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1. INTRODUCTION 

Linear complexity is a widely accepted measure for unpredictability and randomness 

of keystream sequences in the context of stream ciphers (see Rueppel [ l o ] ,  [ll, Ch. 

4 1 ) .  In this paper we develop a detailed probabilistic theory of linear complexity 

and linear complexity profiles for sequences of elements of a finite field. The bas- 

ic t o o l s  are the connection between linear complexity and continued fractions for 

formal Laurent series established in Niederreiter [8] as well as techniques from 
probability theory and the theory of dynamical systems. 

In practice, keystream sequences are sequences of bits, and we identify bits 
with elements of the binary field 

arbitrary finite fields. We denote by F the finite field with q elements, where 

q is an arbitrary prime power. A sequence s1,s2, ... of elements of F is called 

a kth-order (linear feedback) shift register sequence if there exist constant coeffi- 

cients ak,. . . ,ao E F with ak f 0 such that 

F2. However, the methods of this paper work for 

q 
9 

9 
ak s ~ + ~  + ... + a si+l + a. si = 0 for i = 1,2,. .. . (1) 

The zero sequence O , O ,  ... is viewed as a shift regrscer sequence of order 0. A 

kth-order shift register sequence is uniquely determined by the recursion (1) and by 

the initial values k' s1,s2, ..., s 

Definition 1. Let S be an arbitrary sequence s1,s2, ... of elements 3f F and 

let n be a positive integer. Then the linear complexity L (S) is defined as the 

least k such tharr st,s2, ..., s form the first n terms of a kth-order shift 

reg is t e r sequence. 

4 

Definition 2. With :he notation of Definition 1, the sequence 

called the linear complexity profile of S. 
L1(Sf,L2(S) ,... is 

It is clear that 0 6  L ( S ) l  n and L n ( S ) I  L n C l ( S )  for all n and S. 

Therefore :he linear complexity profile is a nondecreasing sequence of nonnegative 

integers. Rueppe? ZlS:, [ll, Ch. 4 j  proposed the linear complexity profile as a test 
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for randomness and set up the following stochastic model. Let n be fixed and con- 

sider L ( S )  for random sequences of bits. Since L ( S )  just depends on the first 

n terms of S, it suffices to consider the linear complexity for all choices of 

s1,s2, ..., s 

able on 

expected value of this random variable is with O &  c n L  - and its vari- 
ance is roughly -. This suggests that Ln(S) should be close to 7 for a random 

sequence of bits. 

from F2. Then the linear complexity can be viewed as a random vari- 

F;, where each string s1,s2, ..., s is equiprobable. It turns out that the 
5 2 + c 2 n  18 

86 n 
81 

To arrive at a statistically meaningful use of the linear complexity profile, 

the following question has to be answered: for a randomly chosen and then fixed se- 

quence S, what is the behavior of Ln(S) as n varies? We settle this question 

for sequences S of elements of F and also discuss related questions. The nec- 

essary background and basic results on continued fractions and dynamical systems are 

established in Sections 2 and 3 .  These results yield, first of all, the probabilis- 

tic limit theorems for continued fractions in Section 4 .  Exploiting the connection 

between continudfractions and linear complexity, we deduce the probabilistic limit 

theorems for linear complexity in Section 5. These limit theorems describe the as- 

ymptotic behavior of Ln(S) as n 3 m  and the deviations from the asymptotic be- 

havior for random S. In Section 6 we scudy frequency distributions associated with 

the linear complexity for random S. The detailed information on the behavior of 

L (S) for random S is used in Section 7 to set up new types of randomness tests 

f o r  keystream sequences. 

9 

2 .  CONTINUED FRACTIONS 

We use the approach in Niederreiter [8] which is based on identifying a sequence 

of elements s1,s2, ... of F 

[81 we view S as an element of the field G = F ((x-')) of formal Laurent series 

in x over F For S E  G let Pol(S) be its polynomial part and Fr(S) = 

S - Pol(S) its fractional part. Thus Fr(S) is the part of S containing the neg- 

ative powers of x .  We introduce the valuarion v on G which extends the degree 

function on the polynomial ring Fq[x] as follows. For S E G ,  S 4 0, we put 

S 
m 

i=l 
with its generating function S =x si x-~. As in 

9 

-1 9 

9' 

00 

. l  
v(S) = - r if S = > s .  x - ~  and s f 0. 

i=r 

For S = 0 we put v(S) = - w .  We have the Eollowing properties for S1,S2E C: 

V(S1SZ) = V(S,) + V(S,), 

v(S1 + s2) L max(v(Sl),v(S2)), 
v(S1 + S2) = max(v(Sl),v(S2)) if v(s,) # v(s2). 
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For P ~ , P ~ E F ~ [ X I . P ~  f 0 ,  we have 
Let H be the set of all generating functions, thus H = { S E G :  v(S) < 0). 

v(p 1 2  /p ) = deg(pl) - deg(p2). 

