
StreamIt: A Language for Streaming

Applications�

William Thies, Michal Karczmarek, and Saman Amarasinghe

Laboratory for Computer Science, Massachusetts Institute of Technology
Cambridge, MA 02139

{thies, karczma,saman}@lcs.mit.edu

Abstract. We characterize high-performance streaming applications as
a new and distinct domain of programs that is becoming increasingly im-
portant. The StreamIt language provides novel high-level representations
to improve programmer productivity and program robustness within the
streaming domain. At the same time, the StreamIt compiler aims to im-
prove the performance of streaming applications via stream-specific anal-
yses and optimizations. In this paper, we motivate, describe and justify
the language features of StreamIt, which include: a structured model of
streams, a messaging system for control, a re-initialization mechanism,
and a natural textual syntax.

1 Introduction

Applications that are structured around some notion of a “stream” are becom-
ing increasingly important and widespread. There is evidence that streaming
media applications are already consuming most of the cycles on consumer ma-
chines [1], and their use is continuing to grow. In the embedded domain, appli-
cations for hand-held computers, cell phones, and DSP’s are centered around
a stream of voice or video data. The stream abstraction is also fundamental
to high-performance applications such as intelligent software routers, cell phone
base stations, and HDTV editing consoles.

Despite the prevalence of these applications, there is surprisingly little lan-
guage and compiler support for practical, large-scale stream programming. Of
course, the notion of a stream as a programming abstraction has been around
for decades [2], and a number of special-purpose stream languages have been
designed (see [3] for a review). Many of these languages and representations are
elegant and theoretically sound, but they often lack features and are too inflex-
ible to support straightforward development of modern stream applications, or
their implementations are too inefficient to use in practice. Consequently, most
programmers turn to general-purpose languages such as C or C++ to implement
stream programs.

There are two reasons that general-purpose languages are inadequate for
stream programming. Firstly, they are a mismatch for the application domain.
� For more information about StreamIt, see http://compiler.lcs.mit.edu/streamit.

R. N. Horspool (Ed.): CC 2002, LNCS 2304, pp. 179–196, 2002.
c© Springer-Verlag Berlin Heidelberg 2002

180 William Thies et al.

That is, they do not provide a natural or intuitive representation of streams,
thereby having a negative effect on readability, robustness, and programmer
productivity. Moreover, because the widespread parallelism and regular commu-
nication patterns of data streams are left implicit in general-purpose languages,
compilers are not stream-conscious and do not perform stream-specific optimiza-
tions. As a result, performance-critical loops are often hand-coded in a low-level
assembly language and must be re-implemented for each target architecture.
This practice is labor-intensive, error-prone, and very costly.

Secondly, general-purpose languages are a mismatch for the emerging class
of grid-based architectures [4,5,6] that are especially well-suited for stream pro-
cessing. Perhaps the primary appeal of C is that it provides a “common machine
language” for von-Neumann architectures. That is, it abstracts away the idiosyn-
cratic differences between machines, but encapsulates their common properties:
a single program counter, arithmetic operations, and a monolithic memory. How-
ever, for grid-based architectures, the von-Neumann model no longer holds, as
there are multiple instruction streams and distributed memory banks. Thus, C
no longer serves as a common machine language–in fact, it provides the wrong
abstraction for the underlying hardware, and architecture-specific directives are
often needed to obtain reasonable performance. Again, this greatly complicates
the job of the programmer and hampers portability.

StreamIt is a language and compiler specifically designed for modern stream
programming. The StreamIt language has two goals: first, to provide high-level
stream abstractions that improve programmer productivity and program robust-
ness within the streaming domain, and second, to serve as a common machine
language for grid-based processors. At the same time, the StreamIt compiler
aims to perform stream-specific optimizations to achieve the performance of an
expert programmer.

This paper motivates, describes, and justifies the high-level language features
of StreamIt, version 1.0. The major limitation of StreamIt 1.0 is that all flow
rates in the streams must be static; applications such as compression that have
dynamically varying flow rates will be the subject of future work. A large set of
applications can be implemented with static rates, and while dynamic rates will
require a different runtime model, it will still be essential to fully analyse and
optimize static sub-sections in order to obtain high performance.

The paper is organized as follows. In Section 2, we characterize the domain
of streaming programs that motivates the design of StreamIt, and in Section 3
we describe the language features in detail. We present an in-depth example of
a software radio in Section 4, preliminary results in Section 5, related work in
Section 6, and conclusions in Section 7.

2 Streaming Application Domain

The applications that make use of a stream abstraction are diverse, with tar-
gets ranging from embedded devices, to consumer desktops, to high-performance
servers. Examples include systems such as the Click modular router [7] and the

StreamIt: A Language for Streaming Applications 181

ReadFromAtoD RFtoIF

Booster

FFT CheckFreqHop CheckQuality AudioBackEnd

Fig. 1. A block diagram of our frequency-hopping software radio

Spectrumware software radio [8,9]; specifications such as the Bluetooth com-
munications protocol [10], the GSM Vocoder [11], and the AMPS cellular base
station[12]; and almost any application developed with Microsoft’s DirectShow
library [13], Real Network’s RealSDK [14] or Lincoln Lab’s Polymorphous Com-
puting Architecture [15].

We have identified a number of properties that are common to such appli-
cations–enough so as to characterize them as belonging to a distinct class of
programs, which we will refer to as streaming applications. We believe that the
salient characteristics of a streaming application are as follows:

1. Large streams of data. Perhaps the most fundamental aspect of a streaming
application is that it operates on a large (or virtually infinite) sequence of
data items, hereafter referred to as a data stream. Data streams generally
enter the program from some external source, and each data item is processed
for a limited time before being discarded. This is in contrast to scientific
codes, which manipulate a fixed input set with a large degree of data reuse.

