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Abstract. Forwarding is a technique for providing default attribute def-
initions in attribute grammars that is helpful in the modular implemen-
tation of programming languages. It complements existing techniques
such as default copy rules. This paper introduces forwarding, and shows
how it is but a small extension of standard higher-order attribute gram-
mars. The usual tools for manipulating higher-order attribute grammars,
including the circularity check (which tests for cyclic dependencies be-
tween attribute values), carry over without modification. The closure test
(which checks that each attribute has a defining equation) needs modifi-
cation, however, because the resulting higher-order attribute grammars
may contain spurious attributes that are never evaluated, and indeed
that need not be defined.

1 Motivation

The modular definition of programming languages is a long-standing problem,
and a lot of work has been devoted to its solution in the context of attribute
grammars e.g. [1,3,8,10,11,13,14,19,17,21,25,29,32]. Some of these proposals take
inspiration from the object-oriented paradigm, advocating the use of inheritance
to achieve modularisation. Others take inspiration from functional programming,
by employing higher-order functions to achieve a separation of concerns. The
present paper is a modest contribution towards these developments, by showing
how a certain form of inheritance called forwarding can be achieved in higher-
order attribute grammars. In our view, forwarding is the main innovative idea
in the design of the Intentional Programming system [27,30]. That system, until
recently under development at Microsoft, is an environment for interactive lan-
guage design, similar in spirit to many of the above attribute grammar systems.

The structure of the paper is as follows. First we present a number of moti-
vating examples that introduce forwarding, along with the idea of production-
valued attributes. Next, we show how a complete grammar that was composed
using forwarding can be expanded to an ordinary higher-order attribute gram-
mar. Finally, we demonstrate that the standard circularity test for higher-order
attribute grammars can be applied to such modular descriptions. The standard
closure test does however need some modification, and we argue that the desired
effect can be achieved through an appropriate implementation of the circularity
test. That test might thus be more appropriately named the definedness test.
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1.1 A Forwarding Example: Record Invariants

Consider a programming language with record types, and the usual with con-
struct for concisely referring to the field names. Assume that we wish to add a
new feature, namely that of record invariants, which state some invariant rela-
tionship between field values. At the end of each with clause, it is checked that
the invariant is actually satisfied. To keep the example simple, we avoid the
problem of name capture by prohibiting the invariant from referring to global
variables. As we discuss in our technical report [30], the more general problem
is easily solved by correctly maintaining the environment. Here is an example of
a program that uses record invariants:

let rec type = record { f1 :: int, f2 :: int } invariant f1 ≡ 2 ∗ f2

r :: rec type
in

with r begin
f1 := 4; f2 := 8

end

This program fragment in the augmented language is equivalent to the following
fragment in the base language:

let rec type = record { f1 :: int, f2 :: int }
r :: rec type

in
with r begin

f1 := 4; f2 := 8;
if ¬f1 ≡ 2 ∗ f2 then

error “invariant fails”
end

Our challenge is to implement this extension as a small, modular addition to
the base language definition. Of course this notion of language extension, where
the new feature is rewritten to existing idioms, is extremely common. It is the
basis of the idea that it suffices to define a small, elegant core language on which
richer features are then built.

Let us call the grammar production for the new with construct with’. Es-
sentially we would like to define its semantics through the rewrite rule

with’ r ss
⇒

with r (ss++ if ¬r .type.invariant then error “invariant fails” )

In particular, we do not wish to define each of the attributes for with’ anew: that
would require detailed knowledge of all semantic aspects of the base language.
Note that on the right-hand side of this rewrite, we are referring to the invariant
of the type of r. This is a new piece of information that has to be added to
every record type. Note that the invariant is in fact represented as a syntax tree,
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so here we have an example of a higher-order attribute. Defining new language
features in this way, by expanding new productions to old, is called forwarding.