Every S L H  has a unique continued fraction expansion of the form 

S = 0 + l/(A1(S) + 1/(A2(S) + ... ) )  = :[A1(S),A2(S) ,... 1,  

where Aj(S)E Fq[x] and deg(A.(S)) 2 1 for j 1 1. This expansion is finite for 

rational S and infinite for irrational S .  The polynomials A.(S) are obtained 

recursively by the following algorithm: 

J 

1 

AO(S) = 0, 

A. ( S )  = Pol(B.(S)-l), B .  ( S )  = Fr(B.(S)-') for j AO, 
BO(S) = S 

J + l  J J+1 1 

which can be continued as long as B.(S) f 0. If the continued fraction expansion 
is broken off after the term A.(S), we get the rational convergent 

The polynomials P.(S) and Q.(S) can be calculated recursively by 

J 
P.(S)/Qj(S). 

J J 

J J 
P (s)  = 1, P ( s )  = 0 ,  P . ( s )  = A.(S)P. ( s )  + P. ( s )  for j 2 1, 

Q-,(S) = 0 ,  Q,(S) = 1, Q.(S) = A.(S)Q. ( S )  + Qj-2(S) for j 2 1. 
J J J-1 

-1 0 3 1 1-1 J-2 

We have then 
j 

deg(Q.(S)) = deg(Am(S)) for j 1. ( 2 )  
m = l  1 

For rational S we interpret deg(A.(S)) = deg(Q.(S)) = M whenever A.(S) and 

Q.(S) do not exist. From [8] we note the formula 
J J J 

3 
v(Q.(S)S - P . ( S ) )  = - v(Q~+~(S)) for j 2 0. ( 3 )  

J J 
For S E H  we write Ln(S) for the Linear complexity of the sequence which corre- 

sponds t o  the generating function S. The following is a special case of a result 

in [a ] .  

Lemma 1. For any n 1 1  and S E H  we have Ln(S) = deg(Q.(S)), where j 2 0 is 

uniquely determined by the condition 
J 

deg(Q. ( S ) )  + deg(Q.(S)) & n < deg(Q.(S)) + deg(Qjcl(S)). 
J-1 J 1 

V(S1 - S2)  
With the metric d(S1.S2) = 2 for S l , S 2 E H ,  the set H is a compact 

ultrametric space. Since H is also an additive subgroup of G and addition is a 

continuous operation in this metric topology, it follows that H is a compact abe- 

lian group. Let !B be the 6-algebra of Bore1 sets in H. Then there exists a 

unique Haar measure h on H, i.e. a translation-invariant probability measure de- 

fined on B. 
then the translation invariance of h implies that 

I f  D(SO;r): ={SEH: v ( S  - S o )  < - r), S o E H ,  r = 0,1, ..., is a disk, 

h(D(So;r)) = cj-r. ( 4 )  

We write P for the set of polynomials over F of positive degree. 
q 

Lemma 2. For A1 ,..., %E P let R(A1, ..., \ )  = { S  E H :  A . ( S )  = A. for 1 & j L k). 
J J 
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Then 
-Z(deg(A1) + ... + deg(Ak)) 

h(R(A lr...,%)) = q 

Proof. For any S €  R(A l,...,A ) we have the same value of Pk(S) = Pk k 
Qk, thus 

'k 

'k 
v(S - -)= - 2v(Qk) - vCA,+,(S)) < - 2v(Qk) 

by ( 3 ) .  Conversely, if v(S - Pk/Qk) < - 2v(Qk), then v(Qk S - Pk)< 
by [a ,  Lemma 31 we get Q, = CQn(S) and P = CP ( S )  € o r  some n 2 1  k n  

and Qk(S) = 

so from the uniqueness of the continued fraction expansion we obtain n = k and 

A.(S) = A .  for 1 & j & k. Thus we have shown R(A l,...,%) = D(Pk/Qk;2v(Q,)), and 

the desired result follows from (2) and ( 4 ) .  
1 1 

3 .  DYNAMICAL SYSTEMS 

We recall that a dynamical system is a probability space together with a measure- 

preserving transformation acting on it. We consider now the transformation T on 

(H,a,h) defined by T(S) = Fr(S-l) for S f 0 and T(0) = 0. 

Lemma 3 .  T is measure preserving with respect to h. 

Proof. We have to prove h(T-l(B)) = h(B) for all BE&, where T-'(B) is :he in- 

verse image of B under T. By [l, Theorem 1-11 it suffices to show this for every 

disk D = D(S ;r). 

€ o r  some PEP. The latter condition can only be satisfied if v(X- = v(So + p), 

and from this we see that for fixed p~ P we have v(X- - So - p)< - r if and on- 

ly if X€D((SO + p)-';r + Zv(p)). 

with 

v(p2), and 

For X f 0 we have XE T-l(D) if and only if v(X-l - So - p)<- r 
1 0 

1 

If D(Wil;r + 2v(p1))nD(Wj1;r + 2v(p2)) f 0 
+ p2, and p1 f p2 in P ,  then v(W ) = V(~~),~JI'J~) = W 1 = S 0 + PI' ,J2 = so 1 

v(~,l - wil) < - r - 2 min(v(Wl),v(W2)). 