2. Independent stream filters. Conceptually, a streaming computation repre-
sents a sequence of transformations on the data streams in the program.
We will refer to the basic unit of this transformation as a filter: an oper-
ation that–on each execution step–reads one or more items from an input
stream, performs some computation, and writes one or more items to an
output stream. Filters are generally independent and self-contained, with-
out references to global variables or other filters. A stream program is the
composition of filters into a stream graph, in which the outputs of some filters
are connected to the inputs of others.

3. A stable computation pattern. The structure of the stream graph is generally
constant during the steady-state operation of a stream program. That is, a
certain set of filters are repeatedly applied in a regular, predictable order to
produce an output stream that is a given function of the input stream.

4. Occasional modification of stream structure. Even though each arrangement
of filters is executed for a long time, there are still dynamic modifications to
the stream graph that occur on occasion. For instance, if a wireless network
interface is experiencing high noise on an input channel, it might react by
adding some filters to clean up the signal; a software radio re-initializes a por-
tion of the stream graph when a user switches from AM to FM. Sometimes,
these re-initializations are synchronized with some data in the stream–for
instance, when a network protocol changes from Bluetooth to 802.11 at a
certain point of a transmission. There is typically an enumerable number of

182 William Thies et al.

class FIRFilter extends Filter {
 float[] weights;
 int N;

 void init(float[] weights) {
 setInput(Float.TYPE); setOutput(Float.TYPE);
 setPush(N); setPop(1); setPeek(N);
 this.weights = weights;
 this.N = weights.length;
 }

 void work() {
 float sum = 0;
 for (int i=0; i<N; i++)
 sum += input.peek(i)*weights[i];
 input.pop();
 output.push(sum);
 }
}

class Main extends Pipeline {
 void init() {
 add(new DataSource());
 add(new FIRFilter(N));
 add(new Display());
 }
}Fig. 2. An FIR filter in StreamIt

StreamStream Stream

(a) A Pipeline.

Stream

Stream

JoinSplit

(b) A SplitJoin.

Join

Stream

Stream Split

(c) A FeedbackLoop.

Fig. 3. Stream structures supported by StreamIt

configurations that the stream graph can adopt in any one program, such
that all of the possible arrangements of filters are known at compile time.

5. Occasional out-of-stream communication. In addition to the high-volume
data streams passing from one filter to another, filters also communicate
small amounts of control information on an infrequent and irregular basis.
Examples include changing the volume on a cell phone, printing an error
message to a screen, or changing a coefficient in an upstream FIR filter.

6. High performance expectations. Often there are real-time constraints that
must be satisfied by streaming applications; thus, efficiency (in terms of
both latency and throughput) is of primary concern. Additionally, many
embedded applications are intended for mobile environments where power
consumption, memory requirements, and code size are also important.

3 Language Overview

StreamIt includes stream-specific abstractions and representations that are de-
signed to improve programmer productivity for the domain of programs de-
scribed above. In this paper, we present StreamIt in legal Java syntax1. Us-
ing Java has many advantages, including programmer familiarity, availability of
compiler frameworks and a robust language specification. However, the resulting
syntax can be cumbersome, and in the future we plan to develop a cleaner and
more abstract syntax that is designed specifically for stream programs.
1 However, for the sake of brevity, the code fragments in this paper are sometimes
lacking modifiers or methods that would be needed to make them strictly legal Java.

StreamIt: A Language for Streaming Applications 183

3.1 Filters

The basic unit of computation in StreamIt is the Filter. An example of a Filter
from our software radio (see Figure 1) is the FIRFilter, shown in Figure 2.
The central aspect of a filter is the work function, which describes the filter’s
most fine grained execution step in the steady state. Within the work function,
a filter can communicate with neighboring blocks using the input and output
channels, which are FIFO queues declared as fields in the Filter base class. These
high-volume channels support the three intuitive operations: 1) pop() removes
an item from the end of the channel and returns its value, 2) peek(i) returns
the value of the item i spaces from the end of the channel without removing it,
and 3) push(x) writes x to the front of the channel. The argument x is passed
by value; if it is an object, a separate copy is enqueued on the channel.

A major restriction of StreamIt 1.0 is that it requires filters to have static
input and output rates. That is, the number of items peeked, popped, and pushed
by each filter must be constant from one invocation of the work function to the
next. In fact, as described below, the input and output rates must be declared in
the filter’s init function. If a filter violates the declared rates, StreamIt throws
a runtime error and the subsequent behavior of the program is undefined. We
plan to support dynamically changing rates in a future version of StreamIt.

Each Filter also contains an init function, which is called at initialization
time. The init function serves two purposes. Firstly, it is for the user to establish
the initial state of the filter. For example, the FIRFilter records weights, the
coefficients that it should use for filtering. A filter can also push, pop, and peek
items from within the init function if it needs to set up some initial state on
its channels, although this usually is not necessary. A user should instantiate a
filter by using its constructor, and the init function will be called implicitly
with the same arguments that were passed to the constructor2.

The second purpose of the init function is to specify the filter’s I/O types
and data rates to the StreamIt compiler. The types are specified with calls to
setInput and setOutput, while the rates are specified with calls to setPush,
setPop, and setPeek. The setPeek call can be ommitted if the peek count is
the same as the pop count.

Rationale StreamIt’s representation of a filter is an improvement over general-
purpose languages. In a procedural language, the analog of a filter is a block
of statements in a complicated loop nest (see Figure 4). This representation is
unnatural for expressing the feedback and parallelism that is inherent in stream-
ing systems. Also, there is no clear abstraction barrier between one filter and
another, and high-volume stream processing is muddled with global variables
and control flow. The loop nest must be re-arranged if the input or output ratios
of a filter changes, and scheduling optimizations further inhibit the readability
of the code. In contrast, StreamIt places the filter in its own independent unit,
2 This design might seem unnatural, but it is necessary to allow inlining (Section 3.2)
and re-initialization (Section 3.4) within a Java-based syntax.

