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Abstract. We introduce the notion of effectoid as a way of axiomatising
the notion of “computational effect”. Guided by classical algebra, we
define several effectoids equationally and explore their relationship with
each other. We demonstrate their computational relevance by applying
them to global exceptions, partiality, continuations, and global state.

1 Introduction

In this article, we shall introduce effectoids as sublanguages that stand for limi-
tations of computational effects. The focus will be on call-by-value programming
languages, and we shall use the computational lambda-calculus (λC-calculus) as
the theoretical backbone.

Because the values of the λC-calculus are effect-free in any reasonable sense,
one might think they should form the smallest effectoid. But this would be un-
satisfactory, because values are not closed under equality. (For example, (λx.x)y
is not a value, whereas its normal form y is.) In particular, the notion of value
cannot be defined semantically. By contrast, effectoids will be closed under the
equality in every denotational model, so we could treat them as sets of mor-
phisms when required. In particular, we shall replace the notion of value by a
notion of algebraic value which yields an effectoid.

Several sets of expressions (or morphisms) that received considerable atten-
tion in the recent literature turn out to be effectoids: Thielecke defined the sets of
central, copyable, and discardable morphisms in models of continuations, captur-
ing fundamental classes of program behaviour that correspond to different uses
of control [12]. Selinger used these notions in his analysis of the duality between
call-by-value and call-by-name in the presence of continuations [11]. Dealing with
the same duality, Hasegawa and Kakutani pointed out a fundamental relation-
ship between central expressions and rigid functionals [5], which play a key rôle
in Filinski’s recursion-from-iteration construction [2]. It was soon pointed out
that those sets of expressions are interesting for arbitrary computational effects,
not only continuations [3,4]. Recently, it was discovered that typical models of
partiality (i.e. models where divergence is the only “effect”) can be characterised
by requiring every morphism to be central and “strongly copyable”1, and also

1 The notion of “strong copyability” was defined in the CTCS’99 conference version
of [1], and we shall replace that terminology by “repeatable” in this article.

M. Nielsen and U. Engberg (Eds.): Fossacs 2002, LNCS 2303, pp. 144–159, 2002.
c© Springer-Verlag Berlin Heidelberg 2002



Varieties of Effects 145

that discardable morphisms and algebraic values coincide for such models and
yield the right notion of totality [1].

All sets of expressions mentioned above, except for the set of copyable ex-
pressions, will turn out to be effectoids. Also, all those sets are given as the
solutions of equations. In algebraic geometric, sets given as solutions of (polyno-
mial) equations are called algebraic sets. In analogy, we shall call effectoids that
are given as solutions of equations algebraic effectoids.

The consideration of algebraic effectoids will lead us to notions that do not
occur in the literature mentioned above: centralisers, stabilisers, and distributive
expressions. Figure 1 presents an overview of most of the varieties that we shall
discuss. (The numbers in the diagram are for later reference.)
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Fig. 1. Varieties introduced in this article

Remark 1. All effectoids presented in this article have interpretations in pre-
monoidal categories with extra structure [10,4,3]. (In fact, several effectoids
where introduced categorically.) However, the λC-calculus, which is the inter-
nal language of those premonoidal categories with extra structure, turned out to
be the most efficient way of conveying these concepts in a computational context.

2 Preliminaries

The λC-calculus. The λC-calculus [7] has proved itself useful for reasoning
about call-by-value programs. Its syntax, typing, and axioms on the well-typed
terms are summarised in Figure 2, where b ranges over base types, and cA ranges
over constants of type A.

Following common practice, we write letxA beM inN for (λxA.N)M . We
shall often omit type annotations of variables when the type is evident or does
not matter.