Forwarding is similar to but subtly different from syntax [33] and semantic
macros [20]. Like semantic macros, forwarding does give access to semantic infor-
mation, for instance the attribute r .type.invariant . Such semantic information
is not available in syntax macros. Forwarding is different from both semantic
and syntax macros in that not all attribute queries on a new production such
as with’ are forwarded to the expanded form. For example, an attribute that
defines a pretty-printing of the original program would be defined for with’ di-
rectly. If we relied on forwarding to define the pretty-printing, it would show the
expanded form, which is clearly undesirable. A typical use of forwarding thus
states the expansion into primitive terms as a rewrite rule, but it also defines a
number of attributes whose values are specific to the original higher-level con-
struct. This also sets attribute-grammars-with-forwarding apart from language
processors that are mainly based on reflection, such as MetaML [26] or ’C [9].

Forwarding is very close to higher-order attribute grammars. As we shall
see shortly, the only substantial difference is that here the “copy rules” for all
relevant attributes are automatically generated. There are a number of minor
differences, in particular that forwarding is commonly used in conjunction with
production-valued attributes. This feature also highlights the difference between
forwarding and object-oriented extensions of attribute grammars since the for-
warded to construct is dynamically computed at attribute evaluation time in-
stead of statically determined via inheritance [21] when the attribute grammar
is defined. We now turn to an example to illustrate this phenomenon.

1.2 A Production-Valued Attribute Example: Operator Overloading

The aim is to overload the + operator for numeric addition and string concate-
nation. Furthermore, we would like to achieve this in a modular way fashion:
overloading + on yet another type (such as matrices) should not require any
changes to existing attribute definitions. Below we shall present three versions
of the solution: the first achieves the desired modularity, the second exemplifies
how production-valued attributes can be compiled away, and the final version
demonstrates the reduction to ordinary higher-order attribute grammars.

Our starting point is a grammar with nonterminals Expr (for expressions)
and Type (for types) that includes the following productions:

name description production
plus overloaded + Expr ::= Expr Expr
add numeric addition Expr ::= Expr Expr
cat string concatenation Expr ::= Expr Expr
num numeric constant Expr ::= Number
str string constant Expr ::= Qstring
id identifiers Expr ::= Id
int type of integers Type ::= ε
string type of strings Type ::= ε
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The Expr nonterminal has an attribute code of type String and a higher-order
attribute type which contains a tree derived from nonterminal Type. It also has
an inherited attribute environment. Figure 1 sketches the attribute definitions
that one would expect on those productions that have no direct relation to over-
loading of +. Note the use of type as a higher-order attribute. The environment
attribute is defined implicitly by default copy. Below we shall discuss the at-
tribute definitions for the Type productions, and for overloaded +.

add : Expr ::= Expr Expr
Expr1 .code = gen add code(Expr2 .code, Expr3 .code)
Expr1 .type = integer

concat : Expr ::= Expr Expr
Expr1 .code = gen concat code(Expr2 .code, Expr3 .code)
Expr1 .type = string

numeric const : Expr ::= num
Expr1 .code = gen num code(num)
Expr1 .type = integer

string const : Expr ::= str
Expr1 .code = gen str code(str)
Expr1 .type = string

identifier : Expr ::= id
Expr1 .code = gen id code(id)
Expr1 .type = lookup(Expr .environment , id .lexeme)

Fig. 1. Standard attribute definitions

Using forwarding and production-valued attributes. The productions for the
types are ε-productions (empty right hand sides). We introduce a new attribute
on types, called plusProd (short for “plus production”). The values of this at-
tribute are tree constructors: they take two trees, and build a new tree. Fur-
thermore these trees should be syntax trees that were derived from the Expr
nonterminal, so the type of plusProd is Expr × Expr → Expr . Any production
in the grammar that rewrites an expression to two further expressions could be
viewed as a function of this type. For integers, plusProd is add — that is the
production for numeric addition. For strings, plusProd is concat, which is the
production for string concatenation. These are the formal definitions:

integer : Type ::= ε string : Type ::= ε
Type.plusProd = add Type.plusProd = concat