184 William Thies et al.

int N = 5;
int BLOCK_SIZE = 100;

void step(float[] input, float[] output,
 int numIn, int numOut) {
 float sum = 0;
 for (int k=0; k<numIn; k++)
 sum = sum + input[k]*FIR_COEFF[k+numIn][N];
 for (int k=numIn; k<N; k++)
 sum = sum + input[k]*FIR_COEFF[k-numIn][N];
 output[numOut] = sum;
 input[numIn] = getData();
}

void main() {
 float input[] = new float[N];
 float output[] = new float[BLOCK_SIZE];
 int numIn, numOut;

 for (numIn=0; numIn<N; numIn++)
 input[numIn] = getData();

 while (true) {

 for (out=0; numIn<N; numIn++, numOut++)
 step(input, output, numIn, numOut);

 int wholeSteps = (BLOCK_SIZE-numOut)/N;
 for (int k=0; k<wholeSteps; k++)
 for (numIn=0; numIn<N; numIn++, numOut++)
 step(input, output, numIn, numOut);

 for (numIn=0; numOut<BLOCK_SIZE; numIn++, numOut++)
 step(input, output, numIn, numOut);

 displayBlock(output);
 }
}

Fig. 4. An optimized FIR filter in a pro-
cedural language. A complicated loop
nest is required to avoid mod functions
and to use memory efficiently, and the
structure of the loops depends on the
data rates (e.g., BLOCK SIZE) within
the stream. An actual implementation
might inline the calls to step

class FIRFilter {
 int N;
 float[] input;

 FIRFilter(int N) {
 this.N = N;
 }

 float[] getData(float[] output,
 int offset, int length) {
 if (input==null) {
 input = new float[MAX_LENGTH];
 source.getData(input, 0, N+length);
 } else {
 source.getData(input, N, length);
 }

 for (int i=0; i<length; i++) {
 float sum = 0;
 for (int j=0; j<N; j++) {
 sum = sum + data1[i+j]*FIR_COEFF[j][N];
 }
 output[i+offset] = sum;
 }

 for (int i=0; i<N; i++) {
 input[i] = input[i+length];
 }
 }
}

void main() {
 DataSource datasource = new DataSource();
 FIRFilter filter = new FIRFilter(5);
 Display display = new Display();

 filter.source = datasource;
 display.source = filter;

 display.run();
}

Fig. 5. An FIR filter in an object
oriented language. A “pull model” is
used by each filter object to retrieve
a chunk of data from its source, and
straight-line code connects one filter
to another

making explicit the parallelism and inter-filter communication while hiding the
grungy details of scheduling and optimization from the programmer.

One could also use an object-oriented language to implement a stream ab-
straction (see Figure 5). This avoids some of the problems associated with a
procedural loop nest, but the programming model is again complicated by ef-
ficiency concerns. That is, a runtime library usually executes filters according
to a pull model, where a filter operates on a block of data that it retrieves
from the input channel. The block size is often optimized for the cache size of
a given architecture, which hampers portability. Moreover, operating on large-
grained blocks obscures the fundamental fine-grained algorithm that is visible in
a StreamIt filter. Thus, the absence of a runtime model in favor of automated
scheduling and optimization again distinguishes StreamIt.

StreamIt: A Language for Streaming Applications 185

class Delay extends Filter {
 void init(int delay) {
 setInput(Float.TYPE); setOutput(Float.TYPE);
 setPush(1); setPop(1);
 for (int i=0; i<delay; i++)
 output.push(0);
 }
 void work() { output.push(input.pop()); }
}

class EchoEffect extends SplitJoin {
 void init() {
 setSplitter(Duplicate());
 add(new Delay(100));
 add(new Delay(0));
 setJoiner(RoundRobin());
 }
}

class AudioEcho extends Pipeline {
 void init() {
 add(new AudioSource());
 add(new EchoEffect());
 add(new Adder());
 add(new Speaker());
 }
}

Adder is defined
in Figure 8.

Fig. 6. An echo effect in StreamIt

class Fibonnacci extends FeedbackLoop {
 void init() {
 setDelay(2);
 setJoiner(RoundRobin(0,1));
 setBody(new Filter() {
 void init() {
 setInput(Integer.TYPE);
 setOutput(Integer.TYPE);
 setPush(1); setPop(1); setPeek(2);
 }
 void work() {
 output.push(input.peek(0)+input.peek(1));
 input.pop();
 }
 });
 setSplitter(Duplicate());
 }

 int initPath(int index) {
 return index;
 }
}

Fig. 7. A FeedbackLoop version of Fi-
bonnacci

3.2 Connecting Filters

StreamIt provides three constructs for composing filters into a communicating
network: Pipeline, SplitJoin, and FeedbackLoop (see Figure 3). Each structure
specifies a pre-defined way of connecting filters into a single-input, single-output
block, which we will henceforth refer to as a “stream”. That is, a stream is
any instance of a Filter, Pipeline, SplitJoin, or FeedbackLoop. Every StreamIt
program is a hierarchical composition of these stream structures.

The Pipeline construct is for building a sequence of streams. Like a Filter,
a Pipeline has an init function that is called upon its instantiation. Within
init, component streams are added to the Pipeline via successive calls to add.
For example, in the AudioEcho in Figure 6, the init function adds four streams
to the Pipeline: an AudioSource, an EchoEffect, an Adder, and a Speaker.
This sequence of statements automatically connects these four streams in the
order specified. Thus, there is no work function in a Pipeline, as the component
streams fully specify the behavior. The channel types and data rates are also
implicit from the connections.

Each of the stream constructs can either be executed on its own, or embedded
in an enclosing stream structure. The AudioEcho can execute independently,
since the first component consumes no items and the last component produces
no items. However, the EchoEffect must be used as a component, since the
first stream inputs items and the last stream outputs items. When a stream is
embedded in another construct, the first and last components of the stream are
implicitly connected to the stream’s neighbors in the parent construct.

The SplitJoin construct is used to specify independent parallel streams that
diverge from a common splitter and merge into a common joiner. As in a Pipeline,
the components of a SplitJoin are specified with successive calls to add from the

186 William Thies et al.

init function. For example, the EchoEffect in Figure 6 adds two streams that
run in parallel, each of which is a Delay filter.

