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ABSTRACT 

The work reported in this paper is directed towards the mathematical proof of the 
existence of a consistent structure for the Euler totient function +(n) given n. This 
structure is extremely simple and follows from the exploitation of some of the very 
interesting properties relating t o  the integer 24 as demonstrated in the proofs. 
This result is of particular concern to cryptologists who are either attempting 
to break the RSA or ascertain its cryptographic viability. Furthermore, it is 
stipulated that  the methods and properties relating to the integer 24, taken as 
a modulo, may have strong implications on the different attempts to  solve the 
factorisation problem. 

I .  INTRODUCTION 

Rivest et. al. [l] (RSA) have presented a method for public-key cryptosystems, 
whose security depends predominantly on being able to factorise large numbers. 
This has stimulated research on the factorisation problem which would ultimately 
threaten the security of the RSA and has resulted in numerous papers being 
published on this work, such as Williams' overview of factoring procedures [2]. 
However, the validity of the different cryptanalytic attacks of the RSA has always 
been contested [3,4] and a fast algorithm for factorising large numbers has not 
yet appeared. 

This paper does not set out to break the RSA, but approaches the factorisation 
problem from a n  original viewpoint and consequently raises some doubts about 
its security. The  approach taken is the development of a mathematical proof of 
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the existence of a structure for the Euler totient function d(n) in terms of the 
argument n. This structure could enable the computation of the decryption key, 
which is secret in the RSA cryptosystem, from a knowledge of the encryption key 
and the parameter n which both reside in the public directory. The derivation 
of the structure for the Euler totient function and its interesting implications is 
based on the extremely simple, but powerful, number theoretical properties of 
the integer 24. 

1 1 .  NUMBER THEORETIC PROPERTIES OF THE INTEGER 24 

In this section, we prove the existence of some extremely interesting properties re- 
lating to  the integer 24. The most important of these properties may be expressed 
in terms of the following theorem: 

Theorem 1 For any prime p ,  p > 3, 

p 2  = 1 (mod 24) 

Proof The congruence given i n  (1) can be expressed in the form of the Diophan- 
tine equation: 

for a particular value of k .  

Hence, 

p 2  - 1 = 24k (2) 

( p  - l ) ( p  + 1) = 24k 
= 4!k 

where ”!” denotes the factorial operation. 
proving that ( p  - l ) ( p  + 1) is divisible by 4,  3 and 2.  

Since p is a prime? then its negative and positive differences about 1 can  be 
expressed in the form: 

The proof for (1) then consists in 

( p  - 1) = 2m, 
( p  + 1) = 3 m  + 2 

where m is any positive integer. 

Hence, 

( p  - l ) ( p  + 1) = 2m(2m + 2)  
= 4m(m + 1) 
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If rn is even, then rn = 2m’. Conversely, if it is odd then (rn + 1) = 2m’, so tha t  
the product m(m + 1) is always a n  even integer of the form 2rn”. Thus 

( p  - l)(p + 1) = 4.2711,’‘ 

which establishes the  fact t ha t  2 and 4 are indeed factors of p 2  - 1. 

To prove tha t  the  las t  factor 3 is also a factor of p 2  - 1, we present the  following 
development. 

Any three consecutive numbers about p will be of the form 

and since 3 y p  ( p  is a prime), then,  

either 3 I ( p  - 1) 
or 3 I ( P  + 1) 

In either case, the  product  ( p  - l)(p + 1) will consist of a factor of 3. This 
completes the proof. 

111. DEDUCTION OF A STRUCTURE FOR THE EULER TOTIENT 
FUNCTION - CRYPTANALYSIS OF THE RSA MODULO 24 

In this section, we present a stepwise mathematical deduction of the Euler  totient 
function, $(n), from a knowledge of n. This deduction is based on the  theorem 
reported in the previous section. 

In the case of the RSA [l], 

n = PQ 

where p and q are  the two primes involved in the encryption process. 

The security of the  RSA is based on the fact that a knowledge of, bo th ,  n and 
the encryption key. e (chosen at random from the interval [2 ,  + ( n )  - 11 such that, 
gcd(e, $(n)) = l)), does not allow the straightforward deduction of the decryption 
key, d, where d is t he  multiplicative inverse of e modulo d ( n ) :  

ed 1 (mod d ( n ) )  

since, due to the  factorisation problem and the nature of p and q ,  it is impossible 
to  compute the value of d(n) given n. 
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For two primes p a n d  q ,  such tha t  p ,  q > 3: 

p 2  = 1 (mod 24) 
q2 = 1 (mod 24) 

Then, for n = p q ,  

n2 = p2q2 = 1 (mod 24) 

Also, since +(pa)  = p*-'(p - I), [5], then 

4 b ' )  = P(P - 1) 
2 = P  - P  

or, 

4 ( p 2 )  = 1 - p (mod 24) 

(3) 

(4) 

