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Abstract. Graph-based structures are commonplace in image process-
ing. Our contribution in this article consists in giving hints represent-
ing a new modeling of digital images: image neighborhood hypergraphs.
We give some results on the hyperedges coloring of them. We also de-
scribe techniques we used to display image neighborhood hypergraphs
line-graphs. These techniques form the basis of a tool that allows the
exploration of these structures. In addition, this tool can be used to vi-
sualize, explore and describe features of image regions of interest such as
object edges or noise.

For nearly fifty years, image processing, image analysis, and computer vision are
fields that have been intensively studied. Many various mathematical theories
and techniques have been widely involved in these scientific fields: linear alge-
bra, continuous optimization, statistics, combinatorics, to name a few. One of
the main problematics in image analysis is the foundation of formal modelings
of the digital image. In any scientific field, an efficient modeling should establish
structural relationships between the different objects of that domain. A digi-
tal image may be considered as a union of elementary spatial and colorimetric
units. Therefore, working on the organization of these components may be seen
as a combinatorial problem, since combinatorics is the science that studies or-
ganization of discrete objects in mathematically formalized modelings. This is
maybe why graph theory and associated techniques arose in image analysis and
had been widely used by many researchers. An attractive approach is to develop
a modeling technique based on a generalized graph theory: hypergraph theory.
Hypergraph theory arose from the seminal work of C. Berge in the early seven-
ties [2]. In graph theory, one studies the binary relationships between elements.
In hypergraph theory, the relationships between basics elements are generalized:
elements in relation belong to a same set if they share a common property.

We recently proposed a modeling based on hypergraph theory [6]. Our first
intentions in dealing with this modeling was to try to characterize regions of
interest in a picture. That is why we tried to represent the image neighborhood
hypergraph structure itself and this paper presents some results on this. Trying
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to represent it in a bidimensional way in simply drawing and coloring the hyper-
edges, we will show that this might appear as an unappropriate representation of
that modeling. A tridimensional representation of the INH line-graph appeared
to be a better way to display them and is the objet of our third part.

1 Theoretical Background

Given a set X, we will denote by X(2) the set of unordered pairs of X. A graph
G [1,13] is an ordered pair (X,E) such that E is a subset of X(2). The size of
G is the cardinality of X. Elements of X are called vertices, those of E edges.
If e = {x, y} is an edge of G, x and y are said to be adjacent. We say that a
graph G′ = (X ′, E′) is a subgraph of a graph G = (X,E) if X ′ ⊂ X and E′ ⊂ E.
A graph is said to be complete if E = X(2). A complete graph whose size is n
will be denoted by Kn. A complete maximal (in the sense of inclusion) subgraph
of a graph G is said to be a clique of G. A clique whose size is maximum is
called a maximum clique [5]. To any vertex of a graph may be associated its
neighborhood Γ (x) = {y ∈ X, {x, y} ∈ E}. The degree of a vertex x is the
cardinality of the set Γ (x). If any vertex in the graph has the same degree, the
graph is said to be regular.

A hypergraph H [4] on a set X is an ordered pair (X,E) where E is a set
of nonempty subsets of X such that

⋃
e∈E e = X. Elements of X are called

vertices, those of E hyperedges. The size of a hypergraph is the cardinality of
its set of vertices. The line-graph of a hypergraph is defined as the graph whose
set of vertices are the hyperedges of the hypergraph and where there is an edge
between two vertices if the associated hyperedges have a nonempty intersec-
tion. To any graph may be associated its neighborhood hypergraph defined by:(
X, ({x} ∪ Γ (x))x∈X