The splitter specifies how items from the input of the SplitJoin are distributed
to the parallel components. For simplicity, we allow only compiler-defined split-
ters, of which there are three types: 1) Duplicate, which replicates each data item
and sends a copy to each parallel stream, 2) RoundRobin(i1, i2, . . ., ik), which
sends the first i1 data items to the stream that was added first, the next i2 data
items to the stream that was added second, and so on, and 3) Null, which means
that none of the parallel components require any input, and there are no input
items to split. If the weights are ommitted from a RoundRobin, then they are
assumed to be equal to one for each stream. Note that RoundRobin can function
as an exclusive selector if one or more of the weights are zero.

Likewise, the joiner is used to indicate how the outputs of the parallel streams
should be interleaved on the output channel of the SplitJoin. There are two
kinds of joiners: 1) RoundRobin, whose function is analogous to a RoundRobin
splitter, and 2) Null, which means that none of the parallel components pro-
duce any output, and there are no output items to join. The splitter and joiner
types are specified with calls to setSplitter and setJoiner, respectively. The
EchoEffect uses a Duplicate splitter so that each item appears both directly
and as an echo; it uses a RoundRobin joiner to interleave the immediate signals
with the delayed ones. In AudioEcho, an Adder is used to combine each pair of
interleaved signals.

The FeedbackLoop construct provides a way to create cycles in the stream
graph. The Fibonacci stream in Figure 7 illustrates the use of this construct.
Each FeedbackLoop contains: 1) a body stream, which is the block around which
a backwards “feedback path” is being created, 2) a loop stream, which can per-
form some computation along the feedback path, 3) a splitter, which distributes
data between the feedback path and the output channel at the bottom of the
loop, and 4) a joiner, which merges items between the feedback path and the
input channel at the top of the loop. These components are specified from within
the init function via calls to setBody, setLoop, setSplitter, and setJoiner,
respectively. The splitters and joiners can be any of those for SplitJoin, except
for Null. The call to setLoop can be ommitted if no computation is performed
along the feedback path.

The FeedbackLoop has a special semantics when the stream is first starting
to run. Since there are no items on the feedback path at first, the stream instead
inputs items from an initPath function defined by the FeedbackLoop; given an
index i, initPath provides the i’th initial input for the feedback joiner. With a
call to setDelay from within the init function, the user can specify how many
items should be calculated with initPath before the joiner looks for data items
from the feedback channel.

Evident in the Fibonnacci example of Figure 7 is another feature of the
StreamIt syntax: inlining. The definition of any stream can be inlined at the
point of its instantiation, thereby preventing the definition of many small classes
that are used only once, and, moreover, providing a syntax that reveals the

StreamIt: A Language for Streaming Applications 187

hierarchical structure of the streams from the indentation level of the code. In
our Java syntax, we make use of anonymous classes for inlining [16].

Rationale StreamIt differs from other languages in that it imposes a well-
defined structure on the streams; all stream graphs are built out of a hierarchical
composition of Pipelines, SplitJoins, and FeedbackLoops. This is in contrast to
other environments, which generally regard a stream as a flat and arbitrary
network of filters that are connected by channels. However, arbitrary graphs are
very hard for the compiler to analyze, and equally difficult for a programmer
to describe. Most programmers either resort to straight-line code that links one
filter to another (thereby making it very hard to visualize the stream graph),
or using an ad-hoc graphical programming environment that admits no good
textual representation.

In contrast, StreamIt is a clean textual representation that–especially with
inlined streams–makes it very easy to see the shape of the computation from
the indentation level of the code. The comparison of StreamIt’s structure with
arbitrary stream graphs could be likened to the difference between structured
control flow and GOTO statements. Though sometimes the structure restricts
the expressiveness of the programmer, the gains in robustness, readability, and
compiler analysis are immense. Though graphical programming languages have
not gained large-scale acceptance, a graphical editor for StreamIt would have
advantages since every stream graph has a precise textual equivalent that could
also be edited by the programmer. Further, the hierarchical structure of the
stream graph could simplify visualization.

On first glance, the statements within a StreamIt init function might ap-
pear more like a verbose API than a novel language. However, it was actually a
careful design decision to specify all “stream configuration information” via func-
tion calls from within the init functions. While the current syntax is somewhat
tedious, there is great flexibility in this approach, since the user can intermix
configuration directives with statements that calculate the configuration param-
eters. This allows for fully parameterized graph construction–the FFT stream
in Figure 8 inputs a parameter N and adjusts the number of butterfly stages
appropriately. This further improves the modularity and readability of the code.

3.3 Messages

StreamIt provides a dynamic messaging system for passing irregular, low-volume
control information between filters and streams. Messages are sent from within
the body of a filter’s work function, perhaps to change a parameter in another
filter. For example, in our software radio code (see Figure 8), the CheckFreqHop
stage sends a message upstream to change the frequency of the receiver if it
detects that the transmitter is about to change frequencies. The sender can
continue to execute while the message is en route, and the setFreq method will
be invoked in the receiver with argument FREQ[k] when the message arrives.
Since message delivery is asynchronous, there can be no return value; only void
methods can be message targets.

