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Abstract. This paper presents automatic generation of use cases as an alterna-
tive both to speeding up requirements elicitation and formalizing the obtained use
cases to approach the requirements reuse. We propose a framework for require-
ments documentation as use cases that might be included in coarse grain reusable
structures. In order to effectively integrate the software requirements in reusable
components, adequate models promoting reusability are required. Hence, we ac-
complish the requirement elicitation through a process using Workflows and Petri
nets. This process gives an analytical treatment to system requirements which are
stored in a repository.
Keywords: Requirement engineering, use cases, workflow, Petri nets, require-
ments reuse.

1 Introduction

Requirements engineering triggers the software development process by producing a
document containing both the necessities of stakeholders and a characterization of the
software that is going to be created in a specific domain [17,13]. However, it seems that
the activities of requirements engineering take too much time, thus postponing the code
production. Therefore, nowadays, research is aimed at developing methods and tools to
adequately document the system requirements as well as to shorten the requirements
process.

Requirements reuse is an approach which can contribute to improve and quicken the
requirements engineering process by systematically using existing requirements docu-
ments. Although it has received little attention [21,13], reusing early software products
and processes can improve the requirements engineering process [ 5,20]. If the develop-
ers can benefit from requirements reuse then it is possible both to increase the produc-
tivity and to reduce the error probability in requirements specifications.

Besides its potential benefits in software engineering, requirements reuse faces as
principal trade-off its difficulties to enact, to process and hence to reuse, the require-
ments. The documentation of the requirements is originally oriented to being a means
of communication between users and analysts. For this reason, it is represented with
diverse notations and formats. This diversity implies the need for particular actions to
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analyze requirements documents and their organization in a repository of reusable ar-
tifacts [5]. The systematic requirements reuse requires two specific actions. First, to
define the adequate way to model and store specifications. Second, to define a process
for selecting and adapting the reusable requirements.

In the Research Group in Reuse and Object Orientation (in Spanish, GIRO), at the
University of Valladolid, Spain, we have proposed a component model called mecano
[8]. A mecano is a coarse grain reusable element consisting of a set of fine grain el-
ements which correspond to distinct levels of abstraction and are associated by inter-
level and intra-level relations. We shall integrate the requirements documentation as
an essential part of the mecano structure. System requirements documents give a char-
acterization of the software component to be applied to a specific domain. Thus this
documentation should cover representation and comprehension of the environment and
the essential functions of the software product [19] in a traceable format and without
ambiguity [10]. Software requirements based on natural language give us poor results in
requirements specification because of its shortages, such as ambiguity, poor scalability
and traceability [14]. So, we aim to establish a method to formally define requirements
that promote reusability at the requirement level of abstraction.

In this paper we supply an approach to model system requirements and to store them
as reusable elements (assets) on the analysis level. We look for an adequate represen-
tation for requirements facilitating comprehension, retrieval, and adaptation. From the
initial system functionality based on user job we collect system requirements as sce-
narios for interaction between the users and the system. These scenarios are expressed
as use cases looking on a syntactic and semantic formalism. The starting point is an
administrative workflow [9] represented as a Case Graph (CG) that leads to the auto-
matic generation of use cases. These use cases are stored in a repository of reusable
components.

The rest of the paper is arranged as follows: Section 2 presents a reference frame-
work for the generation of use cases and assets. In section 3 we specify the modeling
process applying workflows as starting point to automate software requirements elic-
itation with use cases. Section 4 relates our work to other known studies. Section 5
concludes the paper and focuses on future work.

2 A General Framework for Use Cases Generation

When defining software requirements, users and analysts are related to each other
within a complex communication scheme. Users are not usually sure enough about
the required functionality. Therefore, system analysts or requirement engineers should
correctly specify functionality through an iterative process [ 19]. A strong approach
is needed to support user-analyst interaction and to make sure user requirements are
discovered and expressed in a correct, precise, unambiguous, verifiable, traceable and
modifiable form.