The presence of the plusProd attribute and forwarding makes it rather easy
to define the overloaded plus attributes. The generic plus production forwards
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to a node created by the appropriate production (here add or concat) which is
retrieved from an attribute on a child. This production is provided with children
(the same ones as the original plus) and provided with inherited attributes by
“inserting” it into the current tree as the third implicit child of plus. This is a
well-known use of higher order attributes. What is new is that we are passing
a production as an attribute and providing it with children. Furthermore, any
synthesised attribute of the generic plus that is not explicitly defined is obtained
by implicit copying from the newly created node. We have added a pretty print-
ing attribute to this example as an example of an explicitly defined attribute.
Similarly, inherited attributes are implicitly passed to the fowarding node.

plus : Expr ::= Expr Expr Type
Type = Expr2.type
Expr1.pp = Expr 2.pp ++ “+” ++ Expr 3.pp
forwardsTo Type.plusProd(Expr 2,Expr3)

Note that we need not define the inherited attributes of Expr2 and Expr3 unless
we use synthesised attributes that depend on them. For example, Expr3.type is
not used, so there is no need to define Expr3.environment . Unfortunately, the
standard closure test requires every inherited attribute to be defined regardless.
This problem and its solution are discussed further in Section 3.3.

At the outset we stated that the overloading should be achieved in a modular
fashion, so that adding a new overloading is just a local change to the attribute
grammar. Indeed, this goal has been achieved. All we need to add for overloading
+ on matrices are the following two productions:

matrix : Type ::= ε
Type.plusProd = matrix add

matrix add : Expr ::= Expr Expr
Expr1 .type = matrix
Expr1 .code = gen matrix add code(Expr2 .code,Expr3 .code)

Some readers may argue that this form of overloading is rather awkward
compared to the overloading features of a modern programming language such as
Haskell [16]. That is certainly true: here we merely use the example of overloaded
syntax to illustrate the merits of production-valued attributes and forwarding in
a nutshell.

Elimination of production-valued attributes. We now aim to show how the device
of production-valued attributes can be eliminated from this example. Naturally
the productions of Figure 1 remain as before. The elimination of production-
valued attributes is very similar to the elimination of higher-order functions
from more general programs [12].

For each production-valued attribute attr which can be given the value of
productions prod1, prod2, . . . , prodn create an enumerated type attr token whose
possible values are the tokens attr prod1, attr prod2, . . . , attr prodn. This is pos-
sible because there are a fixed number of productions in the grammar. We then
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replace production valued attributes with attributes whose value are these new
enumerated types. We replace production references in attribute definitions with
the appropriate token and replace attribute references with case statements
which switch on the token value to make use of the appropriate production
as below.

plus : Expr ::= Expr Expr Type
Type = Expr2 .type
forwardsTo case Type.plusProd token of

plusProd add → add(Expr2 ,Expr3 )
plusProd concat → concat(Expr2 ,Expr3 )

integer : Type ::= ε
Type.plusProd token = plusProd add

string : Type ::= ε
Type.plusProd token = plusProd concat

This is still a fairly painless way to implement operator overloading. If new
attributes, say for a new target language, are introduced onto the add and concat
productions, we do not need to change the plus production, thanks to forward-
ing. We do lose modularity in another dimension, however: to overload matrix
addition, we need to change the forwards–to clause of the plus production so
that the case statement recognises a token for matrix addition.