A λC-theory over given base types and constants is a set T of equations
Γ � M ≡ N : A, where Γ � M : A and Γ � N : A are well-formed according to
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Types A,B ::= b | A→ B | A×B | 1
Expressions M,N ::= x | cA | λxA.M |M N | (M,N) | πiM | ()

Values V, U ::= x | cA | λxA.M | (V, U) | πiV | ()

xA ∈ Γ
Γ � x : A Γ � cA : A Γ, xA �M : B

Γ � λxA.M : A→ B

Γ �M : A→ B Γ � N : A

Γ �MN : B

Γ �M : A Γ � N : B

Γ � (M,N) : A×B
Γ �M : A1 ×A2

Γ � πiM : Ai
Γ � () : 1

letx beV inM ≡M [V/x]
λx.V x ≡ V (x �∈ FV(V ))

πi(V1, V2) ≡ Vi
(π1V, π2V ) ≡ V

V ≡ ()
letx beM inx ≡M

let y be (letx beL inM) inN ≡ letx beL in let y beM inN (x �∈ FV(N))
MN ≡ let f beM in letx beN in fx

(M,N) ≡ letx beM in let y beN in (x, y)

π1M ≡ letx beM inπix

Fig. 2. The λC-calculus

the rules in Figure 2, that contains all equations presented in Figure 2 and is a
congruence stable under weakening and permutation.

We write N [M1/x1, . . . ,Mn/xn] for the expression that results from substi-
tuting Mi for all free occurrences of xi in N simultaneously for i ∈ {1, . . . , n}
(avoiding the capture of free variables). We say that yA1

1 , . . . , yAnn � N :
B results from xA1

1 , . . . , xAnn � M : B by environment renaming if N =
M [y1/x1, . . . , yn/xn]. We shall write λ().M instead of λx1.M . If X is a set
of occurrences of a variable x in M , we write M [N/X] for the expression that
results from replacing all those occurrences with N .

λC-models and their internal language. The semantics of the λC-calculus
can be provided by λC-models. A λC-model is given by a strong monad T on a
category C with finite products and T -exponentials—that is, exponentials of the
form (TA)B . (A strong monad is a monad T together with a strength, which is a
natural transformation tA,B : A×TB ✲ T (A×B) satisfying some equations
due to Kock [6]. For a discussion of strong monads and a summary of those
equations, see [8].)
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It helps our calculations to work with the internal language of λC-models
instead of their categorical presentation. That internal language is given by the
simply-typed λ-calculus (with product types) together with a unary type con-
structor T , function types of the restricted form A → TB (instead of arbitrary
function types), and typed-indexed families of constants ηA : A → TA and
∗A,B : TA × (A → TB) → TB (written infix and without type annotations)
satisfying the equations below (where L, M , and N range over open terms):

(L ∗M) ∗N ≡ L ∗ λl.((Ml) ∗N) λx.((ηx) ∗M) ≡M M ∗ η ≡M

This internal language is essentially the “metalanguage” presented in [8].

Semantics of the λC-calculus. The categorical semantics of the λC-calculus
can be presented by a transform (−) into the metalanguage. For every base type
b, an interpretation must provide a type b, and obey the laws

A→ B = A→ TB A×B = A×B 1 = 1

For each constant cA, an interpretation must provide a closed expression Mc of
type A, and transform every expression xA1

1 , . . . , xAnn �M : B into an expression
xA1
1 , . . . , xAnn �M : TB as follows:

x = ηx λx.M = η(λx.M) MN = M ∗ λm.(N ∗ λn.mn)
cA = η(Mc) πiM = M ∗ λm.η(πim) (M,N) = M ∗ λm.(N ∗ λn.η(m,n))
() = η()

We call such a transform (−) a monadic-style transform. An interpretation of a
λC-theory is called a model if it validates the theory’s equations. This semantics
is known to be sound and complete [7]. That is, the equations induced by an
interpretation form a λC-theory (soundness), and when an equation holds in all
models of a λC-theory, then it is a theorem (completeness).

3 Algebraic Effectoids

In this section, we shall define the notion of effectoid, introduce the varieties
presented in Figure 1, show how they are related with each other, and apply
them to some models (accumulation, powerset, global exceptions, partiality).