Consequently, since gcd(p2,  q') = 1, then 

d b 2 )  = 4b2)+(!12) 
G (1 - p ) ( l  - q) 
= 1 + p q  - ( p  + q) (mod 24) 

(mod 24) 

However, 

44 = ( P  - l)(q - 1) 

From (5) and (6) we can then establish that 

$(n2)  = +(n) (mod 24) (7) 

Also, since d ( p ' )  = p ( p  - l ) ,  then congruence (5) can be interpreted as follows: 

d(n2) = + ( p 2 ) 4 ( q L )  
= P(P - 1) q(q  - 1) 

= P d P  - l ) ( q  - 1) 

Thus, 

4 ( n 2 )  = n 4 ( 4  
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On the other hand, congruence (7) may be written in its Diophantine equation 
form: 

(b(n2) = 242 + 4(n) ; z = 1,2,  ... (9) 

Now, equating the RHS of equations (8) and (9) yields 

nq!~(n) = 242 + 4(n) 
Hence 

Equation (10) shows tha t  there exists a definite structure for the Euler totient 
function in terms of its argument. In what concerns the RSA, such a structure 
is of particular importance since, for decryption purposes, b(n) is the crucial 
secret number in the system. The ability to compute $(n) given n renders the 
system vulnerable to  cryptanalytic attacks and, although the practical evaluation 
of the factor z may still be complicated, it is thought that, in theory at least, 
the existence of such a structure may lead the way towards developing a fast 
algorithm for the evaluation of 4(n). This is currently being investigated. 

IV . FURTHER PROPERTIES MODULO 24 AND AN ALGORITHM 
FOR EVALUATING +(n) 

The primes p and q involved in the RSA can be shown to have specific properties 
in terms of the integer 24, namely, 

Theorem 2 
p + q = 2i  (mod 24) ; i  = 0,1, ..., 11 (11) 

The proof of this theorem is rather simple and shall not be presented here. 

Conjecture 1 T h e  residue of n = p q  is  always 1 or an  odd prime, taken modulo 
24. In general, we can write 

n z  p (mod 24)  (12) 

where p = 1 or a p r i m e  E [3,23]. 

Conjecture 2 T h e  residue of x in equation (10) i3 always a n  even integer, mod- 
ulo 24: 

z = 2 j  (mod 24) (13) 
where j is a n  even or odd integer. 
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The development of t h e  following algorithm depends on the two conjectures given 
above. From (12) a n d  (13),  we can write 

z - n 3 2 j  - p (mod 24) 

or, that  

z G n + 2 j  - p (mod 24) (14) 

In congruence (14) ,  n is given and p can be simply evaluated. Hence, t he  only 
missing parameter is j .  Consequently, from this congruence, we may write 

z = 24y + (n + 2 j  - p) (15) 

for a particular value of y. Replacing 5 in equation (10) by its corresponding 
expression in (15), we obtain 

24(24y + (n + 2 j  - p)] 
n - 1  

- 24(n - p) + 24(24y + 2j)  

$(n> = 

- 
n - 1  

However, (24y + 2 j )  will always yield an even value which may be expressed as 
22 for any integer i. Hence, 

24(n - p) + 24.21 
n - 1  d(n) = 

24(n - p) + 48i 
n - 1  

- - 

As a result, the  following algorithm may be developed based on equation (16) 
which searches for possible values of $(n): 

Step 1: Compute  p = n 
Step 2: $(n) is O ( n  - 1);  

(mod 24) 

hence the  numerator in equation (16) is O ( ( n  - 1 ) 2 .  
Set numerator= ( n  - I)' 

Step 3: Calculate a starting value of z ,  such that 
z = [[(n - 1)2 - 24(n - p)]/48] 

Step 4: Check if (n - 1) I numerator in equation (16): 
Yes --+ possible value for d(n) obtained, then 

No -+ decrement i, and 
check equation (16), else 

repeat Step 4. 



273 

The above algorithm is by no means optimal. It suffers from two drawbacks: 
first, the magnitude of (n - 1)’ and, second, decrementing i by 1 results in a 
slow process. It is thought that  a better approach may be to test for values of 5, 
directly, in equation (10). This is currently being investigated and attempts to 
increase the multiplier of 5 from 24 to other larger integers, while maintaining a 
constant structure for d(n) ,  are also being studied. 

V . CONCLUSIONS 

In this paper we have presented a stepwise mathematical deduction of the Euler 
totient function #(n) from a knowledge of n. This deduction is based on some 
interesting number theoretic properties relating to the integer 24. These prop- 
erties, together with their proofs were presented in detail. An algorithm for the 
final evaluation of 4(n) was also given. However, it must be stressed that  the aim 
of the paper was mainly directed towards proving the existence of a consistent 
structure for d(n)  in terms of n and the integer 24. It  is believed tha t  it may 
also have strong implications on the different attempts to solve the factorisation 
problem. 
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