On the other hand, 

v(w-' - w-') = v ( ~  - w1) - V(W ) - v(w2)2 - 2 nin(v(vl),v(W2)), 
1 2 2 1 

where the last inequality is seen by distinguishing the cases 

v(W = v(FIz). This conrradiction shows that the disks D((So + p)- ' ;r  + 2v(p)) are 

pairwise disjoint as p ranges over P. Since such a disk has h-measure q 

by ( 4 )  and since for fixed d 2 1 there are exactly (q - l)qd polynomials p E  P 

v(Wl) f v(W2) and 

1 -r-2v(p) 
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with v(p) = d, we obtain 
M -r h(T-l(o)) => = ( q  - l)q- Cd = q = h(D). 
d= 1 PEP 

Lemma 3 shows that (H,B,h,T) is a dynamical syscem. A second dynamical sys- 

tem is obtained as follows. Let p be the probability measilre defined on the power 

set 6 of P and determined by ,u(p) = q -2  deg(p) for p~ P. We consider the 
m 

n= 1 
Cartesian product POo= Pn with P = P for all n and the corresponding pro- 

duct probability space (Pa, P m , p w ) .  On this space the transformation TI is de- 

fined by  

T1(p1.p2,..-) = (p2,p3 ,... ) for (p1,p2 ,... )EPm. 
Then (P", [Pm,pm,T1) 

Bernoulli shift on Pm. See Krengel [ 3 ,  Sec. 1.41 € o r  general idormation on 

Bernoulli shifts. We use the following concept of isomorphism f o r  dynamical systems 

from Billingsley [I, p .  531. 

is a dynamical system, called rhe one-sided (or unilateral) 

h _  

Definition 3. The dynamical systems (fl,F,m,~) and (n ,F,E,f)  are said to be iso- 
morphic if there exist sets R in 3 and no in 3 of measure 1 and a bijec- 

tion 4 of no onto 'R, with the following properties: 

(i) If A &  no and = @ ( A ) ,  then A C T  if and only if a€!?, in which case 
m(A) = m " ( l ) ;  

(ii) ' t ( n o ) G  no 
(iii) @ ( ~ ( w ) )  =5($(0))  

- + 

0 - 

and ? ( ? i , ) C  a,; 
0'  

for all ~ E R  

Theorem 1. The dynamical system (H,B,h,T) is isomorphic t o  the one-sided Bernoulli 

shift on Pa. 

n -  
Proo€. We use Definirion 3 with (fl,F,m,T) = (Pm,6(D,~"D,T1) and (fl,F,S,?) = 

(H,Q,h,T). We take no = Pm and no = I, the set of irrationals in H. Since 

there are just countably many rationals in H, we have h(I) = 1. The mapping @ 
from Pm onto I is defined by 

- 

@(p1,p 2,...) = !p1,p2 ,... ] E X  for (p1,p2 ,... )EP. 
It follows from the uniqueness of the continued fraction expansion chat 

jec t ion. 
4 is a bi- 

,., 
To prove ( i )  in Definition 3 ,  we first show thaE if A E G ' ~ ,  then A € @ %  and pm(A) 

= h(z). 

for I L j k], where k 1 and A1 ,..., %EP are fixed. But then 

It suffices to prove this for cylinder s e t s  A = (  (pl,p 2,...)EPm: p .  = A .  
1 1  

= R ( A l , .  . . ,%) f l  I, and since we have shown in the p r o o f  of Lemma 2 that R(A1,. . * ,%) - is a disk, we get A € @ .  Furthermore by Lemma 2 ,  
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k k -2 deg(A.) N 

pw(A) = p(Aj) = q ' = h(R(A1, ...,% ) )  = h(A). 

Now we have to show that if A C_ I and x€@, then A = $-'(x)Ep*.  It Suf- 
j=l  u 

j=1 

fices to prove this for sets that are intersections of I with a disk. We first 

consider the special case where 
% 

A = { S  6 I: v(S - So) 4 - v(Qk(S0)) - v(Q~+~(S~))) 
with k 2 0 and S O €  I. If S E X : ,  then 

by ( 3 ) ,  and s o  S has the continued fraction expansion 

S = [A1(So), -. . ~qC(So)~~+l(S)~-*-I 
by an argument in the proof of Lemma 2.  Now 

and Qk(s) = Qk(So) imply v(A~+~(S))& v(A~+~(S~)) =: n. Conversely, if S has a 

continued fraction expansion as above with 

ately that S E X .  Thus 

v(A~+~(S)) 2 n, then it is seen immedi- 

v(AkCl k n  

hence r$-'(T) = ((pl,p *,... )6 POo: p. = A . ( S  ) 

a countable union of cylinder sets and so in 

where 

element of D can serve as the center of D ( H  is ultrametric!), we can assume 

that So is irrational. For every U E A  and every integer k 2 0 with 

v(Qk(U)) t v(Q~+~(U)) 2 r 

f o r  1 j L k and V ( P ~ + ~ )  2 n) is 
J 1 0  

p m .  Now we consider the general case 

= DnI with a disk D = {SEH: v(S - So) L - r), SO€ H, r 2 0 .  Since any 

* 

we define 

Dk(U) = < S E H :  v(S - U) & - v(Qk(U)) - V(Q~+~(U))). 
Every disk Dk(U) is contained in D. We claim that the family of all Dk(U) COV- 

ers D. For this it suffices to show that every rarional S E D  lies in some Dk(U). 