Elimination of forwarding. We now consider how the above version of our ex-
ample can be implemented without forwarding. The elimination of forwarding
involves two changes. First, we need to introduce a new, explicit child of plus
to represent the newly constructed tree that attribute queries are forwarded
to. Second, all attribute definitions for plus have to be made explicit. The in-
herited attributes of the newly constructed tree are the inherited attributes of
the generic plus. The synthesised attributes of the generic plus are the same as
the synthesised attributes of the newly constructed tree. In summary, the plus
production is transformed into the following:

plus : Expr ::= Expr Expr Type Expr
Type = Expr2 .type
Expr4 = case Type.plusProd token of

plusProd add → add(Expr2 ,Expr3 )
plusProd concat → concat(Expr2 ,Expr3 )

Expr1 .code = Expr4 .code
Expr1 .type = Expr4 .type

No other productions need to be altered. It goes without saying that most of
the modularity has been lost at this stage. In particular, the introduction of a new
target language would necessitate a new attribute equation, and the introduction
of a new overloading would require a new clause in the case expression.
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2 Attribute Grammars with Forwarding

2.1 Definition of Attribute Grammars with Forwarding

An attribute grammar with forwarding is defined as a tuple 〈G,A, S〉 where G
is a context free grammar, A specifies attributes for nonterminals in G and S
defines the attribute defining semantic functions for each production in G.

A context free grammar G is defined as a tuple 〈N,T, P, S〉 where N is a
finite set of nonterminal symbols, T is a finite set of terminal symbols, S is a
nonterminal in N (S ∈ N) called the start symbol and P ⊂ N × (N ∪ T )∗ is
finite set of productions. Each p ∈ P has the form Xp

0 ::= Xp
1 Xp

2 . . . Xp
mp

Xp
fp

where Xp
0 ∈ N is the left hand side of the production p, Xp

i ∈ N ∪ T, 1 ≤ i ≤
mp are the standard terminals and nonterminals on the right hand side of the
production p, and Xp

fp
, fp = mp + 1, is a distinguished optional nonterminal

called the forwards-to nonterminal. The left hand side nonterminal Xp
0 is the

same nonterminal as the forwards-to nonterminal Xp
fp
, if it exists. If there is no

forwarding nonterminal for p then fp = mp.
Each nonterminal is attributed with semantic values called attributes. For

a nonterminal X ∈ N , A(X) is the set of attributes which are assigned values
for X . This set is partitioned into synthesised, As(X), and inherited, Ai(X),
attributes. The set of all attributes is A =

⋃
X∈N A(X). The type of an at-

tribute a ∈ A is specified by At(a) and indicates the possible values that can
be assigned to occurrences of a. A set of base types Tb is left undefined but
typically includes integers, strings, etc. In traditional attribute grammars de-
fined by Knuth [18], At(a) ∈ Tb. In higher order attribute grammars [29,32,31]
attributes can also take on the value of syntax trees whose type is the terminal
or nonterminal symbol at the root of the tree. Thus At(a) ∈ Tb ∪N ∪ T .

In higher order attribute grammars, some of the nonterminals on the right
hand side of the production are classified as nonterminal attributes. The abstract
syntax trees rooted on these nonterminals are not created by parsing a source
text, as the standard nonterminals are, but are generated by semantic rules
associated with the production. We will require that all nonterminals classified
as nonterminal attributes are to the right of all standard nonterminals on the
right hand side of the production. Thus, we can define ntap as the index of the
first nonterminal attribute of p such that for every i ≥ ntap, X

p
i is a nonterminal

attribute and for every i < ntap, X
p
i is a standard nonterminal. In particular, the

forwards-to nonterminal is also a nonterminal attribute. If p has no nonterminal
attributes then ntap > mp. The signature of a production p, denoted σ(p),
is Xp

1 ×Xp
2 × . . .×Xp

ntap−1 → Xp
0 - the right hand side nonterminals whose trees

are not computed by semantic rules on p and the left hand side nonterminal.
The set of all signatures for all productions is Σ(P ) =

⋃
p∈P σ(p).