In addition to the difficulties of correctly obtaining user requirements from system
analysis, it is accepted that the best performance of software reuse is associated with
an early comprehension of system functionality. Hence, it is strongly recommended to
have a process model for requirement elicitation as presented in Figure 1. This model is
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situated in the discrete event systems, according to Silva [18], because we are interested
in the evolution of the states regardless of when the system reaches a particular state, or
how long it remains in that state. In other words, requirement modeling is based on state
sequences within the system. As a result, we use Petri nets in both process modeling and
system requirements modeling to supply formal support for verification of the system,
as has been proved in [6,14].

Administrative
Workflow

Generate CGCG

Generate BUC

BUC

Generate UC

UC

Approval

Get User´s
Approval

BUC Approval

Approval

Get User´s
Approval

UC Approval

Generate
Assets

Assets
Mecano

Management

User Level

Software
Engineer Level

Requirements
Engineering

Analysis
Assets

Fig. 1. General framework, arranged as a Petri net, for deriving analysis assets from a
workflow

The process model includes two levels in requirement elicitation: The user level,
and the software engineer level. The former has an external view (black box) of the
system. The latter has an internal view (white box) of the system. Inside the Software
Engineer Level one finds the Requirement Engineer View, which acts as an interface
between user and engineer levels. In this way, we have arranged a general frame for the
normalization of requirements elicitation.

The initial point is an administrative workflow containing the information flow. This
workflow reflects the information changing from its entry into the system until it is
outputted with the corresponding modifications. Workflows have been used to express
business logic as recommended by the Workflow Management Coalition (WfMC) [ 22].
We obtain a preliminary description from the user job by a specific requirements doc-
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umentation technique known as Document-Task diagram (DTd) [ 4]. When rigorously
applied, the DTd satisfies WfMC standards indicating which tasks have to be performed
in what order to transform the relevant information. In this way, our proposed method-
ology gives us a preliminary definition of system requirements.

The Requirements Engineering job consists of modeling the system functionality as
a CG which is described in Section 3. From this CG the requirement engineer gets a set
of business use cases (BUC Graphs), which require user approval to generate a set of use
cases (UC Graphs). Again, use cases must be approved by the user in order to be used to
generate assets. Although this is not shown, validation and verification activities gives
the possibility of correcting the initial version of the CG, and if required, the process can
ask for a new release of the CG and, consequently, new BUC Graphs and UC Graphs.

The verified CG can be used by the software engineer to obtain assets as templates
of use cases, as in Durán [7]. These assets are sent to a mecano manager to iterate with
the repository, and to produce the corresponding mecanos for storing in a repository.
Obtaining use cases as templates, as well as the iteration process with the repository, is
beyond the scope of this paper.

3 Problem Modeling

3.1 The Case Graph Definition

A DTd is a particular system documentation technique which models business logic.
By adding information, the DTd becomes a CG which specifies the tasks to be done in
a given order. Both tasks and documents, joined by arcs, are the foundation of a CG.

Definition 1. Case Graph: A Case Graph is a four-tuple (D,T,A,E), where:

– D is a finite set of documents
– T is a finite set of tasks, (D ∩ T = ∅), T p = {T(AA), T(AO), T(OA), T(OO)} is a

disjointed partition of T. That is, in a Case Graph there are four types of tasks.
– A is a set of arcs, A ⊆ ((D × T ) ∪ (T × D))
– E : D∪T → Σ+ is a label function which relates a distinct label to each document

and to each task. Σ+ is a finite set of labels.

Tasks are the transition points between documents, and there are four different kinds
of tasks (AA, OA, AO, OO). Each task contains a list of internal sub-tasks. Graphical
icons of tasks are shown in Figure 2.A. We have chosen a representation showing re-
quirements for a task to be executed in an organizational context. To execute a task, both
required inputs (input documents) and pre-conditions must be met. Carrying out a task
leads to both output documents and holding the post-condition. Sometimes a temporal
event is also required in order to execute a task. Additionally, each task has an asso-
ciated operator who is directly responsible and in charge of the same task. Graphical
representation of tasks is shown in Figure 2.B.

