Hamming Weight Attacks on Cryptographic
Hardware — Breaking Masking Defense*

Marcin Gomutkiewicz! and Mirostaw Kutytowski!+2

L Cryptology Centre, Poznaii University
2 Institute of Mathematics, Wroctaw University of Technology
ul. Wybrzeze Wyspianskiego 27, 50-370 Wroclaw, Poland

Abstract. It is believed that masking is an effective countermeasure
against power analysis attacks: before a certain operation involving a key
is performed in a cryptographic chip, the input to this operation is com-
bined with a random value. This has to prevent leaking information since
the input to the operation is random.

We show that this belief might be wrong. We present a Hamming weight
attack on an addition operation. It works with random inputs to the
addition circuit, hence masking even helps in the case when we cannot
control the plaintext. It can be applied to any round of the encryption.
Even with moderate accuracy of measuring power consumption it de-
termines explicitly subkey bits. The attack combines the classical power
analysis (over Hamming weight) with the strategy of the saturation at-
tack performed using a random sample.

We conclude that implementing addition in cryptographic devices must
be done very carefully as it might leak secret keys used for encryption. In
particular, the simple key schedule of certain algorithms (such as IDEA
and Twofish) combined with the usage of addition might be a serious
danger.

Keywords: cryptographic hardware, side channel cryptanalysis, Ham-
ming weight, power analysis

1 Introduction

Symmetric encryption algorithms are often used to protect data stored in inse-
cure locations such as hard disks, archive copies, and so on. The key used for this
purpose is stored inside a cryptographic device and should not leave the device
in an unencrypted form during its lifetime. The device must offer reasonable
protection against retrieving the key, since security cannot be based on phys-
ical security of the device. For this reason, investigating cryptanalytic attacks
against such devices has significant importance.

The threats for devices considered are not confined to such classical “math-
ematical” methods as differential or linear cryptanalysis, not less important are
other methods taking into account not only plaintexts and ciphertexts, but also

* This research was initiated when the second author visited University of Mannheim

D. Gollmann et al. (Eds.): ESORICS 2002, LNCS 2502, pp. 90-103, 2002.
© Springer-Verlag Berlin Heidelberg 2002



Hamming Weight Attacks on Cryptographic Hardware 91

any sources of information due to physical nature of computation. Particularly
dangerous might be information sources that are overlooked during designing of
the algorithm or those that emerge at the time an algorithm is implemented.

Cryptanalysis of cryptographic algorithms based on such side channel infor-
mation was initiated a few years ago. In the meantime it became a recognized
and extremely dangerous line of attacks.

Timing attack. Execution time of encryption may leak information on the data
involved. It has been first observed for asymmetric ciphers [11] — the operations
such as modular exponentiation are optimized in order to reduce the computa-
tion time (which is a problem in this case). However, computation time becomes
strongly dependent on data involved and in this way may leak information on
the key. In the case of a symmetric ciphers timing attack may also be relevant,
as shown in the example of non careful implementation of IDEA [10].

Power analysis attack. The second side channel source of information on
computations inside cryptographic device is power consumption [12]. It depends
very much on the operations performed and the data manipulated inside the
device.

For technical reasons, we cannot measure consumption occurring at a chosen
place in the circuit (although it is possible to do similar measurements for elec-
tromagnetic radiation [3]). We can measure only global consumption and only
up to some extend. However, the power consumption can be sampled over the
time providing information on different stages of computation separately.

Simple power analysis (SPA) takes the data on the global power consumption
of the device during different moments of the computation. A more sophisticated
method is differential power analysis (DPA) [12]. In that case, one considers
the power consumption data and some other data computed, for instance, for
all candidate subkeys that may occur at some point of the computation. The
idea is that for the right subkey, power consumption and the data computed for
the subkey should be somehow statistically related. On the other hand, for the
wrong key relation between these data should be purely random. In this way,
one hopes to retrieve information on the local keys despite the fact that only
global information on power consumption is available.