Let S = [A1(S),A2(S) ,..., At(S)] and S E D  (if S = 0, p u t  t = 0 and Q ( S )  = 1 

in the following). If v(Qt(S)) 2 ri2, put 
0 

u = [ A 1 ( S ) , A ~ ( S ) , . - . , A t ( S ) , x , x  ,... 1. 
Then 

Pt (U) 
v ( S  - U) = v(- Qt(U) - U) = - v(Q,(U)) - v(Q,+,(L')) 

and v(Qt(U)) + V(Q,+~(U))> 2v(Qt(S)) A r, thus S C D t ( U )  and U€S. If 

v(QtfS)) < r / 2 ,  put 

u = [A1(S),A2(S),. ..,A,(S),At+,(S,),x,x, ... !. 
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We have 

and S O  A . ( S O )  = A . ( S )  for 14 j L t by an argument in the proof of Lemma 2. It 
1 3 

hence SEDt(U) and V E X ; .  Thus we have shown that the closed (and also open) disks 

Dk(U) 

Dk(U), say El, ..., Eb, already cover D. Therefore 

b b 

form an open cover of the compact set D, and so finitely many of the sets 

Each E.nI is of the special form considered earlier, thus C#l-'(;) = 

u @-'(EiflI)€ Prn as a finite union of elements of 6". Property (ii) in Defini- 
i=l 
tion 3 is trivially satisfied and (iii) follows from an easy calculation using the 

algorithm €or the A . ( S )  and B.(S) in Section 2 .  n 
J J 

b 1  

4. LIMIT THEOREMS FOR CONTINUED FRACTIONS 

It follows from Theorem 1 that (H,&h,T) inherits all dynamical properties of the 

one-sided Bernoulli shift on P a  (compare with [ l ,  Ch. 2 1 ) .  In particular, since 

every one-sided Bernoulli shift is ergodic (see [ 3 ,  Sec. 1.41, [ 4 ,  p .  183]), we ob- 

tain that T is ergodic with respect to h, i.e. T-'(B) = B for some B € &  im- 

plies that h(B) = 0 or 1. The individual ergodic theorem, in the form given in 

[ 4 ,  p .  1831, yields the following result. Here and in the following we say that a 

stated property holds h-almost everywhere (h-a.e.) i F  che property holds for a set 

of S E  H of h-measure 1. 

Theorem 2 .  For any h-integrable function f on H we have 

n- 1 
lim '> f(TJ(S)) = ,( fdh 
n - m  j = O  

h-a.e. n .  
H 

We note that since Tj denotes the jth iterate of T (w'ith To the identity 

mapping), we have TJ(S) = B . ( S )  for all j 2 0  and SEI. Rational S can be 

ignored since they form a set of h-measure 0. 
J 
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Theorem 3 .  For any function g on  

Proof. We apply Theorem 2 with f(S) = g(Pol(S-')) for S 6 O,f(O) = 0. For S € I  

we have then f(TJ(S)) = f(B.(S)) = g(A. ( S ) )  for all j 5 0 .  In particular 

f(S) = g(A1(S)), hence 
J J + 1  

by Lemma 2 .  The condition on g guarantees that f is h-integrable on H . 0  

Corollary 1. lim 1 deg(Q,(S)) = h-a.e. 
n+m q - 1  

Proof. This follows from Theorem 3 with g(p) = deg(p) for PEP. We also use ( 2 )  

and the identity dzd = z(l - z )  with z = q . 0 
a, -2 -1 

d= 1 

Corollary 2 .  We have h-a.e. 

lim - #{1 & j 4 n: A .  . 
n+Co 

f o r  all k 1 1  and all Al, ...,\ E P .  

1 -2(deg(A1) + ... + deg(\)) 
( S )  = Ai f o r  1 L  i & k)= q J+l-1 

Proof. We apply Theorem 2 with f being the characteristic function of the set 

R(A1, ...,\ ) and use Lemma 2. Since there are just countably many choices for 
A1 ,..., \, the result follows. 

For k = 1 Corollary 2 gives the distribution of the partial quotients A . ( S )  
J 

in the continued fraction expansion of a random generating function S. 

Lemma 4 .  Let g be an arbitrary real-valued funccion on P. If X . ( S )  = g(A.(S)) 

for j 1 1 ,  then X1,X2, ... i s  a sequence of independent and identically distributed 

random variables on (H,E&,h). 

J 3 

Proof. Strictly speaking, X. i s  only defined on I, b u t  we may define X. arbi- 

trarily on the set of h-measure 0 formed by the rationals. For S E I  and any 

j 1 1 we have 

J 3 

Xj(S) = g(Pol(3. i(S)-l)) = g(A (B ( S ) ) )  = Xl(Bj-l(S)) = X1(TJ-'(S)), J- 1 j-1 
hence Lemma 3 implies chat the X .  are identically distributed. To prove that 

J 
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X1, ...,% 
4, 

are independent, it suffices to show that the events A1(S) = A1,...,%(S) = 

are independent for any A1, ..., A E P ,  and this follows from Lemma 2. n k 

Theorem 4 (Law of the Iterated Logarithm for Continued Fractions). Let g be a non- 

constant real-valued function on P with ~ ( p ) ~  q-2 deg(p) < m. Put 
PEP 

Then h-a.e. 