3.1 Algebraic Values

An algebraic value M is an expression that can be substituted for the occurrences
of a formal parameter x in any procedure body N whenever M is passed as the
actual parameter. Formally, an expression Γ �M : A is defined to be an algebraic
value of a λC-theory T if every well-formed equation

Γ ′ � letx beM inN ≡ N [M/x] : B (1)

is a theorem of T whenever Γ ′ contains Γ .
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Every algebraic value M of function type is equivalent to a value, because
M ≡ letx beM inλy.xy ≡ λy.My. At other types this can be false. For ex-
ample, in λC-theories induced by computationally realistic interpretations, the
algebraic value xint � −x : int is not equivalent to a value. (This follows from
a simple inductive argument, using only that the expression is not equivalent to
a constant or a variable, and that its type is a base type different from 1.)

Importantly, if Γ �M : A and Γ, xA � L : B are algebraic values, then so is
Γ � letx beM inL : B, because

letx be (let y beM inL) inN ≡ let y beM in letx beL inN

≡ let y beM inN [L/x] ≡ N [L[M/y]/x] ≡ N [let y beM inL/x]

Definition 1. An effectoid in a λC-theory is a set of expressions Γ � M : A
which contains all algebraic values, and is closed under weakening, permutation,
equality, and the let-construct.

Evidently, effectoids are closed under arbitrary intersection, so they form a com-
plete lattice, with the algebraic values as the smallest element.

Lemma 1. An expression Γ �M : A is an algebraic value if and only if

Γ � letx beM inλ().x ≡ λ().M : 1→ A (2)

To see the right-to-left implication, assume Equation 2, and consider

letx beM inN ≡ let y be (letx beM inλ().x) inN [y()/x]
≡ let y beλ().M inN [y()/x] ≡ N [M/x]

Remark 2. Being an algebraic value is not well defined for expressions without
environment. For example, for every Γ � M : A, the weakened version Γ, x0 �
M : A is an algebraic value if 0 denotes the initial object. The same applies to
all algebraic effectoids in this article.

3.2 Centralisers and Central Expressions

Just as we can state what it means for two group elements to commute, we
can define a notion of commuting expressions for any λC-theory: expressions
Γ � M : A and ∆ � N : B where Γ and ∆ are disjoint are said to commute if
the equation below is a theorem

Γ,∆ �letx beM in let y beN in (x, y)
≡let y beN in letx beM in (x, y) : A×B (3)

If Γ and ∆ have variables in common, then Γ � M : A and ∆ � N : B are
said to commute if Γ ′ � M ′ : A and ∆′ � N ′ : B commute, where the latter
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two expressions result from environment-renaming the former such that Γ ′ and
∆′ are disjoint. (Obviously, this definition does not depend on the choice of the
renaming.)

Equation 3 holds if and only if for all expressions environments Γ ′ containing
Γ and ∆, every well-formed equation of the form

Γ ′ � letx beM in let y beN inL ≡ let y beN in letx beM inL : C (4)

is a theorem. The right-to-left implication is trivial, and the left-to-right impli-
cation follows immediately from applying λ(x, y).L to both sides of Equation 3.

In group theory, the centraliser Cen(S) of a set S of group elements is defined
to be the set of group elements that commute with every element of S. We
define the centraliser of a set S of λC-expressions in exactly the same way. Just
as group-theoretic centralisers form a subgroup, centralisers in λC-theories form
an effectoid. (The closure under let follows from the associativity of let and
Equation 4.)

In analogy to group theory, we define the centre of a λC-theory to be the cen-
traliser of the set of all expressions. (This notion of centre for computational mod-
els was first introduced, categorically and without defining centralisers, in [10],
and used in [12,3,11,4,5].)