Hamming attack. Some authors [10] indicate that for certain hardware tech-
nologies there is a strong correlation between the number of bits set to one
and power consumption. Based on this phenomenon, they propose a Hamming-
weight attack on DES-chips (and similar ciphers) with the aim to derive a secret
key stored inside the device. The attack is potentially quite dangerous for block
ciphers such that small portions of a key act independently on small portions of
data — just like in the case of DES and its S-boxes.

It is required for the attack to determine the total Hamming weights of
the output of the Feistel function of DES during the last round in a series of
encryptions. This weight consists of weight of the output of an S-Box S we
are attacking and the output of the remaining S-boxes. For finding the key one
guesses the subkey bits which go into the XOR gate immediately before S. Then
it is possible to compute the (hypothetical) outputs of S for the ciphertexts



92 Marcin Gomulkiewicz and Mirostaw Kutylowski

at hand. If the subkey bits were guessed correctly, then there is a statistical
correlation between the weights of the computed outputs of S and the Hamming
weights measured. For a wrong guess, there is no such a correlation. This is
a way to determine which guess is correct and thereby to derive the key bits.
This attack cannot be applied as it is for non-Feistel ciphers. Also operations
performed on larger data blocks increase the complexity of an attack significantly.

Saturation attack. Somewhat related to this paper is saturation attack,
which was applied to such ciphers as Square [5], Crypton [17], Rijndael [6] and
Twofish [13]. Tt can be used if a part, say U, of an encryption circuit performs
a (key dependent) permutation on blocks of bits of a fixed length, say m. The
general idea is that if we input each possible bit string of length m into U exactly
once, then each bit string of length m occurs as an output exactly once. The
order in which these outputs appear depends on an unknown key, but the set of
values is known.

The idea of a saturation attack is that “global” behaviour of encryption
algorithm of some part is key independent, even if “local” behaviour (that is,
for a single input) is key dependent. This is used to “get through” U. However,
a little bit different strategy can be applied: since “global” behaviour does not
depend on particular input, it may depend on the key only. In this way it may
leak some information on the key involved.

Masking. Some of the attacks mentioned rely on specific properties of certain
operations. The methods such as timing attack, SPA, DPA and Hamming attack
explore the property that certain parameters of an operation depend heavily on
input/output data. Having found a specific situation we may conclude on data
involved in the operation. A part of this data might be the key bits.

In order to prevent such attacks two techniques have been introduced. The
first one proposes to “split” or “duplicate” all intermediate results [9, 2, 3]. How-
ever, this method has large memory or time overhead. The second much more
efficient method, called masking, “blinds” input data to arithmetic and boolean
operations [14, 4, 7]. The idea is to combine the input with a random value, then
to perform an operation with the key, and finally extract the random factor. For
instance, adding subkey k to an intermediate result a can be implemented by
the following operations:

choose r at random

z=a+r
z=z+k
Z2=2z-7T

Note that in the above procedure subkey k is added to a random number.
This prevents the attacks mentioned. Similarly, one may mask bitwise XOR
and multiplication operations. It is also possible to mask together addition and
XOR [7], even if algebraically these operations are remote to each other.



Hamming Weight Attacks on Cryptographic Hardware 93

1.1 New Hamming Weight Attack

We present a Hamming weight attack on addition operation where one operand
is a subkey. In this way we derive efficiently most significant bits of the subkey.
The attack has the following features:

— complexity of the attack depends mainly on the size of the words added, for
the ciphers with 16-bit operations and simple key schedule (like IDEA) the
attack reveals the whole main key; when key schedule is not reversible, then
the attack reduces key space significantly,

— accuracy of measuring Hamming weight need not to be high, even poor
preciseness suffices,

— it is irrelevant when the addition operation is performed, the attack does not
use input and output data for the analysis,

— the data entering addition with the subkey may be masked, it does not
prevent the analysis; moreover, it even helps to since the data to be added
to the subkey should be fairly random: so in the situation when it is not
possible to encrypt a random input, masking helps to get useful side-channel
information,

— the attack computes directly subkey bits.