)
. Moreover, we will say that the hyperedge {x} ∪ Γ (x) is

generated by the vertex x and x will be called source pixel of {x} ∪ Γ (x).
A digital image I [11] is a map from a subset X (generally finite) from ZZ2

in a subset C of ZZn. Elements of X are called points, those of C colors. A couple
(x, I(x)) where x belongs to X is called a pixel. However, the confusion between
a point x and (x, I(x)) is often made and we will not depart from it since it
keeps its meaningfulness. A tiling (or a tessellation) of IR2 [19] is a partition
of IR2. The tilings generally studied are constrained by a limited number of
geometric configurations called tessels. Given a tiling, the choice of an arbitrary
point in the tessels, and the fact to link two points if the tessels share a common
side allows to build a mesh. For the case of regular tilings where the tessels
are regular polygons, the center of gravity of the polygon is often chosen and
therefore leads to a regular mesh. In image processing, three types of meshes are
used: hexagonal, triangular and square ones. Because of the current technological
devices and the natural data structuring, the last type is the most used and we
will therefore restrict our study to this kind of mesh. If a distance on ZZ2 defines
a undirected, simple, loopless and regular graph on a mesh, that distance will be
called a grid distance. A grid is then a nonempty set of ZZ2 with an associated
grid distance. On square grids, two distance are mainly used: the city block (or
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square) distance for which a given pixel has four neighbors and the chessboard
(or diamond) distance for which a given pixel has eight ones. This paper will
only deal with the chessboard distance.

2 Image Neighborhood Hypergraph Modeling

2.1 Spatiocolorimetric Neighborhood of a Pixel

Let d be a distance on the set of colors C and d′ be a distance that defines a grid
on X ⊂ ZZ2. Let α and β be two strict positive reals. A unique neighborhood
Γα,β(x) for the digital image I may be associated to any pixel x of X by:

Γα,β(x) = {y ∈ X, y �= x such as d (I(x), I(y)) < α and d′ (x, y) < β}
We will call d′ grid distance and d colorimetric distance. The definition of

colorimetric distances highly correlated with the perception of the human brain
is always nowadays an extremely delicate domain of study of the neuroscientific
field. However we will assume that such functions exist even if the ones we will
use may not appear appropriate with our sensations at the sight of an image.
Looking at the previous definition, it appears that the first part of it defines a
neighborhood in the space C whereas the second one only involves the spatial
domain. We will therefore respectively call α and β, colorimetric threshold and
spatial threshold. Moreover we will qualify Γα,β(x) of spatiocolorimetric neigh-
borhood. That notion allows to describe some consistency or homogeneity of a
pixel with its environment. It is also interesting to see that such a neighborhood
has a useful property: it increases in the sense of inclusion both with α and β.
For instance, if we chose two colorimetric thresholds α and α′ such as α < α′,
for a fixed β, Γα,β(x) ⊆ Γα′,β(x). That is due to the fact that if a pixel y is,
from the color point of view, close of x at α, it remains close to x at α′. This
argument is the same if we chose the spatial thresholds and it is possible to show
it also for them. The main interest of that property is that it implies a certain
regularity in the modeling that we will now present.

2.2 Image Neighborhood Hypergraph

It is now possible to define an image neighborhood hypergraph (INH) Hα,β on X
by Hα,β =

(
X, ({x} ∪ Γα,β(x))x∈X

)
. It is useful to precise that such a definition

is correct since any hyperedge Γα,β(x) is nonempty: it contains at least the pixel
x. Moreover the union of all the hyperedges is X itself. We will call Γα,β(x)
hyperedge centered in (or generated by) the pixel x. As it directly inherits from
the spatiocolorimetric neighborhood definition, an INH also increases with α and
β in the sense of the hyperedges inclusion. The figure 1 shows a part of an INH
and its associated line-graph for a spatial threshold β of 1 for the chessboard
distance. For this figure we did not precise the colorimetric distance and its
associated threshold as that is not relevant. However the first noticing is that
displaying hypergraphs structures in this way leads to a muddled interlacing of
patterns of various shapes and colors.
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Fig. 1. A part of an image neighborhood hypergraph and its associated line-graph.

3 First Attempts of Representation

In this section we will describe the difficulties we encountered with our first
attempts to represent the image neighborhood hypergraph structure in a simple
bidimensional way as in the figure 1. That simple idea consisted in associating
to represent hyperedges by the set of pixels that they contained.