Example 1. The following model links centralisers in λC-theories with centralis-
ers from classical algebra: for a monoid (M, ·, 1), consider the accumulation
monad on Set:

TA = A×M η = λx.(x, 1) (x,m) ∗ fA→B×M = (f1x,m · f2x)

where f1 : A → B and f2 : A → M are the evident components of f . Let TM
be the λC-theory whose base types are sets, whose constants are of the form
f : A → B where f is a function from A to TB, and whose equations are
induced by the interpretation given by A = A and f = f . Then two expressions
xA
′ � M : A and yB

′ � N : B of TM commute if and only if (M)2x and (N)2y
commute inM for all x ∈ A′ and y ∈ B′.

3.3 Stabilisers and Discardable Expressions

For a group G acting on a set X, the stabiliser (a.k.a. isotropic group) Stab(x)
of an element x ∈ X is the set of group elements g that stabilise x—that is, for
which g(x) = x. In particular, for the operation g(h) = g ◦ h of G on itself, the
stabiliser of g is the set of all h such that g◦h = h. In a λC-theory, an expression
Γ �M : A is defined to stabilise an expression ∆ � N : B (with ∆ disjoint from
Γ ) if the equation

Γ,∆ �M ;N ≡ N : B (5)

is a theorem where M ;N stands for letx beM inN where x is fresh. As in the
previous section, we use environment-renaming to extend the definition to the
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case where Γ and ∆ overlap. Just as group-theoretic stabilisers are subgroups,
stabilisers in λC-theories are effectoids.

Of particular interest are the expressions that stabilise the empty tuple �
() : 1. Such expressions are called discardable. (The notion of discardability was
introduced categorically in [12] and consequently used in [3,11,4,1]. The notion
of stabiliser is a contribution of this article.)

Lemma 2. If an expression stabilises a value V , then it stabilises every expres-
sion N . (In particular, the discardable expressions are the smallest stabiliser.)

This follows immediately from applying λx.N to both sides of the equation
M ;V ≡ V .

In our accumulation-monad example TM, xA
′ �M : A stabilises yB

′ � N : B
if and only if (M)2x stabilises (N)2y for all x ∈ A′ and y ∈ B′. Therefore,
xA
′ � M : A is discardable in TM if and only if (M)2x ≡ 1 for every x ∈ A′.

This already implies that xA
′ �M : A is an algebraic value.

Example 2. Writing PA for the powerset of A, the powerset monad is given by

TA = PA η = λx.{x} X ∗ fA→PB =
⋃

x∈X
fx

Define TPow to be the evident λC-theory induced by the powerset monad. Essen-
tially, expressions of TPow denote relations. While the algebraic values of TPow
are the expressions that denote total functions, the discardable expressions are
those that denote total relations—that is, relations R such that ∀x∃y : xRy. All
expressions are central.

3.4 Copyable Expressions

One notion that has found some attention in the literature is that of copyable
expressions [12,11,3,4]. An expression Γ � M : A of a λC-theory T is called
copyable if

Γ � letx beM in (x, x) ≡ (M,M) : A×A (6)

In our accumulation-monad example, an expression xA
′ � M : A is copyable if

and only if (M)2x is an idempotent in M for every x ∈ A′. In our powerset
example, an expression is copyable if and only if the denoted relation is a partial
function.

Among all varieties in this article, the copyable expressions form the only
one which is not an effectoid. For the copyable expressions of TM where closed
under let, then the idempotents of M would be closed under composition.
But there are obviously counterexamples—for example, letM be the monoid of
endofunctions on a set with at least three elements.
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3.5 Distributive Expressions

Next we introduce a notion which has not been studied in the literature so far.
An expression Γ �M : A is said to distribute over an expression ∆,xA � N : B
with ∆ disjoint from Γ if

Γ,∆ �letx beM in let y beN in (x, y)
≡let y be (letx beM inN) in letx beM in (x, y) : A×B (7)

Using environment-renaming, we extend this definition to the case where Γ and
∆ overlap. An expression Γ � M : A is called distributive if it distributes over
all ∆,xA � N : B.