The different kinds of tasks have distinctive behavior. The AA type requires all its
input documents to be enabled, and its triggering leads to all its output documents. The
OA is enabled with one of its input documents, and its triggering leads to all its output
documents. The AO requires all of its input documents to be enabled, and its triggering
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leads to one of its output documents. The OO type is enabled with one of its input
documents, and its triggering leads to one of its output documents.

We have represented the four basic types of routing in CGs. These types of routing
are shown in Figure 2.C. Sequential actions and parallel actions may be described us-
ing AA tasks. Nevertheless, conditional actions and iterative actions require different
arrangements of AA, OA, AO, and OO tasks.

To formally treat the resulting CGs, we need to standardize the behavior of the tasks.
The Petri nets, which have been applied to express the workflow semantics [ 6], can help
us to supply formal support for the analysis of CGs. In this way, the tasks are visualized
as Petri net transitions. Documents are represented by Petri net places. The Petri net
marking represents the sequence of states. As OA, AO, and OO tasks become AA tasks,
the CG becomes a Petri net. Figure 2.D graphically shows this transformation of OA,
AO and OO tasks into AA tasks, and next in algorithm 2 we give its formal expression.

AA OA AO OO

2.A. The four kind of tasks for CG modeling

#. Name of Task - Kind of Task - Subtasks

Preconditions

Postconditions

Time Event

Responsible

2.B. Graphical representation for tasks in CG

AA AA

AA AA

AA

AA

AA

AO

AO

OA

2.C. The four kind of basic routing for CG modeling

Parallel
Actions

Sequential
Action

Conditional
Action

Iterative
Action

OA

AO

OO AA AA AA AA

AA AA

AA AA

2.D. Standardization for OA, AO and OO tasks in CG

Fig. 2. Representation for tasks, transformations and action flows for Case Graph mod-
eling

To illustrate how to apply our approach for deriving use cases, we have taken a
DTd from a real case of a Spanish Electrical Enterprise. It is represented as a CG as
shown in Figure 3. We take four general processes - Request Process, Resolution Pro-
cess, Execution Process, and Refund Process - taking place in two organizational units
represented by two different internal actors - Control Centre (CC), and Local Operator
(Op)- which are responsible for the actions. There are seven external actors: Particular
Customer, Area Agent, Requester, Security Committee, Affected Customer, Enterprise
Organizations, and Tax Organizations.
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Fig. 3. Graphs of Cases for four processes in two departments of an organization

3.2 BUC Graphs and UC Graphs

Because the Case Graph represents system functionality, it might indicate what the
interaction between users and the system is. Jacobson [12] differentiates two types of
interaction as use cases: Business Use Cases (BUC), and Use Cases (UC). According to
our framework, BUC and UC are generated from a CG as BUC Graphs and UC Graphs,
respectively.

Both BUC Graphs and UC Graphs reflect possible sequences of interaction between
actors and system. A BUC Graph corresponds to an external actor. A UC Graph corre-
sponds to an internal actor. Both BUC Graphs and UC Graphs contain paths in which
the action flow can follow.

Definition 2. Path: Let G= (D,T,A,E) be a Case Graph, N = {ni, i = 1..n, such that
ni ∈ D ∪ T }. The R path from a node n1 to nk is a sequence (n1, n2, .., nk) such that
(nj , nj+1) ∈ A, ∀j ∈ {1..k − 1}.

This definition means that a path is any logical sequence of action in the current
system. This sequence is formed by documents and tasks that should be joined by arcs
inside the CG. For example, in Figure 3, the sequence D3,T2,D6,T3,D10 is a path.

Tasks are the transition points in documents. Each task has two associated sets of
documents, previous documents and post documents. Formally, these two sets are de-
fined as follows:
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Definition 3. Previous Documents and Post Documents: Let G= (D,T,A,E) be a Case
Graph, the set of previous documents of task t (t ∈ T ) is defined by ot = {di ∈ D |
∃x ∈ A, x connects di to t}. Analogously, the set of post documents of task t (t ∈ T ) is
defined by to = {di ∈ D | ∃x ∈ A, x connects t to di}. Similarly, the notations op and
po mean the set of previous transitions and post transitions of place p (p ∈ P ).