3.1 Coloring Hyperedges

The first idea in representing an INH will probably be to associate a color to
any hyperedge of it. Moreover it is then natural to color them in such a way
that two intersecting hyperedges will have different colors. In order to make the
representation as simple as possible it should be interesting to have the least
number of colors. Generally speaking, this problem is known as the hyperedge
coloring of a hypergraph H and that minimum number of colors associated with
it is called the chromatic index of H, denoted by q(H). That problem relies on
the chromatic number of a graph as lemma 1 precises it. The chromatic number
of a graph is the minimum number of colors that are needed to color the vertices
of that graph in such a way such that two adjacent vertices have distinct colors
[1].

Lemma 1. The chromatic index q(H) of a hypergraph H is also the chromatic
number χ(L(H)) of its associated line-graph L(H).

q(H) = χ(L(H))

Proof. The proof directly comes from the definitions. Two intersecting hyper-
edges will have distinct colors and therefore their associated vertices in the line-
graph of the hypergraph will also have different colors. That fact allows us to
claim that necessarily q(H) ≤ χ(L(H)). Conversely two distinct vertices of the
line-graph with different colors ensures that their associated hyperedges will also
have different colors and therefore that χ(L(H)) ≤ q(H). Hence we can conclude
to the equality of both quantities χ(L(H)) and q(H).
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Unfortunately computing the chromatic number of a graph is generally not
an easy thing... it is NP-hard [15]. Nevertheless we can particularize it to our
line-graphs. The worst case that may appear is the one such that any hyperedge
of the hypergraph has maximal cardinality, that is, when only the spatial thresh-
old is discriminating. In this case, on the 8-connected grid, for a fixed threshold
β, a pixel generates a square hyperedge whose cardinality is (2β + 1)2 (we will
assume that there are no border problems if we suppose that the image loops
itself). It is easy to see that the resulting line-graph is regular: as the same hy-
peredges configuration appears on the whole image, the number of intersections
is the same for every vertex of the graph. Remark that, in the case of a regular
graph, computing the chromatic number is as hard as in the general case [17].
However it is possible to represent the vertices of the line-graph by the pixel that
generated the corresponding hyperedge and it is clear that any vertex-pixel of a
fixed hyperedge e (that we will call as the “initial” hyperedge) is the center of a
hyperedge e′ that intersects with e. This is the case of the pixel we called “mem-
ber” in the figure 2. But these hyperedges are not the only ones that intersects e.
This is the case for instance for the pixel that we called “external” on the figure
2. It is however easy to see that no pixel further than 2β from the “initial” pixel
will generate a hyperedge that intersects with the initial hyperedge. Hence we
can precisely give the number of intersections that a hyperedge have in the INH:
(4β+1)2− 1 (if we assume that a hyperedge does not intersect with itself). The
degree of a vertex in the line-graph is (4β + 1)2 − 1 (see Fig. 3).

external
hyperedge
pixel gen-
erating the
external hy-
peredge or
external pixel
member pixel

initial pixel

initial hyper-
edge

Fig. 2. Determination of the worst case for the chromatic index in a image neighbor-
hood hypergraph. We display in this the case for β = 2

Lemma 2. In the line-graph L(H	,β) of an image neighborhood hypergraph
H	,β, the degree of any vertex is (4β + 1)2 − 1.
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Computing the chromatic number of that graph is similar to determining the
size of the largest clique in it [1]. As we represent the vertices of the line-graph
by pixels on a grid, we can make some claims from the geometrical point of view
to determinate the size of this clique. Let us take a vertex o (associated to a pixel
O) in the line-graph. There is at least one clique C that lies in the neighborhood
of o in the graph. Using the representation of the line-graph that we previously
defined, we may see the pixel O as a “central” one (in the sense of geometrical
central symmetric) for the clique and we will say that the clique C is centered
in o. Therefore if we take another vertex p in the line-graph that belongs to
the neighborhood of o and if we consider the pixel P associated with it, we can
conclude that the symmetric Q of P is associated to a vertex q that also lies in
the neighborhood of o and therefore belongs to the same clique. Moreover we
may apply the same arguments to any vertex associated with a pixel which is
at the same distance of P from O thanks to isometric transformations of the
discrete plane [25,20]. Then we can assert the following result:

Lemma 3. If a pixel P such that d′(O,P ) = β0 is associated to a vertex p that
belongs to a clique C centered in o, then the set of pixels

{P ′ ∈ X such that d′(O,P ′) = β0}
is associated with vertices of the graph that also belong to C.