188 William Thies et al.

class CheckQuality extends Filter {
 float aveHi, aveLo;
 BoosterPortal boosterPortal;
 boolean boosterOn;
 void init(BoosterPortal bp, boolean on) {
 setInput(Float.TYPE); setOutput(Float.TYPE);
 setPush(1); setPop(1);
 aveHi = 0; aveLo = 1;
 this.boosterPortal = bp; this.boosterOn = on;

 }
 void work() {
 float val = input.pop();
 aveHi = max(0.9*aveHi, val);
 aveLo = min(1.1*aveLo, val);
 if (aveHi - aveLo < FAIL_QUAL && !booosterOn) {
 boosterPortal.init(true, BEST_EFFORT);
 boosterOn = true;
 }
 if (aveHi - aveLo > PASS_QUAL && boosterOn) {
 boosterPortal.init(false, BEST_EFFORT);
 boosterOn = false;
 }
 output.push(val);
 }
}

 void init(int N, boolean enabled) {
 if (enabled)

 }
}

class TrunkedRadio extends Pipeline {
 int N = 64;
 BoosterPortal boosterPortal = new BoosterPortal();
 RFtoIFPortal freqPortal = new RFtoIFPortal();
 void init() {
 ReadFromAtoD in = add(new ReadFromAtoD());
 RFtoIF rf2if = add(new RFtoIF(N, STARTFREQ));
 Booster booster = add(new Booster(N, false));
 add(new FFT(N));
 add(new CheckFreqHop(freqHop));
 add(new CheckQuality(onOff, false));
 AudioBackEnd out = add(new AudioBackEnd());

 freqPortal.register(rf2if);
 boosterPortal.register(booster);
 MAX_LATENCY(in, out, 10);
 }
}

class Butterfly extends Pipeline {
 void init(int N, int W) {
 add(new SplitJoin() {
 void init() {
 setSplitter(RoundRobin(N, N));
 add(new Filter() {
 float weight[] = new float[W];
 int curr;
 void init() {
 setInput(Float.TYPE);
 setOutput(Float.TYPE);
 setPush(1); setPop(1);
 for (int i=0; i<W; i++)
 weight[i] = calcWeight(i, N, W);
 curr = 0;
 }
 void work() {
 output.push(input.pop()*weight[curr++]);
 if (curr>=W) curr = 0;
 }});
 add(new Identity());
 setJoiner(RoundRobin());
 }});
 add(new SplitJoin() {
 void init() {
 setSplitter(Duplicate());
 add(new Subtractor());
 add(new Adder());
 setJoiner(RoundRobin(N, N));
 }});
}

class RFtoIF extends Filter {
 int size, count, N;
 float weight[];
 void init(int N, float freq) {
 setInput(Float.TYPE); setOutput(Float.TYPE);
 setPush(1); setPop(1);
 this.N = N;
 setFreq(freq);
 }
 void work() {
 output.push(input.pop()*weight[count++]);
 if (count==size) count = 0;
 }
 void setFreq(float freq) {
 count = 0;
 size = CARRIER_FREQ/freq*N;
 weight = new float[size];
 for (int i=0; i<size; i++)
 weight[i] = Math.sin(i*PI/size);
 }
}

class CheckFreqHop extends SplitJoin {
 RFtoIFPortal freqPortal;
 void init(RFtoIFPortal freqPortal) {
 this.freqPortal = freqPortal;
 setSplitter(RoundRobin(N/4-2,1,1,
 N/2,1,1,N/4-2));
 int k = 0;
 for (int i=1; i<=5; i++) {
 if ((i==2)||(i==4)) {
 for (int j=0; j<2; j++) {
 add(new Filter() {
 void init() {
 setInput(Float.TYPE);
 setOutput(Float.TYPE);
 setPush(1); setPop(1);
 }
 void work() {
 float val = input.pop();
 if (val >= MIN_THRESHOLD)
 freqPortal.setFreq(
 FREQ[k], new Latency(4*N,6*N));
 output.push(val);
 }});
 k++;
 }
 } else add(new Identity());
 }
 setJoiner(RoundRobin(N/4-2,1,1,
 N/2,1,1,N/4-2));
 }
}

class FFT extends Pipeline {
 void init(int N) {
 add(new SplitJoin() {
 void init() {
 setSplitter(RoundRobin(N/2, N/2));
 for (int i=0; i<2; i++)
 add(new SplitJoin() {
 void init() {
 setSplitter(RoundRobin());
 add(new Identity());
 add(new Identity());
 setJoiner(RoundRobin(N/4, N/4));
 }});
 setJoiner(RoundRobin());
 }});
 for (int i=2; i<N; i*=2)
 add(new Butterfly(i, N));
 }
}

class Adder extends Filter {
 void init() {
 setInput(Float.TYPE); setOutput(Float.TYPE);
 setPush(1); setPop(2);
 }
 void work() {
 output.push(input.pop() + input.pop());
 }
}

class Booster extends Pipeline {

add(new FIRFilter(BOOST_WEIGHTS));

See

Fig. 9 for

Diagram

Frequency-Hop

Message

Booster

Re-Initialization

Message

Fig. 8. StreamIt code for a software radio. Arrows denote the paths of messages

StreamIt: A Language for Streaming Applications 189

Message timing.The central aspect of the messaging system is a sophis-
ticated timing mechanism that allows filters to specify when a message will be
received relative to the flow of information between the sender and the receiver.
Recall that each filter executes independently, without any notion of global time.
Thus, the only way for two filters to talk about a time that is meaningful for
both of them is in terms of the data items that are passed through the streams
from one to the other.

In StreamIt, one can specify a range of latencies for each message delivery.
This latency is measured in terms of an information “wavefront” from one filter
to another. For example, in the CheckFreqHop example of Figure 8, the sender
indicates an interval of latencies between 4N and 6N . This means that the
receiver will receive the message immediately following the last invocation of its
own work function which produces an item affecting the output of the sender’s
4N ’th to 6N ’th work functions, counting the sender’s current work function as
number 0. Due to space limitations, we cannot define this notion precisely in
this paper (see [17,18] for a formal semantics), but the general idea is simple:
the receiver is invoked when it sees the information wavefront that the sender
sees in 4N to 6N execution steps.

In some cases, the ability to synchronize the arrival of a message with some
element of the data stream is very important. For example, CheckFreqHop knows
that the transmitter will change the frequency between 4N and 6N steps later,
in terms of the frame that CheckFreqHop is inputting. To ensure that the radio
changes frequencies at the same time–so as not to lose any data at the old or
new frequency–CheckFreqHop instructs the receiver to switch frequencies when
the receiver sees one of the last data items at the old frequency.

