
A Bast Modular Arithmetic Algorithm Using a Residue Table
(EXTENDED ABSTRACT)

Shin-ichi KAWAMURA and Kyoko HIRANO

TOSHIBA CORPORATION
RESEARCH AND DEVELOPMENT CENTER

- 1. INTRODUCTION

Many public key cryptosystems and key distribution systems

have been developed making use of a one-way (trap door) function

XI- -> y such that y=a mod p or y=x mod n. Modular

multiplication is indispensable for computing these functions. In

other words, fast multiple precision modular arithmetic will

become increasingly useful for realizing an efficient security

system using a public-key cryptosystem, like RSACl], Rabin's

scheme[2], and so on.

X e

Several methods using a pre-computed residue table have

been proposed for the efficient computation of A*B modulo a large

integer N. In these methods, the size of the number to be

processed is successively reduced in each stage of the

computation by using a congruent relation over the modulo N. The

method proposed in this paper is also included in this category.

It achieves further table size reduction by recursively applying

the same table to different digits of the number to be processed.

2. BASIC RULES ---
The basic idea for table lookup is very simple. If one wants

to know the value of X mod N for a fixed N frequently for various

X, then it is helpful for him to compute and store the value Of X

mod N f o r many X in advance. However, the pre-computed residue

table must be reduced to a reasonable size because a full-scale

exhaustive pre-computation is impossible in principle. (Note

C.G. Guenther (Ed.): Advances in Cryptology - EUROCRYPT '88, LNCS 330, pp. 245-250, 1988.
0 Spnnger-Verlag Berlin Heidelberg 1988

246

that the security of the RSA scheme is based on this fact.) SO

the following rules are applied for the table reduction. Bold

printing represents pre-computed terms.
U u *'

(1) (A * 2 +B) mod N f (A.2 mod N) + B (mod N)

(2) (A 1 * 2 + A 2) mod N z (A 1 * 2 mod N) + (A2 mod N) (mod N)
b b

U U
(3) (A * 2 + B) mod N f (A mod N)*2 + B (mod N)

Rule (1) means that in making the table, one may ignore the

lower portion of X which is less than N. Rule (2) means that the
b

table should be divided into some segments. The table for (A 1 * 2

+ A21 mod N is always greater than the summation of the two

tables, (A l * 2 mod N) and (A 2 mod N) . The self-evident rule (3) , b

which is introduced in this paper, enables the repeated use of

one table to any digit. The method in [3)-[5] is derived by

applying the above two rules, (1) and (2) . The next section

describes our method based on the additional rule (3).

- 3. TABLE-LOOK-UP

In order to formulate the problem, it is assumed that X j ,

the number to be processed in the j-th stage, is divided into 1j

blocks and that each block consists of b bits. Then

Now, X j + l should be so defined that it satisfies the following

reduction ,condition;

247

Two alternative definitions for X j + l are derived;

Definition 1:

where k is an integer which satisfies

and Definition 2:

&-I

Eq. (4)

2'1

where u is the number of bits of modulo N.

Definition 1 can be called a parallel

and Def. 2 is named a recursive table

underlined terms in the above equations have

can be pre-computed and stored in memory if

As a result, modular arithmetic is executed

table lookup method

lookup method. The

2 values each. They
b

b is a modest value.

not by division, but

by table-lookup and addition. Definition 1 appears in some of the

former papers. A s described in section 2, the main idea of this

method is that the memory size is reduced by dividing the number

into blocks. Definition 2 is our proposal. The table in this

method is independent of the block number (i) . The same table is
applied to any portion of the number to be processed.

Accordingly, the size of the table is reduced by a large factor.

Furthermore, Def. 1's idea that the table size is reduced by

block division is also applicable to Def. 2 . The underlined

portion of the Def. 2 can be divided into small segments, each of

which consists of s bits. Thus a third definition is derived.

Definition 3:

This method can be called a recursive parallel table lookup

method, which includes two system description parameters b and s.

These parameters can be determined from the trade-off between

execution time and memory reduction.

- 4. NUMBER OF ITERATIONS

It is important to evaluate the number of iterations

required in reducing the initial value X to a number less than

2 . In order to evaluate the most critical case, let us consider
U 0

the model depicted in F i g . 1. S is the number to be processed

which is divided into two portions A and 2 . A, the higher block,

is greater than or equal to 2 . Z, the lower block, is less than

2 . If A is greater than 1, another table look up will result in

the next value SO=ZO + RO which is a u+l bits number at most. In

U

U

other words, Al, the higher block of SO, equals 0 or 1. In the

case of 0, no further reduction can be achieved by table look up.

If A 1 equals 1, the next residue from the table is almost always

R1=2 - N except when N is 2 . As a result, the k-th summation
U u- 1

Sk is represented as
U

Sk = 2 + (20 - k*N).
At the moment Sk becomes less than u bits in length, the

procedure stops. Considering the range of ZO and N, K is 2 at

most .

249

PROCEDURE(JJ
1

According to the above discussion, we can get the upper

bound of the iteration by the procedure listed in Fig. 2. The

input f o r this program is b and s, and the output is SS. Assuming

ReSlW
Tabla

read b , s :

B <- b; j Rn I
5.

0
0
4

ss <- ss + 2 ; E
0

ss <- SS*(u/s) :

write SS:

p:
W
m z
3
2

S ~ I ‘Zn +Rn

Fig.1 SIMPLE TABLE LOOKUP MODEL

KEY LENGTH = 512 bits 1 be6
500

: l b . 6
b.4

I I I I
100 I K IOK lOOK 1M

1 TABLE SIZE (bytes)
Fig.2 ITERATION EVALUATION Fig.3 ADDITION VS. MEMORY

- 5 . DISCUSSION

Let A*B and N be 1024 and 512 bits in length, respectively.

The total memory capacity Mt is evaluated as follows:
S

Mt(brS) = 2 *(b/S)*U Eq. (9)

Reduction of both the number of additions and the memory

size can be achieved by choosing appropriate parameters(see Fig.

250

3). For example, the parameter set (b,s)=(4,4) can reduce the

memory size by a factor of 1/64 compared with the (5 1 2 , 4) set,

which corresponds to the former method, Eq. (4), in spite of the

fact that the t w o cases require about the same processing time.

6.CONCLUSION

This paper proposes a fast modular arithmetic which can

reduce the table size. It also implies the reduction of prc-

computation time.

[References]

[lIR.L.Rivest, A. Shamir, L. Ad1eman:"A method of obtaining
digital signatures and public key cryptosystern",Comm. of ACM,
pp.120-126(Feb.1978).

[2]M.Rabin:"Digitalized signatures and public-key cryptosystems",
MIT/LCS/TR-212,Technical Report MIT (1979)

[d]N.Torii, €4. Azuma, R. Akiyama:"A study on RSA parallel
processing method"(in Japanese),Proc. of Workshop on cryptography
and information security, pp.15-17(Aug.1986).

(4lY.Nagai,T.Takaragi,F.Nakagawa,R.Sasaki:'iDevelopment of trial
production for electronic contract authentication system"(in
Japanese),Proc. of Workshop on cryptography and information
security, pp.109-121(Ju1.1987).

[51Y.Kano,N.Matsu~aki,M.Tatebayashi:~'A modulo exponentiation L S I
using high-order modified Booth's algorithm"(in Japanese),Proc.
of workshop on cryptography and information security, pp.133-142.