To assign values for nonterminal attributes it is often convenient to use
production-valued attributes. The productions passed via these attributes are
applied to the appropriate trees to produce the tree to be assigned to the non-
terminal attribute. We thus extend the possible types of attributes to allow for
production valued attributes so that At(a) ∈ Tb ∪N ∪ T ∪Σ(P ).
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For each production p = Xp
0 ::= Xp

1 Xp
2 . . . Xp

mp
Xp

fp
∈ P , we have a set

of semantic rules S(p) for computing values of synthesised attributes for Xp
0 ,

a ∈ As(X
p
0 ), inherited attributes of Xp

i , 1 ≤ i ≤ fp, a ∈ Ai(X
p
i ) and nonter-

minal attributes Xp
i , ntap ≤ i ≤ fp. The set Ae

s(p), p ∈ P is the set of synthe-
sised attributes defined explicitly by a semantic rule in S(p) for nonterminal Xp

0

and Ae
i (p,X

p
j ), p ∈ P, j ≥ 1 is the inherited attributes defined explicitly by a

semantic rule in S(p) for Xp
j . In standard (higher order) attribute grammars, it

is required that S(p) contains a semantic rule for each attribute a ∈ As(X
p
0 ) and

each attribute a ∈ Ai(X
p
i ),≤ i ≤ mp and each nonterminal attribute X

p
i , ntap ≤

i ≤ fp. That is, As(X
p
0 ) = Ae

s(p) and Ai(X
p
i ) = Ae

i (p,X
p
i ), ∀i.1 ≤ i ≤ fp. For

productions using forwarding, we only require that all nonterminal attributes
are explicitly defined by rules in S(p). As we will see, synthesised attributes
a ∈ As(X

p
0 ) which are not explicitly defined receive as their value the value

of Xp
fp
.a and inherited attributes a ∈ As(X

p
i ), 1 ≤ i ≤ fp which are not explic-

itly defined are not needed in the calculation of the synthesised attributes onXp
0 .

A definedness test verifying that this condition holds is discussed in Section 4.

2.2 Attribute Evaluation

Attribute grammars with forwarding can be evaluated directly, as described here,
or embedded into standard higher order attribute grammars and evaluated in
that framework by traditional means as described in Section 3.

Attribute evaluation proceeds as it normally does for higher order attribute
grammars with the exception of synthesised attributes not explicitly defined
by a production p (a ∈ As(X

p
0 ) \ Ae

s(p), p ∈ P ) and inherited attributes for
the forwards-to nonterminal which are not explicitly defined (a ∈ Ai(X

p
fp
) \

Ae
i (p,X

p
fp
), p ∈ P ). For synthesised attribute occurrences a on nonterminals Xp

0

defined by production p such that a ∈ As(X
p
0 ) \ Ae

s(p), that is, those for which
there is no defining semantic rule in S(p), we will use the value Xp

fp
.a. That is,

if Xp
0 is queried for its a attribute value it will return Xp

0 .a if there is a semantic
rule in S(p) defining a (a ∈ Ae

s(p)), otherwise it returns Xp
fp
.a. For inherited

attributes a not explicitly defined for Xp
fp

by p, a ∈ Ai(X
p
fp
) \ Ae

i (p,X
p
fp
) we

copy the values from Xp
0 .

The direct evaluation described here is particularly easy to implement by
encoding the attribute grammar as a lazy functional program [15,1] and forms
the basis of our prototype Intentional Programming system [30].

3 Reduction to Higher Order Attribute Grammars

Forwarding enables the decomposition of an attribute grammar into separate
aspects, which are fragments that define a group of related attributes [7,6]. Once
all the aspects are known, and a complete grammar is woven from the pieces,
forwarding can be eliminated. That is important both for the implementation
and analysis of an attribute grammar. Much earlier work on efficient evaluation
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can be used directly, and the tools for analysing attribute grammars need only be
modified to trace potential errors to the source that used forwarding. This section
is divided into three parts: first we show how production-valued attributes are
eliminated, and then we demonstrate how forwarding itself can be transformed
away. Finally we discuss how well the standard closure test, circularity test and
attribute evaluation strategies work with the reduced grammar. Some readers
may find it helpful to study the formal descriptions below alongside the concrete
example in Section 1.