To assure the consistency of the BUC Graphs and the UC Graphs, we should guar-
antee that all nodes are achievable. It is a strongly connected Case Graph when a path
exists that connects any two points in the graph.

Definition 4. Strongly connected: Let G= (D,T,A,E) be a Case Graph. G is strongly
connected if ∀x ∈ N, ∀y ∈ N, N = {ni, i = 1..n, such that ni ∈ D ∪ T }, then a path
exists leading from x to y.

According to Cockburn [3], use cases describe how users use the system. Our Case
Graph should describe possible interaction flows between users and the system. Conse-
quently, the term Case Sequence needs to be defined.

Definition 5. Case Sequence: Let G= (D,T,A,E) be a Case Graph. G is a Case Se-
quence (CS) if:

1. The set D has two special documents i and o. The place i is a source place, oi = ∅.
The place o is a sink place, oo = ∅.

2. If a task t’ is added to T, t’ connects the documents o and i (i.e. {o,t’,i} is the path
from o to i), then the resulting Case Graph is strongly connected.

3. No symmetric associations exist between documents and tasks. In other words,
∀ti ∈ T, oti ∩ to

i = ∅ is satisfied.

This definition of Case Sequence is coincident with the Workflow Net definition
given by Van der Aalst [6], specifically regarding conditions 1 and 2. We have added the
condition 3 in order to avoid potential deadlocks and/or livelocks in our Case Sequence
definition. Adopting this Workflow Net definition we are sufficiently sure about the
soundness property of a procedure modeled by a Case Sequence.

We can now define a BUC Graph and a UC Graph. A BUC Graph is a Case Graph
that contains all the possible case sequences for an input document from an external
actor. A UC Graph is a CG containing all possible case sequences for an internal actor
inside a BUC Graph.

Definition 6. BUC Graph: Let G= (D,T,A,E) be a Case Graph. G is a BUC Graph if it
contains all the possible case sequences for an input document from an external actor.

Definition 7. UC Graph: Let G= (D,T,A,E) be a Case Graph. G is an UC Graph if:

1. It contains case sequences which correspond to an internal actor inside a BUC
Graph.

2. All the tasks of G are of the AA kind. That is, T = T(AA) so (T(AO) ∪ T(OO) ∪
T(OA)) = ∅ is satisfied.
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Twelve BUC Graphs have been identified in our case study, one for each input doc-
ument, and are presented in Figure 4. This figure also represents 10 UC Graphs (the
different shadowed areas). The CG contains a set of BUC i Graphs. Each BUCi Graph
is a set of UCi Graphs. Both a BUCi Graph and a UCi Graph consist of internal struc-
tures and external interfaces. The shared documents and the shared tasks are considered
part of the external interfaces. The internal structures are the same as in a Case Graph,
according to definitions 1 to 7.
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Fig. 4. Case Sequences for four processes in two departments of an organization

3.3 The Modular Case Graph

Since the same document could be directed to, or directed from, distinct tasks, the
documents and tasks can be shared by different sequences of case. This means that
different sequences of case can be intersected.

While BUC Graphs can share documents and tasks, UC Graphs can only share doc-
uments. Each UC Graph indicates the way the information is handled through different
case sequences inside a BUC Graph. Because information is handled by tasks, these are
not sharable between UC Graphs.

Shared documents acting as connection points between UC Graphs leads the Case
Graph to be viewed as a modular structure.

Definition 8. Modular Case Graph: A Modular Case Graph (MCG) is a set {Gi =
(Di, Ti, Ai, Ei), i = 1 . . . n} where:
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– Each Gi is a UC Graph
– All Ti must be disjointed for every Gi

– The same label must not be used for documents and tasks, thus, ∀G i, ∀Gj ,¬∃d ∈
Di,¬∃t ∈ Tj such that Ei(d) = Ej(t)

A process must be carried out on the CG in order to obtain the MCG. This process
is composed of factorization of the GC and refining and transforming tasks. It leads to
the discovery of common blocks across the BUC Graphs.