Portals for broadcast messaging. StreamIt also has support for modular
broadcast messaging. When a sender wants to send a message that will invoke
method M of the receiver R upon arrival, it does not call M on the object R.
Rather, it calls M on a Portal of which R is a member. Portals are typed con-
tainers that forward all messages they receive to the elements of the container.
Portals could be useful in cases when a component of a filter library needs to
announce a message (e.g., that it is shutting down) but does not know the list
of recipients; the user of the library can pass to the filter a Portal containing
all interested receivers. As for message delivery constraints, the user specifies a
single time interval for each message, and that interval is interpreted separately
(as described above) for each receiver in the Portal.

In a language with generic data types, a Portal could be implemented as a
templated list. However, since Java does not yet support templates, we automat-
ically generate an <X>Portal class for every class and interface <X>. Our syntax
for using Portals is evident in the TrunkedRadio class in Figure 8.

Rationale Stream programs present a challenge in that filters need both regu-
lar, high-volume data transfer and irregular, low-volume control communication.
Moreover, there is the problem of reasoning about the relative “time” between
filters when they are running asynchronously and in parallel.

190 William Thies et al.

A different approach to messaging is to embed control messages in the data
stream instead of providing a separate mechanism for dynamic message passing.
This does have the effect of associating the message time with a data item, but
it is complicated, error-prone, and leads to unreadable code. Further, it could
hurt performance in the steady state (if each filter has to check whether or not a
data item is actual data or control, instead) and complicates compiler analysis,
too. Finally, one can’t send messages upstream without creating a separate data
channel for them to travel in.

Another solution is to treat messages as synchronous method calls. However,
this delays the progress of the stream when the message is en route, thereby
degrading the performance of the program and restricting the compiler’s freedom
to reorder filter executions.

We feel that the StreamIt messaging model is an advance in that it sep-
arates the notions of low-volume and high-volume data transfer–both for the
programmer and the compiler–without losing a well-defined semantics where
messages are timed relative to the high-volume data flow. Further, by separating
message communication into its own category, fewer connections are needed for
steady-state data transfer and the resulting stream graphs are more amenable
to structured stream programming.

3.4 Re-initialization

One of the characteristics of a streaming application is the need to occaision-
ally modify the structure of part of the stream graph. StreamIt allows these
changes through a re-initialization mechanism that is integrated with its mes-
saging model. If a sender targets a message at the init function of a stream
or filter S, then when the message arrives, it re-executes the initialization code
and replaces S with a new version of itself. However, the new version might
have a different structure than the original if the arguments to the init call on
re-initialization were different than during the original initialization.

When an init message arrives, it does not kill all of the data that is in the
stream being re-initialized. Rather, it drains the stream until the wavefront of
information (as defined for the messaging model) from the top of the stream has
reached the bottom. The draining occurs without consuming any data from the
input channels to the re-initialized region. Instead, a drain function of each filter
is invoked to provide input when its other input source is frozen. (Each filter can
override the drain function as part of its definition.) If the programmer prefers
to kill the data in a stream segment instead of draining it, this can be indicated
by sending an extra argument to the message portal with the re-initialization
message.

Rationale Re-initialization is a headache for stream programmers because–if
done manually–the entire runtime system could be put on hold to re-initialize
a portion of the stream. The interface to starting and stopping streams could
be complicated when there is not an explicit notion of initialization time vs.

StreamIt: A Language for Streaming Applications 191

0

2

8

10

1

3

9

11

weighted round

robin (2, 2)
round robin

weighted round

robin (4, 4)

0

1

2

3

8

9

10

11

0

2

1

3

8

10

9

11

4

6

12

14

5

7

13

15

weighted round

robin (2, 2)
round robin

4

5

6

7

12

13

14

15

4

6

5

7

12

14

13

15

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

0

4

2

6

1

5

3

7

8

12

10

14

9

13

11

15

round robin

Fig. 9. The bit-reversal phase in the FFT, with N=8. A bit-reversal permutation
is one that swaps all elements with indices whose binary representations are the
reverse of each other. The Butterfly stage is similar, but ommitted for lack of
space

steady-state execution time, and ad-hoc draining techniques could risk losing
data or deadlocking the system.

StreamIt improves on this situation by abstracting the re-initialization pro-
cess from the user. That is, no auxillary control program is needed to drain
the old streams and create the new structure; the user need only trigger the
reinitialization process through a message. Additionally, any hierarchical stream
construct automatically becomes a possible candidate for re-initialization, due
to the well-defined stream structure and the simple interface with the init
function. Finally, it is easy for the compiler to recognize stream re-initialization
possibilities and to account for all possible configurations of the stream flow
graph during analysis and optimization.

3.5 Latency Constraints

Lastly, StreamIt provides a simple way of restricting the latency of an infor-
mation wavefront in traveling from the input of one filter to the output of a
downstream filter. Issuing the directive MAX LATENCY(A, B, n) from within an
init means that A can only execute up to the wavefront of information that B
will see after n invocations of its own work function.

4 Detailed Example

We now discuss the StreamIt implementation of the Trunked Radio illustrated
in Figure 1. The Trunked Radio is a frequency-hopping system in which the
receiver switches between a set of known frequencies whenever it hears certain
tones from the transmitter.

The toplevel class, TrunkedRadio, is implemented as a seven-stage Pipeline
(see Figure 8). The RFtoIF stage modulates the input signal from RF to a

192 William Thies et al.

frequency band around the current IF frequency. To support a change in the IF
frequency when frequency hopping occurs, the RftoIF filter contains a setFreq
method that is invoked via a message from the CheckFreqHop stage. The message
is sent from CheckFreqHop with a latency range of 4N to 6N , which means that
RFtoIFmust deliver between 4N and 6N items using the old modulation scheme
before changing to the new frequency.

The optional Booster stage provides amplification for weak signals, but is
usually turned off to conserve power. The Booster is toggled by a re-initialization
message from the CheckQuality stage, which estimates the signal quality by the
shape of the frequency spectrum. If all the frequencies have similar amplitudes,
CheckQuality assumes that the signal-to-noise ratio is low and sends a message
to activate the Booster. This message is sent using best-effort delivery.