The side-channel information used for the attack is the Hamming weight of
the sequence of carry bits. Please note: apart from Hamming weight of inputs and
outputs, we also consider Hamming weight of internal data. If that weight can be
measured in some way (even with a quite large error), then we are done. It does
not disturb, if this weight is measured together with some other data like weight
of input and output of addition, of the subkey, or any of these quantities. For the
sake of clarity of exposition we describe the simplest case, in which addition is
done with the school method. However, it follows from our considerations that
the Hamming weight of a small number of operands existing in the addition
circuit may be treated as an error of measurement and thereby our attack works
in the same way.

Even if Hamming weight attacks seem at the moment to be more theoretical
than practical, one has to be very careful when implementing addition in cryp-
tographic devices. For instance, resetting registers holding the carry bits to zero
before addition might help to use the standard power analysis devices: in this
case power consumption due to putting the correct values of carry bits is closely
related to the number of bit values changed, that is to the Hamming weight of
the sequence of carry bits.

On top of that, although our attack is aimed to addition, it is probably not
impossible to mount similar attack on e.g. (modular) multiplication. Multiplica-
tion is of course much more complicated operation, and finding and proving the
closed formula similar to the one we prove for addiction seems very hard at the
moment. Nevertheless, it is another possible threat for the hardware implemen-
tation of several block ciphers.



94 Marcin Gomulkiewicz and Mirostaw Kutylowski

2 Properties of Addition

We consider addition of n-bits numbers modulo 2" with the carry bit for posi-
tion n thrown away. One of the operands will be the subkey to be derived, while
the other one a random n-bit number.

We analyse the Hamming weight of numbers that occur during addition. We
assume that addition is performed according to the school method. The effects
specific to particular architectures of addition circuits are postponed to further
research.

2.1 Expected Value of Hamming Weight

We adopt the following notation convention: random variables are denoted with
capital letters, and their realisations with small letters. We make an exception
for K - an unknown but fixed key.

First let us consider the total number of the ones that occur when we add
a fixed key K to (chosen uniformly from {0, 1,...,2" —1}) number a. Note that
we do not care about the value of a: we only want it to be chosen uniformly, and
we need not know either input a or output K + a. If internal data are masked
(as protection against power analysis), then uniform distribution is guaranteed
by masking. If the device does not use masking we should use randomly chosen
inputs (e.g. perform a chosen-plaintext attack).

Let |z| denote the Hamming weight of number . We consider the ones that
occur while a is being added to (fixed) K. These ones fall into four categories: the
ones occurring in K itself, the ones occurring in a, the ones occurring in K + a
and in the carry bits. Let ¢ = ¢(K,a) denote the number of carry-bits with the
value 1. So the Hamming weight corresponding to adding a and K equals:

w = |K|+a| + K +a| + (K, a).
In terms of random variables we have:
W =|K|+|A|+|K+ Al + C(K),

where C' = C(K) is a random variable whose distribution depends on K alone:
C realises as ¢ = ¢(K, a) which is a function of two arguments, one (K) fixed, and
the other chosen at random (from a known distribution). Let E [ X | denote the
expected value of X. Since a is chosen uniformly from the set of all n-bit strings,
we expect its Hamming weight to be close to § and E[[A|] = &. Similarly,
Hamming weight of K + a is supposed to be close to § and E[|K + A|] = 3.
Since expected value of a sum is a sum of expected values (even for dependent

variables), we have:
E[W|=|K|+43+5+E[CK)]=|K|+E[C(K)]+n.

E [W] depends on the unknown key K only, so we shall denote it as a function
of K: ¢(K). Basically, an attack could look as follows:



Hamming Weight Attacks on Cryptographic Hardware 95

1. Collect a large pool of Hamming weight data corresponding to addition to
the unknown key K. Compute average value @(K).

2. For any K’ compute the theoretical values of o(K") and compare with $(K).
If |p(K') — @(K)| is large, reject K'.

Of course, such an attack would be not very practical. The attack we present
is much simpler. We do not have to execute the second step: we derive certain bits
of K directly from @(K). Obviously, the key point is to determine the relation
between C(K) and the (sub)key used.