3.1 Elimination of Production-Valued Attributes

As mentioned before, our technique for eliminating production-valued attributes
is very similar to the de-functionalisation of higher-order programs. That trans-
formation was first proposed and studied by Reynolds [24], see also [5]. It is a
whole-program transformation where function types are replaced by an enumer-
ation of the function abstractions in the program.

Here, we introduce an enumeration type for all production names. Next,
we replace each production-valued attribute attr with an enumeration valued
attribute attrpn generated from the names of the intended productions. Further-
more replace each reference to a production-valued attribute and its application
to trees t1, t2, . . . , tn

Xp
j .attr(t1, t2, ..., tn)

by the expression

case X p
j .attrpn of

attr p1 → p1(t1, t2, ..., tn)
attr p2 → p2(t1, t2, ..., tn)
...
attr pm → pm(t1, t2, ..., tn)

such that attr pi, 1 ≤ i ≤ m is the enumeration token value for production pi

such that σ(pi) = At(a), pi ∈ P, 1 ≤ i ≤ m. As the defunctionalisation transfor-
mation is well-known, and this is a particularly simple instance, we confine its
exposition to this brief sketch.

3.2 Elimination of Forwarding

Our starting point is an attribute grammar with forwarding, as defined in Sec-
tion 2.1. The forwarding is eliminated in two steps, with a third optional step
that is necessitated for the result to be acceptable in many attribute grammar
systems.

1. Add semantic rules to explicitly copy synthesised attribute values from the
forwarding nonterminals to the left hand side nonterminals. For each for-
warding production p ∈ P and for each attribute a ∈ As(X

p
0 ) \ Ae

s(p) add
the following semantic rule:

Xp
0a. = Xp

fp
.a
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That is, for each synthesised attribute a that is declared to annotate the
left hand side of p (a ∈ As(X

p
0 )) but is not one of the attributes explicitly

defined by p (a �∈ Ae
s(p)), add the above semantic rule to p.

2. Add semantic rules to explicitly copy inherited attribute values from the left
hand side nonterminals to the forwarding nonterminals. For each forwarding
production p ∈ P and for each attribute a ∈ Ai(X

p
fp
) \ Ae

i (p,X
p
fp
) add the

following semantic rule:
Xp

f .a = Xp
0 .a

That is, for each inherited attribute a that is declared to annotate the
forwards-to nonterminal Xp

fp
of p (a ∈ Ai(X

p
fp
)) but is not one of the at-

tributes explicitly defined by p (a �∈ Ae
i (p,X

p
fp
)), add the above semantic

reul to p.
3. Add semantic rules for undefined inherited attributes. This step is optional

and is only necessary to force the reduced higher order attribute grammar
definition to pass the standard closure tests. It does not affect the evaluation
of the attribute grammar. For each forwarding production p ∈ P and for each
attribute a ∈ Ai(X

p
j ) \ Ae

i (p,X
p
j ), 1 ≤ j ≤ mp add the following semantic

rule:
Xp

j .a = αAt(a)

where αAt(a) is any value of type At(a). That is, for each inherited at-
tribute a that is declared to annotate the nonterminal Xp

j , 1 ≤ j ≤ mp

of p (a ∈ Ai(X
p
j )) but is not one of the attributes explicitly defined by p

(a �∈ Ae
i (p,X

p
j )), add the above semantic rule to p.

Similar mechanisms for the automatic generation of copy rules first came to
our attention when studying the micro attribute grammar system produced by
Swierstra and his colleagues at Utrecht [28]. That system does however not
provide forwarding.