The FFT stage converts the signal from the time domain to the frequency
domain; please refer to p. 796 of [19] for a diagram of the parallel FFT algorithm.
The StreamIt implementation consists of a bit-reversal permutation followed by
a series of Butterfly stages. The bit-reversal phase illustrates how data can be
reshuffled with just a few SplitJoin constructs (see Figure 9). The Butterfly
stage–which is parameterized to allow for a compact representation of the FFT–
also employs SplitJoins to select groups of items for its computation. We believe
that the StreamIt version of the FFT is clean and intuitive, as the SplitJoin
constructs expose the natural parallelism of the algorithm.

5 Results

We have implemented a fully-functional prototype of the StreamIt compiler as
an extension to the Kopi Java Compiler, a component of the open-source Kopi
Project [20]. At this time, our compiler is a proof-of-concept and does not yet
include the stream-specific optimizations that we are working on; we generate
C code that is compiled with a StreamIt runtime library to produce the final
executable. We have also developed a library in Java that allows StreamIt code
to be executed as pure Java, thereby providing a verification mechanism for the
output of the compiler.

The compilation process for streaming programs contains many novel aspects
because the basic unit of computation is a stream rather than a procedure.
In order to compile stream modules separately, we have developed a runtime
interface–analogous to that of a procedure call for traditional codes–that specifies
how one can interact with a black box of streaming computation. The stream
interface contains separate phases for initialization and steady-state execution;
in the execution phase, the interface includes a contract for input items, output
items, and possible message production and consumption.

Though we have yet to add optimizations to our compiler, it is nonethe-
less interesting to evaluate its baseline performance. For this purpose, we de-
veloped StreamIt implementations of four applications: 1) A GSM Decoder,
which takes GSM-encoded parameters as inputs, and uses these to synthesize
audible speech[11], 2) A system from the Polymorphic Computing Architecture

StreamIt: A Language for Streaming Applications 193

Table 1. Application Character-
istics

Benchmark Lines Filters Graph Size

PCA Demo 484 5 7
FM Radio 411 5 27
perftest4 347 5 20
GSM Decoder 3050 11 21

Table 2. Performance Results (in
µsec/item)

Benchmark StreamIt SpectrumWare C

PCA Demo 1.3 3.4 N/A
FM Radio 4.9 9.9 N/A
perftest4 330 330 N/A
GSM Decoder 4.88 N/A .47

(PCA) [15] which encapsulates the core functionality of modern radar, sonar, and
communications signal processors, 3) A software-based FM Radio with equalizer,
and 4) A performance test from the SpectrumWare system that implements an
Orthogonal Frequency Division Multiplexor (OFDM) [8]. Table 1 gives charac-
teristics of the above applications including the number of filters implemented
and the size of the stream graph as coded.

Table 2 gives the performance of our compiler by comparing the StreamIt
implementation against either the SpectrumWare implementation or (in the case
of GSM) a hand-optimized C version. SpectrumWare [8] is a high-performance
runtime library for streaming programs, implemented in C++. The StreamIt lan-
guage offers a higher level of abstraction than SpectrumWare (see Section 3.1),
and yet the StreamIt compiler is able to beat the SpectrumWare performance
by a factor of two for the PCA Demo and FM Radio.

For the GSM application, the extensively hand-optimized C version incorpo-
rates many transformations that rely on a high-level knowledge of the algorithm,
and StreamIt performs an order of magnitude slower. However, this version of
the compiler is only a prototype, and is not yet intended to compete with hand-
coded C. Our code generation strategy currently has many inefficiencies, and
in the future we plan to generate optimized assembly code by interfacing with
a code generator. We believe that stream-conscious optimizations can improve
the performance by an order of magnitude on uniprocessors; moreover, we have
yet to consider parallel targets, and this is where we expect to find the most
pronounced benefits of the abundant parallelism and regular communication
patterns exposed by StreamIt.

6 Related Work

A large number of programming languages have included a concept of a stream;
see [3] for a survey. Those that are perhaps most related to StreamIt 1.0 are syn-
chronous dataflow languages such as LUSTRE [21] and ESTEREL [22] which
require a fixed number of inputs to arrive simultaneously before firing a stream
node. However, most special-purpose stream languages do not contain features
such as messaging and support for modular program development that are es-
sential for modern stream applications. Also, most of these languages are so
abstract and unstructured that the compiler cannot perform enough analysis
and optimization to result in an efficient implementation.

194 William Thies et al.

At an abstract level, the stream graphs of StreamIt share a number of proper-
ties with the synchronous dataflow (SDF) domain as considered by the Ptolemy
project [23]. Each node in an SDF graph produces and consumes a given number
of items, and there can be delays along the arcs between nodes (corresponding
loosely to items that are peeked in StreamIt). As in StreamIt, SDF graphs are
guaranteed to have a static schedule and there are a number of nice scheduling
results incorporating code size and execution time [24]. However, previous re-
sults on SDF scheduling do not consider constraints imposed by point-to-point
messages, and do not include a notion of StreamIt’s information wavefronts,
re-initialization, and programming language support.

A specification package used in industry bearing some likeness to StreamIt
is SDL: Specification and Description Language [25]. SDL is a formal, object-
oriented language for describing the structure and behavior of large, real-time
systems, especially for telecommunications applications. It includes a notion of
asynchronous messaging based on queues at the receiver, but does not incorpo-
rate wavefront semantics as does StreamIt. Moreover, its focus is on specification
and verification whereas StreamIt aims to produce an efficient implementation.

7 Conclusions and Future Work

This paper presents StreamIt, a novel language for high-performance streaming
applications. Stream programs are emerging as a very important class of appli-
cations with distinct properties from other recognized application classes. This
paper develops fundamental programming constructs for the streaming domain.

The primary goal of StreamIt is to raise the abstraction level in
stream programming without sacrificing performance. We have argued that
StreamIt’s mechanisms for filter definition, filter composition, messaging, and
re-initialization will improve programmer productivity and program robustness
within the streaming domain.