2.2 Formula for Expected Hamming Weight of Carry Bits
In this subsection we prove the following key lemma.

Lemma 1. Let K = (kp—1,...,ko) be a n-bit string. Let C = C(K) denote the
number of carry bits set to 1 that occur during computation of K + a mod 2"
with the school method, where a is chosen uniformly at random from the set of
all n-bit strings. Then

E[C(K)]:Tiki—T*”J(. (1)
i=0

Proof. Let A = (ap—1,...,a0). Let ¢; denote the ith carry bit generated while
adding K to A. Obviously, ¢ = 0 (there is no carry at the beginning), and ¢;
depends only on kg and ag while for ¢ > 0 the bit ¢; depends on a; 1, k;_1
and ¢;—1. This dependence complicates computation of E[C(K)].

In order to count the number of carry bits set to 1 we consider a,_1, ..., ag
as independent random variables with values 0,1 and uniform distribution. Let
P [ X'] denote probability of an event X. For ¢ = 1 we have:

P[Clz()] = P[ko-ﬁ-aogl] = 1—%-/@’0,
P[Clzl] = P[k0+a0>1] = %k‘o
For i > 1 we may easily derive that
Ple;=0|cic1=0]= Ple1+kici+ai-1 <1|c¢i—1=0]
= Plhi+a1<1]= 1-1 k1,
Ple;=0|cic1=1]= Pl +kici+ai-1 <1|c1=1]
= Plkii+ai1<0]= -1 k1,
P[Ci =1 | Ci1 ZO] = P[ci_1+ki_1+ai_1 > 1 | Ci—1 ZO]
= P[ki,1+(li,1 > 1]: %'kifl,
P[ci:1|ci_1:1]= P[Ci_l‘i‘ki_l—f—ai_l>1|Ci_1=1]

= P[ki,1+ai,1>0]: %4‘%'1@;1.



96 Marcin Gomulkiewicz and Mirostaw Kutylowski

One may treat the random variables ¢y, cs,... as a non-homogeneous Markov
chain where transition probabilities depend on the values of ko, ki,...,k,_1.
For each i we consider vector P; = [1 — p;,p;] where p; stands for P [¢;] = 1.
Then
P1:[1—%~k0, %~k0],
and for i > 1 ) )
11—k Lk,
2 i 2 i
Pi=Fi1 11 1,1
32 ki1 gt gkia
We get

l—pi=1—=pi—1) - (L= 3 ki1) +pi-1- (3 — 5 - ki-1)
=1—1% (pi-1+ki—1)

and so
pi=35-(pi1+kic1) . (2)
By equality (2) we get easily
pi=g5kia+5 (kia+3-(..(k1+3ko)...))). (3)

Since ¢; is a random variable with values 0,1, we have E[¢;] = p;. Then, by
linearity of expectation,

n—1

B[Te]=2n

+%(kn,2+%())
=ko(3+i+. )+t (B+i+. )+

thn-3 (3 + 1)+ kn2(3)
=ko(l-go=1)+ .-t hnoa(l—3)+ ko1 (1-1) .

So we see that

n—1 n—1
E ZC]' :Zkif2lin'K.
i=1 i=0
This concludes the proof of Lemma 1. O

We note that the expected value E [C(K)] depends on K in a very nice way
— the bits of K influence separate bites of E [ C(K)] (except the most significant
part of E[C(K)]).



Hamming Weight Attacks on Cryptographic Hardware 97

2.3 Deviations from Expected Value on Random Inputs

The expected value ¢(K) may be experimentally determined as a mean value
of a series of random experiments. Now it is crucial to determine how close this
approximation is.

Lemma 2. With probability at least 1 — n x 6.33 x 107°, the observed value C
does not deviate from its expectation in N experiments more than 2n - v N.