Factorization of the CG. The factorization leads to the specification of the common
blocks of CG. Identifying these common blocks leads to the factorized expression of
the CG without changing the particular structure of each BUC Graph. Consequently,
only strictly necessary abstractions of use cases can be done to specify the system func-
tionality.

Algorithm 1. Factorization of the CG: Let M= (D,T,A,E) be a Case Graph.

1. Let S be {CSd, d ∈ D such that CSd is a Case Sequence corresponding to the
external document d }.

2. For every CSd ∈ S

(a) Let Tcsd
become

⋃n
i=1 Tcsdi

such that Tcsdi
is the task set of the CS corre-

sponding to document d and internal actor i

3. Let T∼
csdi

be recursively defined as follows:

(a) T∼
csd1

= Tcsd1

(b) ∀i = 2..n, T∼
csdi

= Tcsdi
\⋃i−1

j=1 T∼
csdj

4. Let every T∼
csdi

and the associated documents, arcs and labels be a preliminary UC
Graph

This algorithm allows a factorization of CG to be obtained. Every CS belonging to
a specific CG is divided into fragments. These fragments are formed by the T ∼

csdi
and

the associated documents, arcs and labels. Each fragment is taken as a preliminary UC
Graph because each of these blocks may contain different kinds of tasks. In this way a
factorized form of the initial CG is obtained.

Following our example, we obtain the common blocks to different BUC Graphs
which are shown in Figure 4. It can be BUC Graphs without common blocks. For exam-
ple, the ones corresponding to D24, D29, and D32 documents. The other BUC Graphs
have common structures. The factorized form of the CG is shown in Figure 5.

The distinct blocks from Figure 5 are only previous to every UC Graph because each
of these blocks has to be transformed until it contains only AA tasks. The transformation
process from OA, AO, and OO tasks to AA tasks implies refining tasks combining only
AA tasks. We propose this job be done automatically. Modular Case Graphs (MCG)
will result from this transformation. We must point out that the model of Figure 5 is
only a base for the MCG.
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Fig. 5. Factorization of BUC Graphs for the processes of the organization

Refining and Transforming Tasks. Use cases can be extracted automatically from
a factorized Case Graph. Hence we propose an algorithmic process for refining and
transforming the tasks if required. This process should lead to the expression of factor-
ized Case Graphs by combining UC Graphs. This must take the kind, precondition, and
post condition of each task into account. Moreover, it is necessary to know how many
documents are being input, and how many are being output in each task.

Algorithm 2. Refining and Transforming Tasks: Let M= (D,T,A,E) be a Case Graph.

1. For every t ∈ T do
(a) Case of t ∈ T(OA)

i. Let t become {t(AA)s} such that s = 1, 2, . . . , j; where j = |ot|, t(AA)s is
an AA task

ii. Every d ∈ ot is connected to a distinct t(AA)s such that ot(AA)s = 1
iii. Every d ∈ to is connected to each t(AA)s such that t(AA)s

o = |to|
iv. Let T = T \{t}⋃{t(AA)s}

(b) Case of t ∈ T(AO)

i. Let t become {T(AA)s} such that s = 1, 2, . . . , j; where j = |to|, t(AA)s is
an AA task

ii. Every d ∈ ot is connected to each t(AA)s such that ot(AA)s = |ot|
iii. Every d ∈ to is connected to a distinct t(AA)s such that t(AA)s

o = 1
iv. Let T = T \{t}⋃{t(AA)s}
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(c) Case of t ∈ T(OO)

i. Let t become {T(AA)s} such that s = 1, 2, . . . , j; where j = |ot| × |to|,
t(AA)s is an AA task

ii. Every d ∈ ot is connected to |to| distinct t(AA)s such that ot(AA)s = 1
iii. Every d ∈ to is connected to |ot| distinct t(AA)s such that t(AA)s