In our accumulation-monad example, an expression xA
′ �M : A distributes

over yB
′
, xA

′ � N : B if and only if for all x ∈ A′ and y ∈ B′

(M)2x · (N)2(y, x) ≡ (M)2x · (N)2(y, x) · (M)2x

Lemma 3. An expression Γ � M : A is distributive if and only if every well-
formed equation

Γ ′ � letx beM inN ≡ letx beM inN [M/X] : B

holds whenever Γ ′ contains Γ and X is any set of free occurrences of x in N
which are outside the scope of any λ-binder.

The distributive expressions form an effectoid in every λC-theory. To see the clo-
sure under the let-construct, let Γ �M1 : A and Γ, yA �M2 : B be distributive,
let X be a set of free occurrences of x in N , and consider

letx be (let y beM1 inM2) inN
≡ let y beM1 in letx beM2 inN

≡ let y beM1 in letx beM2 inN [M2/X] (Lemma 3)
≡ let y beM1 in letx beM2 inN [let y′ be y inM2[y′/y]/X]
≡ let y beM1 in letx beM2 inN [let y′ beM1 inM2[y′/y]/X] (Lemma 3)
≡ letx be (let y beM1 inM2) inN [let y beM1 inM2/X]

Proposition 1. An expression Γ �M : A is copyable if and only if it distributes
over xA � x : A.

Proposition 2. Expressions that are central and copyable are distributive.
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To see this, suppose that M is central and copyable, and consider

letx beM in let y beN in (x, y)
≡ let (x, x′) be (let z beM in (z, z)) in let y beN in (x′, y)
≡ let (x, x′) be (M,M) in let y beN in (x′, y) (M copyable)
≡ letx beM in letx′ beM in let y beN in (x′, y)
≡ letx beM in let y beN in letx′ beM in (x′, y) (M central)
≡ let y be (letx beM inN) in letx beM in (x, y)

Proposition 3. Expressions that are distributive and discardable are central.

To see this, suppose that M is distributive and discardable and x �∈ FV(N), and
consider

letx beM in let y beN in (x, y)
≡ let y be (M ;N) in letx beM in (x, y) (M distributive)
≡ let y beN in letx beM in (x, y) (Lemma 2)

3.6 Repeatable Expressions

In this section, we introduce a very useful effectoid which has no evident coun-
terparts in classical algebra. An expression Γ � M : A of a λC-theory is called
repeatable if every well-formed equation

Γ ′ � letx beM inN ≡ letx beM inN [M/X] : B (8)

is a theorem whenever Γ ′ contains Γ and X is any set of free occurrences of x
in N . Lemma 3 immediately implies the following result:

Proposition 4. Every repeatable expression is distributive.

However, the converse is far from true: In our accumulation-monad example TM,
the repeatable expressions turn out to coincide with the algebraic values—that
is, expressions that produce the unit of the monoidM.

The repeatable expressions form an effectoid in every λC-theory. (Proving
the closure under the let-construct works like for distributivity.)

Proposition 5. An expression Γ �M : A is repeatable if and only if

Γ � letx beM in (x, λ().x) ≡ (M,λ().M) : A× (1→ A) (9)

To see the right-to-left implication, let S be the set of free occurrences of x in
N , let X ⊆ S, and consider

letx beM inN

≡ let (y, f) be (letx beM in (x, λ().x)) inN [f()/X, y/S −X]
≡ let (y, f) be (M,λ().M) inN [f()/X, y/S −X] (Equation 9)
≡ letx beM inN [M/X]
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Proposition 6. An expression is an algebraic value if and only if it is discard-
able and repeatable.

The left-to-right implication is trivial. For the other implication, suppose that
M is discardable and repeatable, and consider

letx beM inN ≡M ; (N [M/x]) (M repeatable)
≡ N [M/x] (Lemma 2)

Propositions 4 and 6 finish our validation of Figure 1. In our relations example,
the repeatable expressions turn out to be the (expressions denoting) partial
functions—that is, they coincide with the copyable expressions. The only non-
empty areas in Figure 1 are area 4 (partial functions that are not total), area 6
(total relations that are not functions), algebraic values (total functions), and
area 5 (relations that fit into none of the other categories). By contrast, in
our accumulation-monad example TM, we only have areas 1, 2, 5, 10, and the
algebraic values. In fact, for each of those areas, there is a monoid M such for
which TM has an inhabitant of the area. (The proof is left as a challenge to the
reader.)

