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Abstract. The crossing number cr(G) of a graph G, is the smallest
possible number of edge-crossings in a drawing of G in the plane. A
graph G is crossing-critical if cr(G — e) < cr(G) for all edges e of G.
G. Salazar conjectured in 1999 that crossing-critical graphs have path-
width bounded by a function of their crossing number, which roughly
means that such graphs are made up of small pieces joined in a linear
way on small cut-sets. That conjecture was recently proved by the au-
thor [9]. Our paper presents that result together with a brief sketch of
proof ideas. The main focus of the paper is on presenting a new construc-
tion of crossing-critical graphs, which, in particular, gives a nontrivial
lower bound on the path-width. Our construction may be interesting
also to other areas concerned with the crossing number.

1 Introduction

In this section we informally introduce the problem and our contributions to it.
The reader is referred to the next section for formal definition and statements.

We are interested in drawing of (nonplanar) graphs in the plane that have a
small number of edge-crossings. There are many practical applications of such
drawings, including VLSI design [3], or graph visualization [4J14]. Crossing-
number problems are often discussed on Graph Drawing conferences, recently
for example [T2|T8T4].

Determining the crossing number of a graph is a hard problem [6] in general,
and the crossing number is not even known exactly for complete or complete
bipartite graphs. A lot of work has been done investigating the crossing number
of particular graph classes like C,, x C,,, see [I5I6R]. For general graphs, research
so far focused mainly on relations of the crossing number to nonstructural graph

* The research was partially supported by a New Zealand Marsden Fund research
grant to Geoff Whittle, and by a Czech research grant GACR 201/99/0242.
** Supported by the Ministry of Education of Czech Republic as project LNO0A056.

P. Mutzel, M. Jiinger, and S. Leipert (Eds.): GD 2001, LNCS 2265, pp. 102-[[14], 2002.
(© Springer-Verlag Berlin Heidelberg 2002



Crossing-Critical Graphs and Path-Width 103

properties like the number of edges, for example [IJ11l13]. On the other hand,
crossing-critical graphs play a key role in investigation of structural properties of
the crossing number. Our result tries to give some insight to the general structure
of crossing-critical graphs, about which is not much known yet.

In Section P we state that if G is a k-crossing-critical graph, then G cannot
contain a subdivision of a “large in k” binary tree. It is known [I7] that the
latter condition is equivalent to G' having “bounded in k path-width”, which
roughly means that G is made up of small pieces joined in a linear way on small
cut-sets. We also sketch basic proof ideas for this result in Section [3, while the
whole proof (which is rather long) can be found in [9].

We mainly focus on constructions of crossing-critical graphs that give good
lower bounds on the path-width (in terms of binary trees) in Section Hl Specifi-
cally, we present new general classes of k-crossing-critical graphs for k > 3, and
we prove their values of the crossing number. These classes contain graphs with
binary trees of heights up to k 4+ 2. We think that these classes may be also
interesting to other areas concerned with the crossing number.

2 Definitions and Results

We consider finite simple graphs in the paper. We usually speak about actual
drawings of graphs instead of abstract graphs here. If ¢ : [0,1] — IR? is a simple
continuous function, then o([0,1]) is a simple curve, and o((0,1)) is a simple
open curve.

Definition. A graph G is drawn in the plane if the vertices of G are distinct
points of IR?, and every edge e = uv € E (G) is a simple open curve p such that
0(0) = u, o(1) = v. Moreover, it is required that no edge contains a vertex of G,
and that no three distinct edges of G share a common point. An (edge-) crossing
is any point of the drawing that belongs to two distinct edges.

(Notice that our edge as a topological object does not include its endpoints. In
particular, when we speak about a crossing, we do not mean a common end of
two edges.)

Definition. The crossing number cr(G) of a graph G is the smallest possible
number of edge-crossings in a drawing of G in the plane. A graph G is crossing-
critical if cr(G — e) < cr(G) for all edges e € E(G). A graph G is k-crossing-
critical if G is crossing-critical and cr(G) = k.

The crossing number stays the same if we consider drawings on the sphere
instead of the plane, or if we require piecewise-linear drawings. (However, if we
require the edges to be straight segments — so called rectilinear crossing number,
we get completely different behavior; but we are not dealing with this concept
here.) Also, the crossing number is clearly preserved under subdivisions of edges
(although not under contractions). Thus it is not an essential restriction when
we consider simple graphs only.
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One annoying thing about the crossing number is that there exist other
possible definitions of it, and we do not know whether they are all equivalent or
not. The pairwise-crossing number crp,i, is defined similarly, but it counts the
number of crossing pairs of edges, instead of crossing points. The odd-crossing
number croqq counts the number of pairs of edges that cross odd number of
times only. It clearly follows that croqd(G) < crpair(G) < cr(G), and it was
proved by Tutte [19] that croqq(G) = 0 implies cr(G) = 0. The best known
general relation between these crossing numbers is due to Pach and Téth [13]
who proved cr(G) < 2croqqa(G)?. Our results are formulated for the ordinary
crossing number, however, they hold as well for the pairwise-crossing number.