3.3 Closure, Circularity and Attribute Evaluation

Once the attribute grammar with forwarding has been reduced we can apply the
standard closure and circularity tests and use existing mechanisms for attribute
evaluation. We have, in fact, developed a simple prototype which uses the process
described above to reduce a grammar with forwarding to a standard higher order
attribute grammar written in SSL, the attribute grammar definition language
of the Synthesizer Generator [23]. This allows us to use this tool’s analysis tests
and attribute evaluation implementation.

Attribute grammars are typically checked for definedness in two phases. The
first phase, known as the closure test, checks that no semantic rules are missing.
For example, if somewhere in the grammar the synthesised attribute code from
a subtree of type Stmt is used, then every production with Stmt on its left hand
side must provide a semantic function for code. The second phase, known as the
circularity test, checks whether there is an input tree on which the attributes
are circularly defined. We can safely apply the circularity test to the reduced
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grammar since circularities in the original grammar will also be detected as cir-
cularities in the reduced grammar. However, there are problems with the closure
test. Although we can force the reduced grammar to pass the standard closure
test (step 3 above), it then fails to detect genuine missing definitions. Also, the
Synthesizer Generator’s strict evaluation strategy on the reduced grammar will
cause the unnecessary evaluation of unused attributes.1 The root of both prob-
lems is that a production can define values for the left hand side nonterminal
either explicitly or implicitly via forwarding.

Consider using forwarding to define a for loop in terms of the expected while
loop as defined below. Here we have used quoting and implicit anti-quoting
functions in order to specify the forwards-to construct using its concrete syntax
instead of the abstract syntax tree constructors as we’ve done before.

for : Stmt ::= id Expr Expr Stmt
Stmt1 .pp = gen for pp(id1 ,Expr1 .pp,Expr2 .pp,Stmt2 .pp)
forwardsTo parse “id1 := Expr1 ; while ( id1 ≤ Expr2) do

Stmt2 ; id1 := id1 + 1 endwhile”

Except for the pretty print attribute, the semantics of for are determined en-
tirely by forwarding. The efficiency problem can be seen by considering a strategy
which evaluates all attribute occurrences in the tree. Such a strategy would un-
necessarily compute the code attribute for the nodes in the child trees of for and
the pretty print attribute for the nodes in the forwards-to tree. In contrast, de-
mand driven evaluation would only evaluate those attribute definition functions
which are necessary.

The problems with the closure test are more subtle. Consider a break state-
ment defined as follows:

break : Stmt ::= ε
code = goto Stmt1 .gotoLabel

The inherited attribute gotoLabel is defined by the while production for its Stmt
child and other productions have semantic functions to copy this value to their
Stmt children. By using forwarding, the break statement works as expected when
it appears inside a for loop since the code attribute for for is defined by forward-
ing to a while loop construct. The for writer doesn’t need to define, or even
know about, the gotoLabel attribute and the for writer should define neither the
code nor the gotoLabel attribute. This attribute represents the type of detailed
semantic information the writer of the for construct should not need to know
about.

The subtlety arises in the case when the for production explicitly defines the
code attribute in terms of the code attribute of its children (perhaps in an attempt
to generate more efficient code than that generated by the translation into a while
loop) but doesn’t define the gotoLabel attribute for its Stmt children. Since any
break inside the for will need a gotoLabel value, this attribute should be defined
by the for production. If we evaluate the attribute grammar with forwarding
1 One can, however, specify attributes to be evaluated on demand in SSL.
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as discussed in Section 2.2, the evaluation fails when the Stmt child of the for
attempts to reference its gotoLabel value which should be, but isn’t, defined for
it by the for production and causes a compile time exception. If we reduce the
grammar as described above, step 3 adds an incorrect definition of gotoLabel and
this grammar passes the standard closure test but generates incorrect results.
Clearly, the for loop must define either both the code and gotoLabel attributes
or neither of them. Next, we describe a definedness test which can identify this
type of error.