Repeatability and the lifting equation. In [1], equational lifting monads are
defined as commutative monads that satisfy the lifting equation

T 〈ηA, idA〉 = tTA,A ◦ 〈idTA, idTA〉 (10)

It is proved that a large class of models of partial computation, dominical lifting
monads, are equational lifting monads2. Also, it is easy to check that exceptions
monads (i.e. the well-known monads of the form TA = A+E) satisfy the lifting
equation. (But in contrast to equational lifting monads, they are not generally
commutative.) Due to this scope of the lifting equation, the following proposition
is most useful:

Proposition 7. Let T be a λC-theory induced by an interpretation (−) in a λC-
model with monad T . If the λC-model satisfies the lifting equation, then every
expression of T is repeatable. If (−) is full on types, the converse holds.

Proof. In the metalanguage, the lifting equation is represented by

yTA � y ∗ λx.η(ηx, x) ≡ y ∗ λx.η(y, x) : T (TA×A) (11)

This implies, for all M ,

M ∗ λx.η(x, ηx) ≡M ∗ λx.η(x,M) (12)

which is Equation 9 sent through (−). So the lifting equation implies that every
expression of T is repeatable. For the converse, suppose that (−) is full on
objects, and that every expression of T is repeatable. Letting M = f() for some
variable f : 1→ A′ with A′ = A, we have M ≡ f(). Using this M in Equation 12
and substituting λ().x for f implies Equation 11. ��
2 In fact, the point of [1] is to prove a more interesting statement in the opposite
direction, which states that every equational lifting monad can in a certain sense be
fully embedded into a dominical one.
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4 Effectoids for Continuations

An analysis of algebraic values3, centrality, copyability, and discardability for
continuations was undertaken by Hayo Thielecke [12]. The novelty in this section
is the analysis of distributivity and repeatability, as well as the consideration of
global state.

4.1 Continuations per Se

A continuations monad for response type R (for which exponentials of the form
A→ R must exist) is given by the data below:

TA = (A→ R)→ R η = λx.λk.kx M ∗N = λk.M(λm.Nmk)

Instantiating the monadic-style transform with these data yields the “Plotkin
CPS-transform”. This situation allows the definition of a unary type constructor
and operators for control flow manipulation:

A cont callcc : (A cont→ A)→ A throw : A cont→ A→ B

A cont = A→ R callcc = η(λf.λk.f k k) throw = η(λl.η(λx.λk.l x))

(These operators are available in SML of New Jersey via the “SMLofNj.Cont”
module4). Before we prove the main results of this section (Propositions 8 and 9),
we gather some facts. We shall use the equation

callcc(λk.throw kM) ≡M : A (13)

which can easily be checked with the CPS transform. Also, we define

force = λx.callcc(throwx) : A cont cont→ A

[M ] = callcc(λk.throw(force k)M) : A cont cont

(where M is any expression of type A). We have forceh ≡ λk.hk in the case
where h is a variable, and [M ] ≡ λk.kM . With these CPS-transforms we can
easily check that force[M ] ≡ M and [forceh] ≡ h. These two equations to-
gether and the fact that [M ] is an algebraic value imply immediately that the
following two maps are mutually inverse:

ϕ = λh.λ().forceh : A cont cont→ (1→ A)
ψ = λf.[f()] : (1→ A)→ A cont cont

The following result is due to Hayo Thielecke (Remark 4.4.2 in [12]) and has
recently been used and restated several times (e.g. in [11] and [5]).
3 under the name of “thunkable morphisms”
4 Of course, the real implementation is not a simple CPS transform.
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Proposition 8. In the λC-theory of a continuations monad, central expressions
are algebraic values.