Proof. Now we consider N stochastically independent experiments in which
a random number is added modulo 2" to the same (sub)key K. In each ex-
periment some carry bits are set, e.g. like this (n = 16):

Ci5| C14| C13| C12| C11| C10| C9| €C8| C7| Cg| C5| C4| C3| C2| C1] Co
Exp.1/1]0]0]0|1[0]0]0|O]1]1|1(01|0]O0
Exp.2/ 000} 1|1 1]1{1(0j1}j1(0(0f1|1]0
Exp.3/1|1]0]0|0|1]0|1]0j1]0|0[1(0|0]O0

|EXp.N|O|O|O|1|1|1”|.0|O|O|O|1|1|O|O|1|0|
(co =0)

We shall think of columns separately, e.g. column ¢ represents outcomes of
independent experiments which yield result 1 with (some) probability p; and 0
with probability 1 — p;. Variation of one such experiment is p; - (1 — p;). We
sum up the elements in the column, let a random variable X; denote this sum.
Clearly, E[ X;] = N - p;. We shall estimate the probability of large deviations
from this expected value.

If p; € {0,1}, then we always get the expected value. If p; ¢ {0,1}, by Central
Limit Theorem, X; ~ N(u,0?), where y = Np; and 0 = \/Np;(1 — p;), and
N(u,0?) denotes normal distribution with expectation p and variation o2. Since
the maximum of function p — p(1 —p) is in p = % and equals i, we see that

o < 1/%. For a normal distribution the probability that observation deviates

from expectation by more than 4¢ is about 6.33 - 1075, Therefore with the
probability of at least 1 — 6.33 - 1075 :

E[X;]-2VN < X; < E[X;]+2VN
for every i € {1,2,...,n — 1}. By summing up n these inequalities we get
E[C]-2nV/N <C<E[C]+2nVN.

(since ¢g = 0, we could sum (n — 1) inequalities only; we sum n to simplify
further calculations a bit)

This event occurs with probability at least 1 —nx 6.33 x 10~° (more precisely:
at least 1 — (n — 1) x 6.33 x 10~°). This concludes the proof of Lemma 2. O

For n = 16 mentioned probability equals about 0.99898, for n = 32 about
0.99797.



98 Marcin Gomulkiewicz and Mirostaw Kutylowski

3 Deriving Subkeys

3.1 Ideal Case

As we have shown above, the expected value of Hamming weight in N experi-
ments equals

Non+N-30 kit N (Tl ki — 27" K)
N on4 2N (X k-2 K. (4)

The values N and n are known, K = (ky,—1 ...k1ko) is sought. For a moment let
us assume that N = 2", the Hamming weights are measured exactly, and each
input number occurs exactly once (just like in saturation attack). Let  be the
total Hamming weight measured. Then:

x=2"n+2-2"> ki—K).
1=1

Since K < 2",
" x—2"-n
Z ki = ’V gn+1 -‘ (5)

and on
K= <%> mod 27 . (6)

As we can see, it would be possible to compute directly key K from z using
information gathered in our experiment.

3.2 Taking Deviations into Account

Of course, the likelihood of an ideal situation considered above is rather small.
We will get N - |K| ones (belonging to K), but we will not get exactly N - n/2
ones before and after addition, nor exactly N- (3.7, k; —2'7"K) carry bits. On
top of all, we have to consider measurement errors. Nevertheless, we shall see
that it is still possible to gather significant information about the key.

Let us assume we want to find some information about n-bit key and can
make N = 2™ additions. We expect about 2™ - n/2 ones in the input (and the
same amount of ones in the output) of the adding circuit. We shall think of
input bits as of 2™ - n independent random variables (say, X;) with uniform
distribution on {0,1}. Then E[X;] = 1 and Var[X;] = 1. By Central Limit
Theorem we may say that:

Z:l:21 XZ ~ N(‘LL, 02)

2
Where,u:2m-%andg2:(Ji.gm.n) —om=2_



Hamming Weight Attacks on Cryptographic Hardware 99

It is known that with probability close to 1 (that is at least 1—6.33-107%) the
distance between the actual value and expectation of a normal random variable
is not greater than 4¢. In our case, 40 = 4 - (\/ 2m=2. n) = 2m/2+1 . /n. The

same calculations are valid for the output ones.

