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- 1. INTRODUCTION 

Many public key cryptosystems and key distribution systems 

have been developed making use of a one-way (trap door) function 

XI- ->  y such that y=a mod p or y=x mod n. Modular 

multiplication is indispensable for computing these functions. In 

other words, fast multiple precision modular arithmetic will 

become increasingly useful for realizing an efficient security 

system using a public-key cryptosystem, like RSACl], Rabin's 

scheme[2], and so on. 

X e 

Several methods using a pre-computed residue table have 

been proposed for the efficient computation of A*B modulo a large 

integer N. In these methods, the size of the number to be 

processed is successively reduced in each stage of the 

computation by using a congruent relation over the modulo N. The 

method proposed in this paper is also included in this category. 

It achieves further table size reduction by recursively applying 

the same table to different digits of the number to be processed. 

2. BASIC RULES --- 
The basic idea for table lookup is very simple. If one wants 

to know the value of X mod N for a fixed N frequently for various 

X, then it is helpful for him to compute and store the value Of X 

mod N f o r  many X in advance. However, the pre-computed residue 

table must be reduced to a reasonable size because a full-scale 

exhaustive pre-computation is impossible in principle. ( Note 
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that the security of the RSA scheme is based on this fact.) SO 

the following rules are applied for the table reduction. Bold 

printing represents pre-computed terms. 
U u *' 

(1) ( A * 2  +B) mod N f (A.2 mod N) + B (mod N) 

( 2 )  ( A 1 * 2  + A 2 )  mod N z ( A 1 * 2  mod N) + (A2 mod N) (mod N) 
b b 

U U 
( 3 )  ( A * 2  + B) mod N f (A mod N)*2 + B (mod N) 

Rule (1) means that in making the table, one may ignore the 

lower portion of X which is less than N. Rule (2) means that the 
b 

table should be divided into some segments. The table for ( A 1 * 2  

+ A21 mod N is always greater than the summation of the two 

tables, ( A l * 2  mod N) and ( A 2  mod N) . The self-evident rule (3) , b 

which is introduced in this paper, enables the repeated use of 

one table to any digit. The method in [3)-[5] is derived by 

applying the above two rules, (1) and ( 2 ) .  The next section 

describes our method based on the additional rule (3). 

- 3. TABLE-LOOK-UP 

In order to formulate the problem, it is assumed that X j ,  

the number to be processed in the j-th stage, is divided into 1j 

blocks and that each block consists of b bits. Then 

Now, X j + l  should be so defined that it satisfies the following 

reduction ,condition; 
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Two alternative definitions for X j + l  are derived; 

Definition 1: 

where k is an integer which satisfies 

and Definition 2: 

&-I 

Eq. ( 4 )  

2'1 

where u is the number of bits of modulo N. 

Definition 1 can be called a parallel 

and Def. 2 is named a recursive table 

underlined terms in the above equations have 

can be pre-computed and stored in memory if 

As a result, modular arithmetic is executed 

table lookup method 

lookup method. The 

2 values each. They 
b 

b is a modest value. 

not by division, but 

by table-lookup and addition. Definition 1 appears in some of the 

former papers. A s  described in section 2, the main idea of this 

method is that the memory size is reduced by dividing the number 

into blocks. Definition 2 is our proposal. The table in this 

method is independent of the block number (i) . The same table is 
applied to any portion of the number to be processed. 

Accordingly, the size of the table is reduced by a large factor. 

Furthermore, Def. 1's idea that the table size is reduced by 

block division is also applicable to Def. 2 .  The underlined 



portion of the Def. 2 can be divided into small segments, each of 

which consists of s bits. Thus a third definition is derived. 

Definition 3: 

This method can be called a recursive parallel table lookup 

method, which includes two system description parameters b and s. 

These parameters can be determined from the trade-off between 

execution time and memory reduction. 

- 4. NUMBER OF ITERATIONS 

It is important to evaluate the number of iterations 

required in reducing the initial value X to a number less than 

2 . In order to evaluate the most critical case, let us consider 
U 0 

the model depicted in F i g .  1. S is the number to be processed 

which is divided into two portions A and 2 .  A, the higher block, 

is greater than or equal to 2 . Z, the lower block, is less than 

2 . If A is greater than 1, another table look up will result in 

the next value SO=ZO + RO which is a u+l bits number at most. In 

U 

U 

other words, Al, the higher block of SO, equals 0 or 1. In the 

case of 0, no further reduction can be achieved by table look up. 

If A 1  equals 1, the next residue from the table is almost always 

R1=2 - N except when N is 2 . As a result, the k-th summation 
U u- 1 

Sk is represented as 
U 

Sk = 2 + (20 - k*N). 
At the moment Sk becomes less than u bits in length, the 

procedure stops. Considering the range of ZO and N, K is 2 at 

most . 
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PROCEDURE( JJ 
1 

According to the above discussion, we can get the upper 

bound of the iteration by the procedure listed in Fig. 2. The 

input f o r  this program is b and s, and the output is SS. Assuming 

ReSlW 
Tabla 

read b , s : 

B <- b; j Rn I 
5. 

0 
0 
4 

ss <- ss + 2 ;  E 
0 

ss <- SS*(u/s) : 

write SS: 

p: 
W 
m z 
3 
2 

S ~ I  ‘Zn +Rn 

Fig.1 SIMPLE TABLE LOOKUP MODEL 

KEY LENGTH = 512 bits 1 be6 
500 

: l b . 6  
b.4 

I I I I 
100 I K  IOK lOOK 1M 

1 TABLE SIZE (bytes) 
Fig.2 ITERATION EVALUATION Fig.3 ADDITION VS. MEMORY 

- 5 .  DISCUSSION 

Let A*B and N be 1024 and 512 bits in length, respectively. 

The total memory capacity Mt is evaluated as follows: 
S 

Mt(brS) = 2 *(b/S)*U Eq. (9) 

Reduction of both the number of additions and the memory 

size can be achieved by choosing appropriate parameters(see Fig. 
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3). For example, the parameter set (b,s)=(4,4) can reduce the 

memory size by a factor of 1/64 compared with the ( 5 1 2 , 4 )  set, 

which corresponds to the former method, Eq. (4), in spite of the 

fact that the t w o  cases require about the same processing time. 

6.CONCLUSION 

This paper proposes a fast modular arithmetic which can 

reduce the table size. It also implies the reduction of prc- 

computation time. 
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