Also, we believe that StreamIt is a viable common machine language for
grid-based architectures (e.g., [4,5,6]), just as C is a common machine language
for von-Neumann machines. StreamIt abstracts away the target’s granularity,
memory layout, and network interconnect, while capturing the notion of inde-
pendent processors that communicate in regular patterns. We are developing
fission and fusion algorithms that can automatically adjust the granularity of a
stream graph to match that of a given target.

We have a number of extensions planned for the next version of the StreamIt
language. The current version is designed primarily for uniform one-dimensional
data processing, but constructs for hierarchical frames of data would be useful for
image processing. Moreover, a future version will support dynamically varying
I/O rates of the filters in the stream. We expect that such support will require
new language constructs–for instance, a type-dispatch splitter that routes items
to the components of a SplitJoin based on their type, and a fall-through joiner
that pulls items from any stream in a SplitJoin as soon as they are produced.

StreamIt: A Language for Streaming Applications 195

Our immediate focus is on developing a high-performance optimizing com-
piler for StreamIt 1.0. As described in [18], the structure of StreamIt can be
exploited by the compiler to perform a wide range of stream-specific optimiza-
tions. Our goal is to match the performance of hand-coded applications, such
that the abstraction benefits of StreamIt come with no performance penalty.

Acknowledgements

The StreamIt compiler was implemented with Michael Gordon and David Maze,
with applications support of Jeremy Wong, Henry Hoffman, and Matthew
Brown; we also thank Matt Frank for many helpful comments. This work was
supported in part by the MIT Oxygen Project and DARPA Grant DBT6396-C-
0036.

References

1. Rixner, S., et al: A Bandwidth-Efficient Architecture for Media Processing. In:
HPCA, Dallas, TX (1998) 179

2. Abelson, H., Sussman, G.: Structure and Interpretation of Computer Programs.
MIT Press, Cambridge, MA (1985) 179

3. Stephens, R.: A Survey of Stream Processing. Acta Informatica 34 (1997) 491–541
179, 193

4. Mai, K., Paaske, T., Jayasena, N., Ho, R., Dally, W., Horowitz, M.: Smart mem-
ories: A modular recongurable architecture (2000) 180, 194

5. Waingold, E., et al.: Baring it all to Software: The Raw Machine. MIT-LCS
Technical Report 709, Cambridge, MA (1997) 180, 194

6. Sankaralingam, K., Nagarajan, R., Keckler, S., Burger, D.: A Technology-Scalable
Architecture for Fast Clocks and High ILP. UT Austin Tech Report 01-02 (2001)
180, 194

7. Kohler, E., Morris, R., Chen, B., Jannotti, J., Kaashoek, M. F.: The click modular
router. ACM Trans. on Computer Systems 18 (2000) 263–297 180

8. Tennenhouse, D., Bose, V.: The SpectrumWare Approach to Wireless Signal Pro-
cessing. Wireless Networks (1999) 181, 193

9. Bose, V., Ismert, M., Welborn, M., Guttag, J.: Virtual radios. IEEE/JSAC, Special
Issue on Software Radios (April 1999) 181

10. B. Volume and B. July: Bluetooth Spec. Vol. 1. Bluetooth Consortium (1999) 181
11. Mouly, M., Pautet, M.: The GSM System for Mobile Communications. Cell&Sys,

Palaiseau, France (1992) 181, 192
12. EIA/TIA: Mobile station-land station compatibility spec. Tech. Rep. 553 (1989)

181
13. Microsoft Corporation: Microsoft directshow. Online Documentation (2001) 181
14. RealNetworks: Software Developer’s Kit. Online Documentation (2001) 181
15. Lebak, J.: Polymorphous Computing Architecture (PCA) Example Applications

and Description. External Report, MIT Lincoln Laboratory (August 2001) 181,
193

16. Gosling, Joy, Steele: The Java Language Specification. Addison Wesley (1997)
187

196 William Thies et al.

17. Thies, B., Karczmarek, M., Amarasinghe, S.: StreamIt: A Language for Streaming
Applications. MIT-LCS Technical Memo TM-620, Cambridge, MA (August, 2001)
189

18. Thies, W., Karczmarek, M., Gordon, M., Maze, D., Wong, J., Hoffmann, H., Brown,
M., Amarasinghe, S.: StreamIt: A Compiler for Streaming Applications. MIT-LCS
Technical Memo TM-622, Cambridge, MA (December, 2001) 189, 195

19. Cormen, T. H., Leiserson, C. E., Rivest, R. L.: Introduction to Algorithms. The
MIT Electrical Engineering and Computer Science Series. MIT Press/McGraw Hill
(1990) 192

20. Vincent Gay-Para, Thomas Graf, A. G. L., Wais, E.: Kopi Reference manual.
http://www.dms.at/kopi/docs/kopi.html (2001) 192

21. Halbwachs, N., Caspi, P., Raymond, P., Pilaud, D.: The synchronous data-flow
programming language LUSTRE. Proceedings of the IEEE 79 (1991) 1305–1320
193

22. Berry, G., Gonthier, G.: The Esterel Synchronous Programming Language: Design,
Semantics, Implementation. Science of Computer Programming 19 (1992) 87–152
193

23. Lee, E. A.: Overview of the Ptolemy Project. UCB/ERL Technical Memorandum
UCB/ERL M01/11, Dept. EECS, University of California, Berkeley, CA (2001)
194

24. Bhattacharyya, S. S., Murthy, P. K., Lee, E. A.: Software Synthesis from Dataflow
Graphs. Kluwer Academic Publishers (1996) 189 pages. 194

25. CCITT Recommendation Z.100: Specification and Description Language. ITU,
Geneva (1992) 194

	StreamIt: A Language for Streaming Applications
	Introduction
	Streaming Application Domain
	Language Overview
	Filters
	Rationale

	Connecting Filters
	Rationale

	Messages
	Message timing.
	Rationale

	Re-initialization
	Rationale

	Latency Constraints

	Detailed Example
	Results
	Related Work
	Conclusions and Future Work
	Acknowledgements
	References