Under the previous assumptions and notations, we may also say that any pixel
located in the disk whose center is O and whose radius is β0 is also associated
with vertices that also belong to the clique. That fact is simply due to the
definition of our worst case as any hyperedges are of size β and a triangular
inequality argument. The idea is now to determinate precisely the maximal size
of that disk.

O

P

Q
β0 2β

Fig. 3. Illustration of some geometric remarks concerning hyperedges coloration. Ex-
ample of a partial line-graph built with β = 2

Assume that such a disk D exists. Let us call its center O and its radius
β0. Let us take a pixel P at β0 from its center. It is clear that P belongs to
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D. Its symmetrical Q around O also belong to D. If we want P and Q to be
respectively associated with vertices p and q that belong to the clique, necessarily
P and Q are linked by an edge in the line-graph and therefore each lies in the
neighborhood of the other one if the line-graph. Moreover the distance between
P and Q is simply 2β0 and cannot exceed 2β (as we already prove it). Therefore
we have to solve the equation:

argmaxβ0∈IN 2β0 ≤ 2β
... whose solution is simply:

β0 = β

The maximal radius of the disk we sought is then β and we can give the
following lemma:

Lemma 4. The upper bound for the size of the maximum clique of a line-graph
associated with an image neighborhood hypergraph H	,β is (2β + 1)2.

In the worst case i.e. when the colorimetric threshold is not discriminating,
such a size is reached.

So, for instance, for an INH built for β = 2, the representation of its hy-
peredges already leads to a 25-colored muddle. That quadratic increase of the
number of colors is unfortunately not the only problems we were confronted to
represent the hyperedges of an INH.

3.2 Other Representation Problems

Hyperedges Connectivity. On the 8-connected grid, let us consider two hy-
pergraphs representations built for α = 5 on the subimage of the figure 4 and
the colorimetric distance simply compares the absolute value of the difference
between the colorimetric value of the pixels with α. For β = 1, the hyperedge
generated by the “central” pixel is represented in blue, for β = 2, in red. In order
not to overload that figure, the superimposition of the two hyperedges has not
been explicitly shown but it must be clear that due to the increasing property of
the INH, the blue hyperedge is contained in the red one. What is remarkable in
that figure is that such a representation of hyperedges may lead to the appear-
ance of disconnected areas in it and holes in hyperedges increasing the difficulty
of the reading for a potential user.

Which Curves to Chose? As there are no convexity properties for the hy-
peredges (see figure 4), our initial choice of curves of the splines family did not
appeared as very relevant. Moreover, after coloration and connectivity difficul-
ties, the problem of the choice of the control points of these curves was added.
The representation of the hypergraph structure itself appeared us then so tricky
that we chose to go towards another representation of the structure: the one of
its line-graph.
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Fig. 4. In an INH, hyperedges are not necessarily connected in the sense of the under-
lying grid.

4 Line-Graph Representation of an INH

Our main motivation with that representation was not to display a particular
graph structure: we had the intention to make it interactively investigational
by a potential user. It is certainly of great interest for the one interested in
discovering our modeling to chose himself his own point of view on the structure
and, better, in allowing him to navigate through the structure itself. We develop
such a tool and in investigating the structure we were able to characterize image
phenomena such as noise or object edges lying inside an image [10,22].

4.1 Image Correlation

Our first concern was to strongly correlate our representation with the data it
came from. That is why we chose to display the original image on the repre-
sentation. In order not to disturb the visualization of the graph structure, we
chose to draw it with a parametric opacity. As any hyperedge is generated by
a pixel of the digital image, it is natural to represent it by a point or better
by a polyhedron or a sphere located at the vertical of the pixel. The elevation
of the center of gravity of that polyhedron from the source pixel is controllable
and may moreover be proportional to the intensity of the source pixel giving the
representation a tridimensional aspect that makes easier its reading. To show
the size of the hyperedge we make its radius proportional to the cardinality of
the hyperedge (that proportional factor is also controllable).