o = 1 and
∀t(AA)s1, t(AA)s2 if ot(AA)s1 = ot(AA)s2 and t(AA)s1

o = t(AA)s2
o then

t(AA)s1 = t(AA)s2

iv. Let T = T \{t}⋃{t(AA)s}
2. Take every t ∈ T as a chain of generic tasks

This algorithm 2 allows the OA, AO, and OO tasks to be transformed following the
pattern given in Figure 2.D. The behaviour of the algorithm depends on the type of task
to be refined or transformed. The OA tasks are refined to as many sub-tasks as there
are inputs, each input is connected to one sub-task, each sub-task is also connected to
all outputs. The AO tasks are refined to as many sub-tasks as there are outputs, each
input is connected to all sub-tasks, each sub-task is also connected to one output. The
OO tasks are refined to as many sub-tasks as the product of the amount of inputs and
outputs, each input is connected to as many sub-tasks as outputs in the mother task,
each sub-task is also connected to an output from every input document.

In this way, the refining and transforming process for each task leads to a Case
Graph expressed in terms of the AA standard. If all blocks are expressed with only AA
tasks then the definition of a UC Graph is satisfied. If each UC Graph corresponds to a
Petri net then the entire Modular Cases Graph is also a Petri net. On the other hand, the
validation and verification activities lead to the adjustment of the tasks if required.

The algorithm 2 establish also each task is formed by a chain of generic sub-tasks.
If we consider each task as a chain of sub-tasks then we refine each one as this sequence
of sub-tasks. Once again, following the example, let us consider data from table 1. We
consider each task to be formed by the chain: Verify, Process, and Generate.

Table 1. Data for refining the T1 and T2 tasks of the Case Graph of an organization

Task Name Details Kind of Task Responsible

T1: Fill out
unloading form

Verification of precondition
Processing data and establish postcondition
Generate D3 or D4

OO Control Centre

T2: Receive
unloading form

Verification of precondition
Processing data and establish postcondition
Generate D6

OA Control Centre

These generic sub-tasks allow the set of steps for use cases to be obtained. The
Verification sub-task is directly related to precondition and to inputs. The Process sub-
task is in charge of establishing the post-condition. The Generate sub-task is in charge
of producing the output of the mother task.



290 Oscar López et al.

3.4 Obtaining Use Cases

As established in definition 6, the BUCs are obtained as graphs containing all case
sequences. An external actor inputting a document starts each sequence. Then, in defi-
nition 7, we afirm that obtaining the use cases requires transforming OA, AO, and OO
tasks to AA tasks. In algorithms 1 and 2 we establish how to process the CG to obtain
an MCG. Finally, having refined and transformed tasks, use cases may be derived and
expressed as a template. To do this, we can follow the marking of the Petri net. Some
standards for naming intermediate documents must be defined. It is also necessary to
decide upon the general naming of use cases to write them as a template, as proposed
by Durán [7].

GRAPH C

GRAPH G

GRAPH A

GRAPH B

GRAPH E

GRAPH F

GRAPH I

GRAPH J

GRAPH H

GRAPH D
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Fig. 6. Relationship between UC Graphs and actors, and refining of the A and B Case
Graphs

Figure 6.A shows the relationships between the distinct UC Graphs and the internal
actors. Figure 6.B shows A and B cases containing T2 and T3 transformed tasks ac-
cording to what was established in algorithm 2. One can see that figure 6.B contains all
different flows of sequential actions corresponding to the A Graph and B Graph, after
refined the T1 and T2 tasks.

Use cases, written as templates, or expressed as a Petri net, have to be sent to a
Mecano Manager to finally become adjust assets under the corresponding semantic of
the repository. In this way, it is possible to conform the mecanos for reuse, as established
by Garcı́a [8]. On the other hand, expressing use cases under Petri net semantics should
lead to establishing a way to organize the requirements of a domain. The definition of
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these mechanisms both to organize the requirements and write them as templates are
being addressed in our future work.