PKOO€. Let the random variables X .  be as in Lemma L. Then E is the expected Val- 

ue and G the standard deviation of X., and the conditions on g guarantee that 

the second moment of X. exists and 6 > O .  The result Follows then from the 

Hartman-Wintner law of the iterated logarithm in the f o n  given in Bingham [2]. 3 

3 

J 

J 

Corollary 3 .  We have h-a.e. 

(deg(Qn(S)) - = 1, 
- q - 1  1 im 
n+c4 (2qn log log n )  1/2 q - 1  

Proof. We apply Theorem 4 with g(p) = deg(p) f o r  PEP. Then E = q/(q - 1) by the 

identity in the proof of Corollary 1. The identity 

with z = q yields 

00 -3 d2 zd = ( z 2  + z)(l - 2) 
-1 d= 1 

2 

- *=  +- 
(9 - l)* ( q  - 1) ( 9  - 1) 

6 =  2 q 2 + q  

Together with (2) the result follows. n 

Theorem 5 (Central Lixit Theorem for Continued Fractions). Let g,E,b be a s  in 

Theorem 4.  Then for any a < b (where we can have a = -to o r  b = w ) ,  

n 
lim h({SEH: a 6 G L  
n+ m j=1 .I fi 

g(A.(S)) - nE L bG&/;;j.) = - 1 1 e-t2i2 dt. 
a 

Proof. We proceed as in the p r o o f  of Theorem 4 and u s e  the central limit theorem for 
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independent and identically distributed random variables (see [9, pp. 22-23] ). 0 

Theorem 6. Let f be a nonnegative function on the positive integers. If 
m 

j=1 
q-€(J)< M ,  then h-a.e. we have 

If T q - f ( j )  = m ,  then h-a.e. we have deg(A.(S))> f ( j )  for infinitely many 

deg(A.(S)) & f(j) for all sufficiently large 
J 

J j- 

j. 

j=1 

Proof. The events deg(A.(S))> f ( j )  for j = 1,2, ... are independent by Lemma 4 .  

If k(j) is the least integer 7 f ( j ) ,  then these events are identical with the 

events deg(A,(S))& k(j). For each j we have . 

J 

m 9 q-f (  j) 
by Lemma 2 .  Since ql-k(J) converges (resp. diverges) if and only if 

j=1 j=1 

converges (resp. diverges), the theorem follows from the Bore1 zero-one law (see [6, 
p. 2281). 0. 

5.  LIMIT THEOREMS FOR LINEAR COMPLEXITY 

Because of the connection between continued fractions and linear complexity expressed 

in Lemma 1, the results in Section 4 have implications for the linear complexity 

Ln(S). 

Ln(S) 
Theorem 7. lim - - - - h-a.e 

n+w 

Proof. If n and j are related as in Lemma 1, then from this result we get 



20 1 

Corollary 1 yields 

hence the desired result follows. 

n 
The deviation of Ln(S) from its asymptotic expected value is described 

more precisely by the following results. 

Theorem 8. Let f be a nonnegative nondecreasing function on the positive integers 

with q-f(n)<m. Then h-a.e. 
m 

all sufficiently large n. 

Proof. Theorem 6 shows that h-a e. we have 
J 

large j. For such an S we deduce from ( 5 )  that 

deg(A.(S))L f ( j )  for all sufficiently 

n 1  IL,(s) - ?IL f(j + 1) for all sufficiently large n. 

Now n 2 deg(Qj-l ( S ) )  + deg(Q.(S)) 11 2j - 12 j + 1 
f(j + 1) L f(n). u 

for all j 2 2 ,  and SO 
J 

Theorem 9. Let f be a nonnegative nondecreasing function on the positive integers 
00 

with q-f(n) = O D .  Then h-a.e. 
n=l 

1 

1 

L,(s) > 4 + 7 f(n) for infinitely many n, 

L~(s) < 4 - -j f(n) for infinitely many n. 

Proof. From the conditions on f we get q-f(5n) = m .  Thus Theorem 6 implies 

that h-a.e. we have deg(Aj(S)) > f(5j) for infinitely many j. For such s and j 

we take n = deg(Q. ( S ) )  + deg(Q.(S)), then 

n= 1 

J-1 J 
1 Ln(S) - 5 = deg(A.(S))> 7 f(5j) 

J 
by Lemma 1. By Corollary 1 we can assume that S satisfies lim deg(Q.(S))/j = 

q/(q - 1). Then 
j+ 00 J 

1 5 - deg(Q.(S)) 4 7 for all sufficiently large j. 
j 1 

Thus for infinitely many j we have n = deg(Q. ( S ) )  + deg(Q.(S)) < 2 deg(Qj(S)) < 5-i~ 
hence 

J-1 J 

1 L,(s) - > - f(5j) 2 1. f(n) 2 2  2 

for infinitely many n. The second part is shown similarly, using that h-a.e. we 
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have deg(A. (S)) > f(5j + 5) + 1 for infinitely many j and taking 

n = deg(Q.(S)) + deg(Q. (S)) - 1. n 
J + 1  

J J+1 

Theorem 10 (Law O F  the Logarithm for Linear Complexity),. We have h-a.e. 