4.2 Line-Graph Structure Representation

The line-graph is not a planar graph. For β = 1 for instance, we showed that
the degree of its vertices may reach 24 and therefore it should not be rare to
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O

N

P

Fig. 5. The representation of the line-graph structure may gives bad impression. Some
vertices may appear linked in the structure whereas they are not. The local display of
a hyperedge of an image neighborhood hypergraph.

Fig. 6. Sample representations of the line-graph of an INH. The image is a RGB-color
picture. For a pixel x, color is coded by (xr, xg, xb). The colorimetric distance used
was d(x, y) =

√
(xr − yr)2. α was set to 25 and β to 1. Note the weak degree of some

vertices in that graph: that allowed us to partially characterize edges of objects in an
image [10].

see K5 or K3,3 in that graph [1]. However we chose to link the vertices of the
graph by simple segment lines even if it could give bad impression on the graph.
From the figure 5 for instance, two hyperedges are explicitly drawn. They are
generated by the pixels O and P . They intersect and therefore a link between
O and P must be shown. Let us assume that the hyperedge generated by N is
reduced to N itself. The user may therefore have the (bad) impression that N
is linked with both P and O as N lies between these two points. Firstly it must
be clear that such cases may be corrected by the user himself. As the elevation
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Fig. 7. Sample representations of the line-graph of an INH. The image is a RGB-color
picture. For a pixel x, color is coded by (xr, xg, xb). The colorimetric distance used was
d(x, y) = max{|xr−yr|, |xg−yg|, |xb−yb|}. α was set to 20 and β to 2. Note that some
areas are disconnected from the rest of the graph, some vertices are also completely
isolated from it. That allowed us to characterize noise in an image [7,8,9,22].

of the polyhedron representing the hyperedge generated by N is controllable by
the user. As its cardinality is 1, its intensity will probably different enough from
its neighbors and therefore its elevation may also be different enough in order
not the segment line not to cross the polyhedron. Moreover, as the previous
argument may not appear as sufficient, we give the possibility to the user to
individually select a polyhedron and to display the corresponding hyperedge.
Only the pixels belonging to the hyperedge are drawn and moreover in order not
to give also bad impression on that representation, parabola arcs are drawn if
the pixels are located are located at more than 2 units (in the sense of the grid
distance) from the source pixel (see Fig. 5).

4.3 Current Restrictions

The main problem with this kind of representation is that it is not possible, at
the moment, to display too large images. For instance the figures 6 and 7 only
involves 33 × 21 and 55 × 46 color images. The main drawback is the memory
cost of the structure and the slowness of the current video cards1. However, at
the sight of the progress recently made in that technical field, we do not despair
to display larger structures in a near future. Moreover as it is possible to deal
1 For the figures 6 and 7, the construction and display have been made on a 1.2 MHz
Athlon GeForce2 MX video card. Navigation through the structure is very flowing
but begins to be difficult when the size of the image reaches more than 50000 pixels.
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with sub-images and parallelize processes, it should be possible to build sub-
representations of the image and to deal only with the nearest of them when the
display is made.

4.4 Characterizing Regions of Interest in an Image

However, at the sight of pictures resulting of the display, it is interesting to
note that regions of interest appear from the graph representation. For instance,
weakly connected vertices appear in the left upper part of figure 6 characterizing
edges of objects or of homogeneous areas in the original image [10]. Totally
disconnected vertices, small sets of them or very weak connections between a set
of vertices and larger size areas of the graph as shown in figure 7 allowed us to
give non-statistically based definitions of noise in an image [7,8,9,22].

References

1. B. Bollobás Modern Graph Theory, Springer–Verlag, (1998).
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Thèse de doctorat, Université L. Pasteur, Strasbourg, (1991).

21. F.P. Preparata, and M.I. Shamos, “Computational Geometry : An Introduction”,
Springer, New York, (1985).

22. S. Rital, A. Bretto, H. Cherifi, and D. Aboutajdine, Modélisation d’images par
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