In the previous subsection we have shown that the total number C of carry
bits falls into the interval

E[C]-2n-2"/2 E[C] +2n-2m/2}

with the probability of at least 1 —n - 6.33 - 1075,

Finally, there are errors due to measurement inaccuracies. We assume that
error ¢; in experiment ¢ is a random variable with the values in the interval
[—u, u] uniformly distributed. Then E[e;] = 0 and Var [g;] = %—2 The values
of u depend on the equipment available, but for n = 16 it is sound to assume
for instance that u < 2 (error of magnitude 12.5%). By Central Limit Theorem

gm
_4.om/2. Y < 5i<4.2m/2.i
SR

with the probability of at least 1 — 6.33 - 1075,

Together, with the probability of at least 1 — (n +2)-6.33 - 107" all kinds of
deviations from the expected value sum up to a value not exceeding

Q.Qm/2+1.\/ﬁ+2n.2m/2+4.2m/2.%:2m/2+1 (2\/ﬁ+n+2.i)

V3

We have to compare the above value with the expected value of the Hamming
weight (4):

n
2" 2" (Y k-2 K).
i=1
In the last expression we are interested in bit positions m —1,m —2,...,m —n
representing the key K . On the other hand, the deviations from the expected
value and measurement errors influence the positions up to m/2+1+log(2y/n+
n+2- %) For a very large m we can obviously read all key bits. However, we
have to balance the number of experiments N and gaining key bits. In the next
subsection we discuss some practically relevant settings of parameters.

3.3 Examples

Below we put concrete parameters for N, n and v and check how many key bits
we may gain from the experiment.

We describe separately three kinds of deviations from the expected value:
error 1— deviations from the expected Hamming weight of carry bits, error 2—



100 Marcin Gomulkiewicz and Mirostaw Kutylowski

deviations from the expected value of the total Hamming weight of the inputs and
outputs, error 3— deviations due to measurement errors. Total error denotes the
estimated value of the largest deviations that may occur. Signal level 2° means
that 7 is the first bit position corresponding to the key K in the expression for the
expected value of the total Hamming weight (we mean that the least significant
bit of a binary number has position 0).

The following table describes the situation for n = 16 (the subkey length is
like for IDEA) and u =~ 22-5:

N | error 1| error2| error3| total| signal| key bits

level level level €rror level found
216 ~ 213 ~ 212 < 29‘2 Lu| < 214 21 3
218 ~ 214 ~ 213 < 210.2 cul < 215 23 4
22() ~ 215 ~ 214 < 211‘2 cul < 216 25 5
222 ~ 216 ~ 215 < 212.2 cul < 217 27 6
224 ~ 217 ~ 216 < 213‘2 cul < 218 29 7
226 ~ 218 ~ 217 < 214.2 cul < 219 211 8

For n = 32 and u =~ 235 we get:

N | error1| error2| error3 | total| signal | key bits
level level level error level found

216 ~ 214 ~ 212,5 < 29‘2 Lu| < 215 2715 2
220 ~ 216 ~ 214.5 < 211.2 cul < 217 2—11 4
224 ~ 218 ~ 216.5 < 213.2 cul < 219 2—7 6
228 ~ 220 ~ 218.5 < 215‘2 cul < 221 273 8
232 ~ 222 ~ 220.5 < 217.2 cul < 223 21 10
236 ~ 224 ~ 222,5 < 219‘2 cul < 225 25 12
240 ~ 226 ~ 224.5 < 221.2 cul < 227 29 14
244 ~ 228 ~ 226,5 < 223‘2 cul < 229 213 16

It is quite astonishing that measurement accuracy w might be quite poor,
but we are still able to find a significant number of key bits.

4 Vulnerability of Popular Algorithms

4.1 IDEA

IDEA encryption algorithm uses 18 subkeys of length 16 for addition. The key
schedule is so simple that the subkey bits are directly the bits of the main key.

If our aim is to break completely the main key, we should find at least 4
(preferably 5) bits per subkey — that would yield 72 or 90 bits of the main key.
Given that we could find the remaining bits of the main key by an exhaustive
search (at most 2°¢ or 238 trials). By inspecting the tables in the previous section
we see that we need about 220 experiments per subkey, and the error in measuring
Hamming weight should not exceed some 12%. Note that subkey bits are exactly
the bits of the main key.