- Ln(S) - (n/2) 1 
*m log " - 2 log q' 

-- 1 im 

Proof. We use Theorem 8 with f(n) = (1 +€)(log n)/log q for arbitrary E 7 0 and 

Theorem 9 with f ( n )  = ( l o g  n)/log q .  U 

6. FREQUENCY DISTRIBUTIONS FOR LINEAR COMPLEXITY 

For any integers c and N with N 11 let Z(N;c;S) be the number of n, 

1 L  n L N, with L ( S )  = (n + c)/2. We note that the cases c = 0 and c = 1 COT- 

respond to perfect linear complexity (compare with [ a ] ,  [ l o ] ,  [ll]). 

Theorem 11. We have h-a.e. 

q - 1  - for all integers c. Z(N;c;S) - 
N - ( 1 / 2 ) 1  + ( 1 1 2 )  

1 im 
N+ m 2ql 

Proof. From Corollary 1 we get 

i 1 im - sll h-a.e. 
j jm deg(Qj-l(S)) + deg(Q.(S)) - 2q 

J 
Let j ( N , S )  be the largest index j with deg(Qj-l(S)) + deg(Q.(S))& N. Then with 

j'= j(N,S) we have 
J 

deg(QjLl(S)) + deg(Q.,(S)) N < deg(Q.,(S)) + deg(Q., (S)), 
1 J J A 1  

and so 

Now let c 2 1. Whenever deg(Q. (S)) + deg(Q.(S))& n <deg(Q.(S)) + deg(QjAl(S)), 

then Lemma 1 shows that L ( S )  = (n c ) / 2  if and only if n = 2 deg(Q.(S)) - C 
with j 2 1. This value of n lies i n  the indicated range if and only if 

deg(Qj-l(S)) + deg(Q.(S)) L 2 deg(Q.(S)) - c, which is equivalent to 
Therefore 

J-1 J J 

J 

deg(A.(S)) 2 C. 
J J J 

Z(N;c;S) = B(j(N,S);c;S) - E(N;c;S), 
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where B(r;c;S) denotes the number of j, 1 & j L r ,  with deg(A.(S)) c and 

where E ( N ; . c ; S )  = 0 or 1. Let g be the function on P defined by g(p) = 1 if 

deg(p) 2 c and g(p) = 0 otherwise. Then Theorem 3 yields 

J 

It follows from (6) that h-a.e. 

For c L 0 the result is shown similarly. 0 

For c = 0 and c = 1 we define Y:')(S),n = 1,2,..,, by YAc)(S) = 1 if 

L2n-c(S) = n and YLc)(S) = 0 if L2n-c(S) # n. 

Lemma 5. If c = 0 or c = 1, then Y~c),Y~c),... 

identically distributed random variables on (H,O,h). 

is a sequence of independent and 

Proof. It follows from Lemma 1 that 

for some j 1. Since the last condition is independent of c, we have 

and we write Yn for YL'). We have 

L2n-c(S) = n if and only if deg(Q.(S)) = n. 
y ( o )  = Yn (1) , 

n 
h({SEH: Y,(S) = 1)) = h({SEH: deg(Q.(S)) = n)). 

j=1 J 

For fixed 

h({SEH: deg(Q.(S)) = n)) = >- h({SE H: deg(Am(S)) = dm for 1 L  m & j]) 

j, 1 & j & n, we obtain from (2) and Lemma 2: 

3 dl,...,d.hl 

dl+. . .+d .=n 3 

3 

d. -2(dl + ... + d . )  
= 7 (q - l)q dl ... (q - 1)q 3 9 3 

dl,. . . ,d 2 1  
dl+ ...+ d.=n J 

J 

= (q - l)J q-" >- 1 = (q - 1)J q-" '7::). 
dl, . . . ,d .21 
dl+ ... td.=n J 

3 
Thus 

which shows in particular that the Yn are identically distributed. To prove that 

Y1, ..., Yk are independent, we choose E1,...,EkE{O,l) arbitrarily and let 
1 L rl 4 r2 < . .. < rt L k = 1. By the 

'ri be exactly those indices for which 
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remark at the beginning of the proof we have 

only if rlr...,r appear as values of deg(Q.(S)) for some j 2 1  and the other 

elements of {1,2, ..., k] do not. This condition is equivalent to deg(Q1(S)) = 

rl, ..., deg(Qt(S)) = rt,deg(Qt+l(S)) > k, which is in turn equivalent to 
rl,deg(A2(S)) = r2 - rl, ..., deg(At(S)) = rt - rt-l,deg(At+l(S))> k - rt, where we 
put ro = 0 if t = 0. Therefore Lemma 2 yields 

h({SEH: Y (S)  = El, ..., Y ( S )  =Ek)) = 

Y ( S )  = El, ..., Y (S) = Ek 

J 

if and 1 k 

deg(A1(S)) = 

1 k 

m=k-r +l t 

-r t -k t+l = ( q  - 1) 
=k-r +1 

t 
On the other hand, it follows from ( 7 )  that 

and so Y1,...,Yk are independent. 0 

Theorem 12 (Law of the Iterated Logarithm for Perfect Linear Complexity, First Ver- 

sion). For c = 0 and c = 1 we have h-a.e. 