Further we define the path-width of a graph and present its basic properties.
A notation G | X is used for the subgraph of G induced by the vertex set X. A
minor is a graph obtained from a subgraph by contractions of edges.

Definition. A path decomposition of a graph G is a sequence of sets (W7, Wa,

..,W,) such that U1gigp W, = V(GQ), U1g¢§p E(G | W;) = E(G), and
W;n W, C W, forall 1 <i < j <k <p. The width of a path decomposition is
max{|W;| — 1:1 < i < p}. The path-width of a graph G, denoted by pw(G), is
the smallest width of a path decomposition of G.

It is known [17] that if G is a minor of H, then pw(G) < pw(H). A binary
tree of height h a rooted tree T such that the root has degree 2, all other non-
leaf vertices of T' have degrees 3, and every leaf of T' has distance h from the
root. (A binary tree of height h has 2"*+1 — 1 vertices.) Since the maximal degree
of a binary tree T is 3, a graph H contains T' as a minor if and only if H
contains T as a subdivision. The important connection between binary trees
and path-width was first established by Robertson and Seymour in [17], while
the following strengthening is due to [2]:

Theorem 2.1. (Bienstock, Robertson, Seymour, Thomas)
: . . h
(a) If T is a binary tree of height h, then pw(T) > 5.
(b) If pw(G) > p, then G contains any tree on p vertices as a minor.

We look closer at some facts about crossing-critical graphs. By the Kura-
towski theorem, there are only two 1-crossing-critical graphs K5 and K33, up
to subdivisions. On the other hand, an infinite family of 2-crossing-critical graphs
with minimal degree more than 2 was found by Kochol in [I0]. One may easily
observe that every edge-transitive graph is crossing-critical, while the converse
is not true, of course.

Ding, Oporowski, Thomas and Vertigan [5] have proved that every 2-crossing-
critical graph satisfying certain simple assumptions and having sufficiently many
vertices belongs to a well-defined infinite graph class. In particular, these graphs
have bounded path-width. Analyzing the structure of other known infinite classes
of crossing-critical graphs, G. Salazar formulated the following conjecture, ap-
pearing in [7].
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Conjecture 2.2. (Salazar, 1999) There exists a function g such that any k-
crossing-critical graph has path-width at most g(k).

The paper [7] proves a weaker statement that the tree-width of a crossing-
critical graph is bounded. Our Theorem 23] [9], together with Theorem 21}
immediately imply a solution to Salazar’s conjecture.

Theorem 2.3. There exists a function f such that no k-crossing-critical graph
contains a subdivision of a (complete) binary tree of height f(k). In particular,
F(k) < 6- (T2logy k + 248) - k.

Corollary 2.4. Let f be the function from Theorem [Z.3. If G is a k-crossing-
critical graph, then the path-width of G is at most 2/(F)+1 — 2,

Remark. It is important that Theorem speaks about crossing-critical
graphs, since an arbitrary graph of a fixed crossing number k£ may contain a
binary tree of any height. There is no direct connection between the crossing
number and the path-width of a graph without an assumption of being crossing-
critical.

A natural question arises about lower bounds on the function f from The-
orem 23] An easy argument shows that f(k) must grow with k: The complete
graph K, is crossing-critical for n > 5 with the crossing number growing roughly
as ©(n*), and K, contains a binary tree of height [log, n|—1. (In fact, the path-
width of K,, is n — 1.) However, we are able to provide much better bounds on
f as consequences of a general construction presented in Section H}

Theorem 2.5. Let f be the function from Theorem[2.3, and k > 3. Then f(k) >
k+3, or f(k) > k if we consider only simple 3-connected graphs.

3 Upper Bound Sketch

The whole proof [9] of Theorem 23] is quite long, so here we present only an
informal short sketch of it. Suppose that G is a graph drawn in the plane with
k crossings. The basic idea behind our proof is that if sufficiently many nested
edge-disjoint cycles “separate” all crossed edges from some edge e in G, then G
cannot be crossing-critical since deleting e cannot decrease its crossing number.
(This trick was suggested earlier by Salazar in connection with the tree-width
of crossing-critical graphs.) Unfortunately, considering sequences of single cycles
is not enough to achieve our goal. So we actually work with so called “nesting”
and “cutting” sequences in the graph G (see Lemmas 31 and B2).

Recall that G is a graph drawn in the plane. Informally speaking, a multicycle
M in G is a collection of (not necessarily disjoint) cycles of G such that no two
of these cycles are crossed or nested. (These words implicitly refer to the infinite
face of the drawing.) The finite faces bounded by the cycles of M are called the
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interior faces of M. We say that a multicycle M is mested in a multicycle M’,
denoted by M < M’ if each interior face of M is contained in some interior face
of M'. We say that M is strictly nested in M’, denoted by M <M’ if M < M’
and if M and M’ share at most one vertex. See an illustration in Fig. [1l

Fig. 1. An example of two strictly nested multicycles M <M’ (shaded M consists of
4 cycles, and M’ consists of 3 cycles).