Proof. This is true because an expression that commutes with jumps must be
effect free. Formally, if M is a central expression of type A, then it commutes
with expressions of the form ζ h, where h is a variable, and ζ is defined as
λh.throw(forceh). We have

ζ hN ≡ throwh[N ] (14)

because the CPS transforms of both sides are equal to λk.hN . Now consider

letx beM in [x]
≡ callcc(λh.throwh(letx beM in [x])) (Equation 13)
≡ callcc(λh.letx beM in throwh[x]) (throwh is an alg. value)
≡ callcc(λh.letx beM in ζ h x) (Equation 14)
≡ callcc(λh.ζ hM) (M is central)
≡ callcc(λh.throwh[M ]) (Equation 14)
≡ [M ] (Equation 13)

Applying ϕ to both sides yields Equation 2. ��

Proposition 9. In the λC-theory of a continuations monad, distributive expres-
sions are repeatable.

Proof. Let ζ ′ = λx.λh.throw(callcc(λl.throwh(x, l))). For every distributive
expression M , we have

ζ ′ h(x,N) ≡ throwh(x, [N ]) (15)

because the CPS transforms of both sides are λk.h(x,N). Now consider

(M, [M ])
≡ callcc(λh.throwh(letx beM in (x, [M ]))) (Equation 13)
≡ callcc(λh.letx beM in throwh(x, [M ])) (throwh is an alg. value)
≡ callcc(λh.letx beM in ζ ′ xh(x,M)) (Equation 15)
≡ callcc(λh.letx beM in ζ ′ xh(x, x)) (Lemma 3)
≡ callcc(λh.letx beM in throwh(x, [x])) (Equation 15)
≡ callcc(λh.throwh(letx beM in (x, [x]))) (throwh is an alg. value)
≡ letx beM in (x, [x]) (Equation 13)

Applying λ(x, k).(x, ϕk) to both sides yields Equation 9. ��
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throw l x

discardable

deref

assign x

argfc

algebraic values = central

repeatable = distributive

copyable

Fig. 3. Effectoids for continuations

Propositions 8 and 9 reduce Figure 1 to Figure 3. (The four expressions inhab-
iting the areas of Figure 3 will be discussed soon.)

To prove that an expression is inside an algebraic effectoid, we plug it into the
effectoid’s equations and check them with the CPS-transform. To prove that an
expression is outside an algebraic effectoid, we plug it into one of the effectoid’s
equations and refute the equation using a separator. That is, letting M and N
be the two sides of the equation, we find a context C[−] such that C[M ] and
C[N ] are programs of ground type that are reduced to different values5. While
separators are computationally most convincing, they require a ground type with
at least two elements (which we shall call int). So Figure 3 is to be interpreted
as follows: whenever an expression is inside an area, it is in the corresponding
effectoid for every continuations monad (or in the case of assign and deref, for
every continuations monad with the required extra structure, which is introduced
in the next section). Whenever an expression is outside an area, then it is outside
the corresponding effectoid, provided that the model allows a realistic range of
observations. (This includes all models for which there are at least two different
expressions of type int and there exists a mono from int into R.)

That M = throw l x (where l and x are variables) is repeatable follows im-
mediately from plugging M = λk.l x into Equation 12. To see that throw l x is
not discardable, it suffices to prove that throw l 42 is not discardable. This can
be checked by using the separator C[−] = callcc(λl.letx be − in 0) and ob-
serving that C[let y be throw l 42 in ()] evaluates to 42 whereas C[()] evaluates
to 0.