Proof. By ( 7 )  the expected value of Yn is ( q  - l)/q and the variance of Yn is 

g2 =(Y2 dh - (*)2 = & - (fi)2 = fi. 
2 

q q  9 q 
H 

It follows from Lemma 5 and the Hartman-Wintner law of the iterated logarithm that 

Putting n = L(N + c ) /2J ,  where LtJ denotes the greatest integer L t, and using 

for c = 0 and c = 1, we obtain the the0rem.O 

Theorem 13 (Law of the Iterated Logarithm for Perfect Linear Complexity, Second Ver- 
sion). If W(N;S) is the number of n, 1I n & N, with L ( S )  = or 7, nsl then 

2 
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h-a.e. 

Proof.  We pu t  n = LN/zJ i n  (8)  and use  

wi th  e (N;S)  = 0 o r  1, a s  f o l l o w s  from ( 9 ) .  

Theorem 14  ( C e n t r a l  L i m i t  Theorem f o r  P e r f e c t  Linear  Complexity, F i r s t  Ver s ion ) .  

c = 0 and c = 1 ve have f o r  any a < b (where we can have a = -00 o r  b = m ) ,  

For  

Proof .  The expec ted  v a l u e  and t h e  va r i ance  of 

of Theorem 12.  From Lemma 5 and t h e  c e n t r a l  l i m i t  theorem we o b t a i n  
Yn 

have been c a l c u l a t e d  i n  t h e  proof 

Applying t h i s  w i th  n = L(N + c)/2_1 and us ing  (9 )  we g e t  

l i m  h ( B N ( a , b , c ) )  = d t ,  
W m  

where 

For g iven  E > 0 ve have % ( a , b , c )  C BN(a - ~ , b  + E,c)  f o r  a l l  s u f f i c i e n t l y  l a r g e  

N ,  hence 
b+E I -t " d t .  e 

a-E 

- 
l i m  h ( % ( a , b , c ) )  & i% h(BN(a  - & , b  + E , c ) )  = - 
W m  N+ m v% 

With E + O +  we o b t a i n  

- 
l i m  h ( % ( a , b , c ) )  L - 
w m  fi 

Using B (a  + E,b  - E , c )  & AN(a ,b , c )  f o r  a l l  s u f f i c i e n t l y  l a rge  N ,  w e  g e t  s i m i l a r l y  N 
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a n d  t h e  d e s i r e d  r e s u l t  f o l l o w s .  0 

Theorem 15 ( C e n t r a l  L i m i t  Theorem f o r  P e r f e c t  L i n e a r  Complexi ty ,  Second V e r s i o n ) .  I f  

W(N;S) is as  i n  Theorem 13, t h e n  w e  have  f o r  any  a < b (where we c a n  h a v e  a = -to 

o r  b =OD), 

P r o o f .  We a p p l y  (11) w i t h  n = !N/~J, u s e  (101, and proceed  a s  i n  t h e  p r o o f  o f  

Theorem 14. 0 

Theorem 16. We h a v e  h-a .e .  

f o r  a l l  i n t e g e r s  C .  

P r o o f .  F o r  c = 0 a n d  c = 1 t h i s  f o l l o w s  from Theorem 12. Now l e t  c 1 2 .  From 

t h e  p r o o f  of  Theorem 11 w e  o b t a i n  

Z(N;c;S) & B ( j ( N , S ) ; c ; S )  (12) 
r 

w i t h  B ( r ; c ; S )  = g ( A j ( S ) ) ,  where  g i s  t h e  f u n c t i o n  on P d e f i n e d  by g ( p )  = 1 

i f  d e g ( p )  2 c a n d  g ( p )  = 0 o t h e r w i s e .  By Theorem 4 we have 
j = 1  

1-c 1/2 (B(r;c;S) - r q  ) = 1 h-a .e . ,  1 - 
1 i m  
r+oo 6(2r l o g  log  r) 

where 

6 2  = g ( p ) 2  q-2 d e g ( p )  - q2-2c 1-c 2-2c 1-2c 
= q  - q  = q  ( q C - q )  

PEP 
For  a n  S E  H w i t h  t h e  p r o p e r t y  

1-c B(j(N,S);c;S) - j(N,S)q 
f o r  a l l  s u f f i c i e n t l y  l a r g e  N.  

c o n s i d e r a t i o n  s a t i s f i e s  

d e g ( Q , ( S ) ) &  - Ice 
q - L  q - 1  

above  and  f o r  a g i v e n  0 < E < 1  we t h e r e f o r e  g e t  

( 1 3 )  L (1 + E )  6 ( 2 j ( N , S ) l o g  log  J ( N , S ) )  112 

9y C o r o l l a r y  3 w e  c a n  assume t h a t  t h e  S E H  u n d e r  

112 ( 2 q n  l o g  l o g  n )  
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for all sufficiently large n. By the definition of j(N,S) in the proof of 

for all sufficiently large N. Put 

F(j) = - ( 2 q j  log log j) 112. 
q - 1  q - 1  

Then F(j) is an increasing function of j for sufficiently large j and it is 

easily checked that 

( - 1)N + 1 * 2E ( ( q  - l)N log l og  N)'") > N 
F( 2q q 

for all sufficiently large N. It follows that 

(14) 1 / 2  j(N,S) 4 (' - + 1+2E ( ( 9  - l)N log log N )  
2q 4 

for all sufficiently large N. 

