 A New Reconstruction Problem on the Class of
Bicolored Domino Tilings

In this section we give a different and very natural definition of projections
for a bicolored domino tiling (as introduced in [6]). Through the section, the
new vectors of horizontal and vertical projections will be referred to as R and
C in order to distinguish them from H and V previously defined. In [6] the
author shows a polynomial algorithm which solves RECONSTRUCTION g (b.d.t.)
and he leaves RECONSTRUCTION (g, ¢y(b.d.t.) as an open problem. In spite of the
two notions of projections are not equivalent, we prove the N P-completeness
of CONSISTENCY (g,¢)(b.d.t.) by reducing it to the problem PARTITION in a
similar way as in the Theorem [I} This result solves a question proposed in [5]
and [6]. However a general question about domino tilings remains still open:
the computational complexity of the reconstruction of a domino tiling from two
projections.

A new notion of projections.

Let B be a m x n bicolored domino tiling, we define R = (r1,...,7,) and C' =
(c1,...,cpn) as the vectors of the horizontal and vertical projections respectively,
where, for each 1 <7 <m and 1 < j <mn, r; is the number of cells covered with
a white domino on line i and ¢; is the number of white cells covered with a white
domino on column j.

Theorem 2. Let H and R be the two horizontal projections of B, there does
not exist neither a function f : (N x N)™ — N™ which maps H into R nor a
function g : N™ — (N x N)™ which maps R into H (this means that the two
notion of projections are not equivalent).

Proof. examples a) and b) of Fig. Blshows that a function f which maps H into
R can not be defined. Examples ¢) and d) prevent us from defining the function
g which maps R into C. O
The same result holds if we use the vertical projections V' and C.

Again a proof of N P-completeness which involves PARTITION.

Theorem 3. Consistencyr,cy(b.d.t) is NP-complete
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Fig. 3. Examples showing the non equivalence between H and R.

Proof. The problem obviously belongs to NP. Let A = (ay,...,ar) be an in-
stance I of PARTITION, J = {1,...,k} and >, ;a; = 2s. We want to con-
struct in polynomial time an instance I” of Consistency g c)(b.d.t) such that a
solution of I exists if and only if a solution of I’ exists.

We define R € N** and C' € N3 as follows:

— R is composed of k blocks such that, for each 1 < j < k, the j-th block encodes
the element a; € A and its length is 2a;:

R=( 1,2,...,2,1 e 1,2,...,2,1 );
—_—— —_——
block 1 of length 2a; block k of length 2ay
— (' is the following vector:
C = (2s,4s — 2k, 2s).

We prove that if B exists, then it can assume only fixed configurations, each of
them leading us to a solution of I.

We immediately note that, for each 1 < j < k, the block B7 of B has 2a; — 1
white dominoes. The reconstructing procedure of B is the following:

— on row 1 we place a vertical white domino on column 1 or 3 and an horizontal
black domino covering the two remaining cells. No other tile is possible, oth-
erwise we get stuck with the reconstruction on row 2. We choose to put the
white domino on column 1 (a symmetrical behavior if we choose column 3)
(see Figure d a));

— on row 2 we place a vertical white domino and a vertical black domino in order
to satisfy the second entry of R;

— on row 3 we have only a free cell where we place a vertical white domino;

— in an iterative manner we fill all the positions till row 2a; where the entry of R
is 1 and the cell on column 1 is covered with an ending vertical white domino.
So the two free cells should be covered with one or two black dominoes;

— the above observations can be extended to each one of the k blocks which
has a black cell on column 2 on the first and the last row. The total number
of black cells on such a column is 2k and so the remaining 4s — 2k cells are
covered with white vertical dominoes, as requested from the second entry of
C'(see Figure @ b));
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Fig. 4. The reconstruction of a bicolored domino tiling associated to the instance A =
(5,2,3) of PARTITION from R and C.

— now we can tile column 1 and 3 of each block of B with white or black vertical
dominoes according to the entries of C (see Figure Hl ¢) and d)).

Finally we observe that, for each 1 < j < k, the block j which codes the element
a; € A has the whole column 1 or the whole column 3 covered with a; vertical
white dominoes. Furthermore in column 1 of B we have s vertical white dominoes
which belongs to the blocks j ...7; and which code some elements a;,,...,a;,
whose sum is s. The set J' = {j1,...,J:} is the desired solution of the instance
1.

On the other hand, if a solution of I exists, it is easy to construct a solution for
the corresponding instance I'. O

Corollary 2. The problem RECONSTRUCTION g ¢y(b.d.t.) is N P-hard.

5 Conclusions

In this paper we have studied and solved the computational complexity of the
reconstruction problem on the class of the bicolored domino tilings using two dif-
ferent pairs of orthogonal projections. These two problems arose while searching
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a solution for the complexity of the 3 — colors problem and for the reconstruc-
tion of a monochromatic domino tiling from two projections. These two classical
challenges are still left unsolved.
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