4 Related Work

Few studies have looked at reusing software at requirements level. Besides it is known
that requirements from domains and similar tasks are more likely to show similarities
than other software elements [21], the requirements reuse has received relatively little
attention. A tool and methodological support is necessary to reuse the software require-
ments [1]. Complex structures to accomplish the requirements related to design and
code have been proposed [8]. Nevertheless, to integrate requirements assets and design
assets and code assets, it is necessary to find out how to adequately model them. Re-
quirements are modeled with a diversity of techniques so we aimed at normalization to
ensure requirements reusability when stored in a repository. The normalized require-
ments when related to assets of different levels of abstraction provide a large grain
interface to increase the abstraction level of the reuse process.

Software requirements have to be treated adequately inside a reuse strategy. Re-
quirements have to be previously classified to be retrieved when developers send their
queries. Classification and retrieval of general assets have been approached with
schemes and methods based on text, ontology or facets. However, requirements con-
tain knowledge from both the domain and the development process. The complexity of
this knowledge forces the application of sophisticated techniques for requirements clas-
sification and retrieval [5]. To efficiently answer the queries by selecting, composing or
generating elements, a robust strategy based on software requirements reuse is required.

Common classification and retrieval techniques show limited utility in representing
requirements for reuse [5]. Some different alternatives based on knowledge represen-
tation [15] and analogical reasoning [16] to reuse the requirements from a knowledge
base have been proposed. These techniques place emphasis on the semantics of re-
quirements documents and it demands artificial intelligence applications to acquire and
manage the encoded knowledge in requirements documentation. Other techniques are
based on meta-models [17], evolutionary development [2] and formal methods [23] all
of which emphasize the process for development and maintenance of the reusable re-
quirements. Cybulski [5] has proposed a set of techniques based on structural properties
of documents and tasks emphasizing the way to enact and use the requirements in the
life cycle of requirements engineering.

Scenarios approaches like use cases (UC) and business use cases (BUC) [12,11] are
helpful and widely accepted in requirements elicitation. They offer several advantages
in overcoming natural language shortcomings. Particularly, the UC approach solves
scalability and traceability shortcomings, and it supplies facilities for description. Nev-
ertheless, according to Lee, Cha and Kwon [14], the UC approach does not correct
natural language ambiguity. We also believe that use cases do not supply facilities for
organizing software requirements to software development with reuse.
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5 Conclusions and Future Work

To integrate system requirements in complex reuse structures, adequate models to pro-
mote requirements reusability are required. In the present paper we have proposed a
method to automatically obtain analysis assets as use cases from an administrative
workflow. We have shown that use cases can be generated from a workflow modeling
the information flow in a business domain.

We have applied an elicitation process of system requirements through a Case Graph
and a Petri net. The established process leads to formalized analysis assets taking part
in a reusable component called mecano. With formalized functionality we are in a posi-
tion to support different analysis to systematically investigate the component behaviour.
Furthermore, from sets of use cases we hope to establish ways to organize the informa-
tion about system requirements.

Proposed CG is an unambiguous alternative to model business dynamics with lit-
tle information. The CG represent activity flows by a control scheme formalizing the
requirements elicitation process and accomplishing scalability and traceability. How-
ever, this CG based approach should be proven and validated in the definition of system
requirements. We expected their functionality, representing a domain and founded on
Petri net theory, will be applicable for obtaining good performance in managing the
requirements information.

Our middle term objective is to integrate different requirements notations within
requirements reuse strategy. We have found the Petri net approach useful to obtain a
precise expression of system requirements from workflow. However, classical Petri nets
have shown such net explosion in system modeling as we look for a more compact
representation. We are working on a high level Petri net based approach, specifically
coloured Petri nets, to represent analysis assets. Our next job will also supply:

– A tool to automatically generate use cases from Case Graphs.
– A model to support organization of system requirements in a domain.

Acknowledgments

This work is sponsored by the DOLMEN Project within CICYT-TIC2000-1673-C06-
05, Ministry of Technology and Science, Spain. Oscar López wishes to thank the Span-
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