for all sufficiently large N. Now (12), (13), and ( 1 4 )  yield 

In particular, we have j ( N , S )  & (1 + E)2(q - 1)N/(2q) 

( q  - 1)N L_ Z(N;c;S) - 
2 qC 

( - l)N 1-c 
) 9  

1 -c & B(j(N,S);c;S) - j(N,S)q + (j(N,S) - 2q 

4 (1 + 
If2 N log log N)1'2 + ((q - 1)N log log N )  

qc 

(qc - q)1'2+1 ( q -  1)'/* (N log log N )  112 L ( 1  + 3E) 
qc 

f o r  all sufficiently large 

c 2 2. The 'remaining cases are proved similarly. 0 

N, and so  the first part of the theorem is shown for 

7. CONTINUED FRACTICN TESTS 

From Lemma 1 we see that a linear complexity pro€ite always has the  following form: 

0 ,  ..., O,dl,,.., dl,dl + d2, ..., d l  + d2, ..., (15) 

.I 

with 0 repeated d? - 1- times and z di repeated d .  + d. times for all 
i=l J J + I  

j 2 1, where dl,d2, ... are positive integers given by d .  = deg(A.(S)). Therefore, J J 
prescribing a linear complexity profite is equivalent to prescribing I f  

an arbitrary sequence dl,d 2,... 

algorithm in Niederreiter [8] generates a sequence s1,s2,,.. of elements Of F 

dl,d2,--. . 
of positive integers is given, then the following 

q 
1 

whose linear complexity profile is as in ( 1 5 ) .  We put q .  = i d i  for j 2 1. We re- 
J i=l 

k 
ak x 

+ ... + a x + a. associated with the linear recursion 1 call that the polyncsrial 
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(1) is called the characteristic polynomial of the linear recursion. 

Algorithm 

Initialization: Q, = 1 

A1 over F with deg(A ) = dl and let Q, = A l -  l Step 1: Choose a polynomial 

Calculate the terms s .  with 1 L- i & q + q2 - 1 by the linear recursion with 

(considered as a polynomial over F ). 
q 

9 

characteristic polynomia 1 Q, and initial values s .  = 0 for 1 & i L 91 - 1, 
-1 si = c for i = q , where c is the leading coefficient of Q,. 

Step j (for j 2 2) :  Suppose the polynomials Q,,...,Qj-l and the terms s .  with 

14 i L  q. + q .  - 1 have already been calculated. Choose a polynomial A .  over 

F with deg(A.1 = d. and let Q. = A .  Q. J - ~  + Qj-2. Calculate the terms si with 
q J J 
qj-l + qj & i& q. + q .  J J-1 
cursion with characteristic polynomial Q.. 

1 

J-1 1 J 

- 1 from the previously calculated terms by the linear re- 

J 

If this procedure is continued indefinitely, it yields a nonperiodic sequence 
with the prescribed linear complexity profile. If the procedure is broken off after 

finitely many steps, then a minor modification in the last step is needed (see [81) .  

Let S be an arbitrary sequence of elements of F and let A.(S),j = 1,2,.--, 

as usual be the polynomials appearing in the continued fraction expansion of the gen- 

erating function S. If we put d.(S) = deg(A.(S)), then each d. can be viewed as 

a random variable on the probability space (H,&,h) and the values of d are pOS- 

itive integers. By L e m a  4 the random variables dl,d2,.,. are independent and 

identically distributed. For every positive integer m, the probability that d. = m 

is equal to (q - 1)q-O by Lemma 2 .  

the linear complexity profile of a random sequence of elements of F has the form 

(15) ,  where dld2, ... are independent and identically distributed with the proba- 

bility distribution Prob(d. = m) = ( q  - l)q 
note that each d. has expected value q/(q - 1) and variance q / ( q  - l)’, as shown 

in the proof of Corollary 3 .  In particular, in (15) we can expect an average step 

height of q/(q - 1) and an average step length of 2q/(q - 1). For q = 2 this 

agrees with a result of Rueppel [ll, p. 451 that was proved by a different method. 

9 J 

J J J 

j 

J 
Thus, in a statistical sense we can say that 

9 

for all positive integers m. We -m 
J 

J 

This description of the linear complexity pro€ile of a random sequence of ele- 

ments of F can ser-Je as the basis for new types of randomness tests. For a con- 

cretely given sequence S, we can calculate d. = d . ( S )  by the Berlekamp-Massey a l -  

gorithm (see [ 5 ,  Ch. 61, [7]). The sequence dl,d2, ... is then subjected to con- 

ventional statistical tests for randomness, the null hypothesis being that 

are independent and identically distributed with the probability distribution given 

above. More generally, we can calculate the A.(S) by the continued fraction algo- 

rithm or the Berlekamp-Massey algorithm, take an arbitrary real-valued function g 

on P, and use the independent and identically distributed random variables X .  in 

9 

J J  

dl,d2, ... 

J 

J 
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Lemma 4 as the basis for a randomness test. These types of randomness tests may be 

called continued fraction tests. 

Other types of randomness tests may be based on the independent and identically 

distributed random variables Y = Y(') in Lemma 5 for which the probability dis- 

tribution is given by 
n n  

Prob(Yn = 0) = l/q,Prob(Yn = 1) = ( q  - l)/q according to ( 7 ) .  
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