Hamming Weight Attacks on Cryptographic Hardware 101

4.2 Twofish

Twofish uses two 32-bit subkeys in each of its 16 rounds for addition. The key
schedule, although not as simple as in IDEA, is still reversible. It can be easily
shown that to find the main key it suffices:

128-bit key: 4 subkeys used for addition during the first two rounds and about
8 - 28 very simple operations,

192-bit key: 6 subkeys used for addition during the first three rounds and
about 8 - 26 very simple operations,

256-bit key: 8 subkeys used for addition during the first four rounds and about
8 - 224 very simple operations.

As we know, finding more than 16 bit per 32-bit long subkey is rather in-
feasible; however, for breaking 128-bit main key we do not require more. We
find 16 most important bits of 4 keys, and guess the rest. Then we reverse the
key schedule, and test the keys. Of course, we should begin our guessing from
value suggested by the procedure: if we have measured x;, 1 < i < 4 ones dur-

ing 2™ additions, then we should start with K; = (—%) mod 232 (see

equation 5), and then increase and decrease guessed keys by 1; also note, that

. L 9mM 4 . . . .
expression {%ﬂﬂ—‘ (see equation 6) gives us an approximation of K;’s Ham-

ming weight; keys with Hamming weights "much” different than those may be
checked later. In worst case we will have to check 264 possibilities. Since an ex-
haustive search of 264 queries is possible, we are able to recover the whole main
key. The total number of operations required is in the range of 264. This is not
few, but compared with the claimed 128-bit security it is very attractive.

Complete breaking 192 and 256-bit keys are not practically possible: on aver-
age it would require 2% or 2127 attempts (note, that reversing of the key schedule
is also more tedious). However, it is still a great improvement over the exhaustive
search in the set of 2192 or 2256 keys.

4.3 MARS

MARS encryption algorithm [1] uses several 32-bit long subkeys for addition:
in fact key addition is the first, and key subtraction (which may be also imple-
mented as addition) is the last operation performed on data. Apart from that,
another subkey addition takes place inside the E function used in each of 16
rounds of the keyed transformation. Summarily we have 4 + 16 to 4 4+ 16 + 4
subkeys used for addition. As shown above, at a cost of about 2% encryptions
we may find half of each subkey, i.e. 320 to 384 bits of total 1280 bits of an
expanded key. Due to its complex structure, the key-schedule does not seem to
be reversible, so an attack would require to execute key expansion scheme and
falsify wrong key guesses. Although it does not seem very practical, it is still an
improvement over the exhaustive search.



102 Marcin Gomulkiewicz and Mirostaw Kutylowski

4.4 RC5 and RC6

RC5 and RC6 use addition as one of their building blocks. RC5 uses 2 + 27 sub-
keys for addition: two at the beginning and two more per each round. RC6 works
similarly, on top of that it uses another two subkeys at the end of computation.

Case of RC5H and RC6 is in a way similar to MARS: since the key expansion
scheme seems to be irreversible, our attack is rather a potential than an actual
threat. It is worth noting, though, that there are no other subkeys than those
used for addition. This property would theoretically allow us to break the ci-
pher by finding all the subkeys. Let us assume that we have equipment of great
(preferably: indefinite) accuracy, so we can measure (almost) exact Hamming
weights (as in section Ideal case). Therefore we start with a saturated set of
plaintexts and find the keys one by one from the first round to the last (we
peel off consecutive rounds starting from the beginning; since we need to recover
2 + 2r keys, we want to minimize all the errors as much as possible). In that
case, even though we still do not know the main key, we are able to duplicate
the encrypting device or decrypt encrypted messages. Of course, such a theo-
retical attack would not be possible against Twofish which uses key-dependent
permutation, or MARS which uses another subkeys for operations different from
addition.

5 Conclusions

Our attack reveals that addition should be used with special care in hardware
implementations of symmetric block ciphers. Potentially, a side channel attack
may retrieve completely the secret key stored in a protected device, or at least
provide significant amount of information on this key.

It also indicates that masking with random values the inputs of the arithmetic
operations is not a universal technique that may be used as a defense against side
channel attack on protected cryptographic hardware storing secret symmetric
keys. Unexpectedly, masking may even help to perform the attack.