4 The Definedness Test

As we explained above, although the standard circularity test can be applied to
the reduced grammar, the standard closure test is inaccurate. We propose that
this problem can be solved by abandoning the closure test and modifying the
circularity test, so that it encompasses both roles. It statically checks that all
required attributes are well defined. That is, they have definitions and that these
definitions are non-circular.

The standard circularity test [18] operates by computing a set of dependency
relations for each nonterminal in the grammar. A dependency relation is a prop-
erty of an individual abstract syntax tree which relates the root node’s synthe-
sised attributes to its inherited attributes. A synthesised attribute s is related
to the inherited attribute i if the computation of s depends on the value of i.
Different abstract syntax trees can have different dependency relations, even if
they are of the same nonterminal type. Therefore, the circularity test computes
for each nonterminal the set of all dependency relations that a tree of that type
might have. Since the set of possible relations is finite, there is an algorithm
which can compute them in a finite amount of time without examining every
possible tree. During the process of computing these sets, it may discover that
an abstract syntax tree exists in which the attributes are circularly defined.

Our definedness test replaces dependency relations with definedness func-
tions. A definedness function is also a property of a particular tree and has the
type Set Ai → Set As , where Ai(As) is the set of all inherited (synthesised)
attributes. The function states which synthesised attributes can be computed
on its root node if only the given set of inherited attributes is defined on the
root. Consider an example definedness function w.

– For s ∈ As, if s ∈ w(∅), then s must have a constant value, because it does
not depend on any of the inherited attributes.

– If i �∈ I, I ⊆ Ai and s ∈ w(I), s ∈ As, then s does not depend on i.
– If s �∈ w(Ai), s ∈ As, then either the semantic rule for s is missing or s
depends on a circular computation.

Definedness functions are very similar to the dependency relations except that
they operate in opposite directions; they are given a set of inherited attributes
and report which synthesised attributes can be computed. The advantage of
the definedness function is that it incorporates closure as well as circularity;



140 Eric Van Wyk et al.

for a particular tree, if the semantic function is missing for a attribute in the
tree whose value is required to compute a synthesised attribute s, then s will
not appear in the output of w for any given input. This is exactly the type of
information we need to detect the missing gotoLabel semantic function when for
explicitly defined the code attribute in the example above. A disadvantage of
the definedness function is that it does not distinguish between circularity and
closure. If s does not appear in the output of w, then this could be due to a
missing semantic rule or because s depends on a circular computation. However,
in both of these cases the grammar is ill-defined, so we do not see this as a major
drawback.

The algorithm for the definedness test is very similar to the circularity test.
The test produces a set of definedness functions for every nonterminal in the
grammar. Again, since the set of possible definedness functions is finite, our
algorithm uses the same technique as the circularity test to compute them in a
finite amount of time without needing to examine every possible tree. A more
complete description and a proof of correctness is given in a forthcoming paper
by Backhouse [2].

We must note that neither the standard circularity test nor the definedness
test catches a particular kind of non-termination error. It is possible to construct
an infinitely large abstract syntax tree by unbounded nesting of nonterminal
attributes, but no exact static test can detect this type of error.

5 Conclusion

We have introduced forwarding as a technique for the modular decomposition of
higher-order attribute grammars. The technique is orthogonal to other features
for the modular description of programming languages. Furthermore, we have
demonstrated how a whole-grammar transformation can eliminate the use of
forwarding altogether.

Production-valued attributes are convenient in conjunction with forwarding;
their use can also be transformed away. We noted the connection with defunc-
tionalization, and indeed it would be of interest to see whether the elimination
of forwarding itself can also be understood in those terms.

If so, it would lend further credence to our belief that there is much bene-
fit to be derived from the interaction between the functional programming and
attribute grammar communities. In a separate paper, one of us (Backhouse)
has shown how abstract interpretation can benefit the study of attribute gram-
mars [2]. Conversely, Correnson, Parigot and their coworkers have argued that
transformations on attribute grammars benefit functional programs [4,22].
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