The expression argfc (“argument of first call”), and the following explana-
tion why it is discardable but not copyable, are taken from [13]. We define

argfc = callcc(λk.λx.throw k(λy.x)) : A→ A

Roughly speaking, when argfc is called with an argument x, it turns into
the constant function returning x. That argfc is discardable is easily checked
by sending the equation let f be argfc in () ≡ () through the CPS trans-
form. To see that argfc is not copyable, let M1 = let f be argfc in (f, f) and
5 A separator is more than a distinguisher, because a distinguisher does not require
both sides to terminate.
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M2 = (argfc, argfc). Then C[−] = let (f1, f2) be − in (f11; f22) is a separator,
because C[M1] evaluates to 1, whereas C[M2] evaluates to 2. Intuitively, during
the evaluation of C[M1], evaluating f11 causes backtracking to the binding of f ,
rebinding f (and therefore f1 and f2) to the constant function that returns 1.
By contrast, during the evaluation of C[M2], evaluating f11 causes backtracking
to the binding of f1, rebinding f1 to the constant function that returns 1, and f2
to argfc. Next, the evaluation of f22 causes backtracking to the binding of f2,
rebinding f2 to the constant function that returns 2. For a formal, operational
discussion of these separators, please see [13].

4.2 Adding Global State

Next, we shall add a global reference of type S to the λC-theory of a continu-
ations monad TA = RR

(−)
. Formally, we apply the “side-effect” monad trans-

former 〈T �→ (T (− × S))S〉 to the continuations monad, resulting in a monad
TSA = (RR

A×S
)S . Because (RR

A×S
)S is isomorphic to (RS)(R

S)B , we still have a
continuations monad, with response object RS rather than R. This means that
callcc and throw can still be implemented by the CPS-transform (with the
former response type R replaced by S → R). Moreover, we can define operators
assign : S → 1 and deref : S as follows:

assign = η(λxS .λk1→S→R.λsS .k()x) deref = λkS→S→R.λsS .kss

From this definition, we can see that assignx forgets the state s and replaces
it by x, and deref returns the state (the first s in kss) and also passes s on
unchanged (the second s in kss).

Amazingly, these two operators for state provide exactly the witnesses that we
need to complete Figure 3. In particular, they drive a wedge between copyability
and distributivity. That assignx is copyable and that deref is copyable and
discardable can be easily checked with the CPS transform. To see that deref
is not repeatable, consider let C[−] = assign 0; let f be − in (assign 1; f())
and observe that C[λ().deref] evaluates to 1 whereas C[letx be deref inλ().x]
evaluates to 0. To see that assignx is not repeatable, consider let C[−] =
let f be − in (assign 0; f(); deref) and observe that C[λ().assign 1] evaluates
to 1 whereas C[letx be assign 1 inλ().x] evaluates to 0. Showing that assignx
is not discardable is trivial. This completes the discussion of Figure 3.

5 Conclusions

Comparison with traditional effects. The notion of effectoid is definable
in the λC-calculus without extra structure (i.e. without operators like assign,
raise, etc.). The same is true for the specific effectoids we introduced in this
article. By contrast, traditional effects depend on extra structure. For example,
an effect can be a set of exceptions that might be raised, or—in “side-effect
analysis”—a set of actions of the form derefπ, assignπ, or newπ, where π is
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a “program point” [9]. So our effectoids apply to a wider range of models than
traditional effects.

At a first glance, our effectoids seem to be less expressive than some tradi-
tional effects (e.g. those that involve program points). However, centralisers and
stabilisers may turn out to be very expressive in their own way, because they
allow to specify a set of expressions to commute with or stabilise. (E.g. if n is a
global variable that cannot be aliased, then Cen(derefn) should exclude exactly
those expressions that can change n and return.)

The notion of effectoids (as opposed to the specific effectoids defined in this
article) covers some traditional effects: for example, the set of expressions that
only raise exceptions in a given set is obviously an effectoid.

Algebraic effectoids turn the traditional approach to effects upside down: in
the traditional approach, we define concrete effects first, and may study their
equational aspects later. For algebraic effectoids, we define equational properties
first and may study later how they constrain concrete effects. Crucially, the
equational characterisation allows to use an algebraic effectoid without knowing
its concrete meaning.
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