The attack presented is one more argument that the subkey schedules of
symmetric ciphers should evolve into irreversible schemes.

References

[1] Burwick C., Coppersmith D., D’Avignon E., Gennaro R., Halevi S., Jutla C.,
Matyas S., O’Connor L., Peyravian M., Safford D., Zunic N., MARS — A Can-
didate Clipher for AES, http://www.research.ibm.com/security/mars.html.
101

[2] ChariS., Jutla Ch., Rao J.R., Rohatgi P., A Cautionary Note Regarding Evalua-
tion of AES Candidates on Smart-Cards, Second Advanced Encryption Standard
(AES) Candidate Conference. 92

[3] Chari S., Jutla Ch., Rao J.R., Rohatgi P., Towards sound approaches to coun-
teract power-analysis attacks, CRYPTO’99, Lecture Notes in Computer Science
1666. Springer-Verlag, 398-412. 92



[4]

[5]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

Hamming Weight Attacks on Cryptographic Hardware 103

Coron J. S., On Boolean and arithmetic masking against differential power analy-
sis, CHES2000, Lecture Notes in Computer Science 1965. Springer-Verlag, 231—
237. 92

Daemen J., Knudsen L., Rijmen V., The block cipher Square, Fast Software
Encryption’97, Lecture Notes in Computer Science 1267. Springer-Verlag, 149—
165. 92

Daemen J., Rijmen V., The block cipher Rijndael,
http://www.esat.kuleuven.ac.be/“rijmen/rijndael. 92

Goubin L., A sound method for switching between Boolean and arithmetic mask-
ing, CHES’2001, Lecture Notes in Computer Science 2162. Springer-Verlag, 3-15.
92

Gandolfi K., Mourtel Ch., Olivier F., Electromagnetic Analysis: Concrete Re-
sults, CHES’2001, Lecture Notes in Computer Science 2162. Springer-Verlag,
251-261. 91

Goubin L., Patarin J., DES and Differential Power Analysis (The ”Duplication”
Method), CHES’99, Lecture Notes in Computer Science 1717. Springer-Verlag,
158-172. 92

Kesley J., Schneier B., Wagner D., Hall Ch., Side channel cryptanalysis of prod-
uct ciphers, Journal on Computer Security 8 (2000), 141-158. 91

Kocher P., Timing Attacks on Implementations of Diffie-Hellman, RSA, DSS,
and Other Systems. CRYPTO’96, Lecture Notes in Computer Science 1109.
Springer-Verlag, 104-113. 91

Kocher P.; Jaffe J., Jun B., Differential power analysis, CRYPTO’99,
Lecture Notes in Computer Science 1666. Springer-Verlag, 388-397,
also:  Introduction to differential power analysis and related attacks,
http://www.cryptography.com/dpa/technical. 91

Lucks S., The saturation attack - a bait for Twofish,
http://eprint.iacr.org/2000/046/. 92

Messerges Th., Securing AES finalists against power analysis attack, FSE’2000,
Lecture Notes in Computer Science 1978. Springer-Verlag, 150-164. 92

Rivest R., Robshaw M., Sidney R., The RC6 Block Cipher,
http://theory.lcs.mit.edu/"rivest/rc6.ps.

Schneier B., Kesley J., Whiting D., Wagner D., Ch. Hall, N.Ferguson, The
Twofish Encryption Algorithm: a 128-Bit Block Cipher, Wiley, 1999, ISBN 0-
471-35381-7.

AES Development Effort, NIST, http://www.nist.gov/aes. 92



	Hamming Weight Attacks on Cryptographic Hardware -- Breaking Masking Defense
	Introduction
	New Hamming Weight Attack

	Properties of Addition
	Expected Value of Hamming Weight
	Formula for Expected Hamming Weight of Carry Bits
	Deviations from Expected Value on Random Inputs

	Deriving Subkeys
	Ideal Case
	Taking Deviations into Account
	Examples

	Vulnerability of Popular Algorithms
	IDEA
	Twofish
	MARS
	RC5 and RC6

	Conclusions