Let M1 < Ms= ... <M, be a sequence of ¢ strictly nested multicycles in the
graph G. Suppose that all crossed edges of G are contained in the interior faces
of My, and that, for each interior face @ of M;, 2 < ¢ < ¢, every component
of the subgraph of G drawn inside @ intersects some cycle of M;_; in @. Then
M (G) = (M, ..., M.) is called a c-nesting sequence in G.

Lemma 3.1. Suppose that there exists a (3k — 1)-nesting sequence in a 2-
connected graph H drawn in the plane. Then H is not k-crossing-critical.

Fig. 2. An illustration to Lemma B} how a better drawing of H is obtained using
parts of the drawing H~ ~ H — e that has fewer than k crossings.

Proof. Let Msip_1(H) = (My,...,Ms,_1) be a (3k — 1)-nesting sequence
in H. Briefly speaking, our goal is to delete an edge e in the exterior of Ms;_1,
draw the new graph with fewer crossings, and use pieces of the new drawing to
“improve” the drawing H. Notice that M; consists of at most k cycles (one for
each crossings), and that the number of cycles does not increase in the sequence.

If H is k-crossing-critical, then there exists a drawing H ~ of the graph H —e
with fewer than % crossings. We denote by M, ,..., M5, ; the corresponding
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multicycles in H ™. One edge-crossing may involve at most two multicycles, so at
least £ multicycles of M, ..., M, , are not crossed in H ™. Thus there exists
an index 2 <4 < 3k —1 such that M, is not crossed, and that M, M,_; consist
of the same number m of cycles. Let H;, j = 1,...,m be the subgraph of H
drawn inside the j-th cycle of M;, and let H ; be the corresponding subgraph in
H ™. The graphs H; ~ H; are connected by the definition. Since the multicycle

M;” in H™ is not crossed, we may “cut” the subdrawings H ;" and “paste” them
into the interior faces of M; in H instead of H;, j = 1,...,m. Recall that all
crossings of H belonged to some H ;. Therefore, the new drawing of H has at

most as many crossings as cr(H ~) < k, a contradiction. |

We say that a sequence P, ..., P, of pairwise disjoint paths in a graph G is
a q-cutting sequence if each set V(P;) is a cut in G separating XUP, U...UP;_;
from P11 U...U P,, where X is a subgraph formed by all crossed edges of G.
Similarly as in the previous lemma we prove:

Lemma 3.2. Suppose that there exists a 4k-cutting sequence in a 2-connected
graph H drawn in the plane. Then H cannot be k-crossing-critical.

Finally, the lengthy part of the proof of Theorem [2.3 comes in. We want to
show that a 2-connected graph with a sufficiently large binary tree contains a
long nesting or cutting sequence. Obviously, if our graph H is not 2-connected,
we may prove the theorem separately for the blocks of H.

Lemma 3.3. Let H be a 2-connected graph that is drawn in the plane with
k crossings. Suppose that H contains a subdivision of a binary tree of height
6 - (72logy k + 248) - k3. Then there exists a (3k — 1)-nesting sequence or a 4k-
cutting sequence in H.

To prove the lemma, we try to inductively construct a c-nesting sequence
in H for ¢ = 1,2,...,3k — 1, such that the multicycles in the sequence satisfy
certain rather complicated connectivity property, and that a “large portion”
of the subdivision of a binary tree in H stays outside of the sequence. Let
us denote by f'(k) = (72log, k + 248)k2, by f(k) = 6kf’(k), and by fi(k) =
(6k — 2¢ — 1) f'(k). The first multicycle My of the sequence encloses all crossed
edges of H, and, at each step c, there is a subdivision U C H of a binary tree of
height f.(k) drawn in the infinite face of the last multicycle M.. For simplicity,
say that U actually is a binary tree.

Now we briefly describe a single step of our construction. We divide the
binary tree U of height f.(k) into “layers” of heights f'(k), f'(k), and fei1(k).
(For example, a subtree of U in the “middle layer” has its root at distance f’(k)
and its leaves at distance 2f’(k) from the root of U.)

— First we look whether the leaves of some middle-layer subtree of U are
“surrounded” by a common face of H. If this happens, then either there is a
next multicycle M. for our nesting sequence (using part of boundary of the
common face), or selected paths of the mentioned subtree form a 4k-cutting
sequence.
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— If we are not successful in the previous step, then we argue that most of the
middle-layer subtrees are “cut in half” by closed curves in the drawing H . If
sufficiently many of such curves do not intersect M., then they form many
graph cycles in H. We use the cycles to construct a multicycle M., such
that some of the bottom-layer subtrees of U of height f.i1(k) stays in the
infinite face of M.1.

— Otherwise, most of middle-layer subtrees are connected by pairwise disjoint
paths to vertices of M,. In such case we apply the above mentioned connec-
tivity property of our sequence (which is specifically tailored to solve this
case); and using the connecting paths, we construct another (3k — 1)-nesting
or 4k-cutting sequence in H straight away.

We skip the details of this proof here.

4 “Crossed-Fence” Construction

Let k be a positive integer. We describe a graph class parametrized by k, and
we later prove that the graphs from this class are k-crossing-critical. (The name
“fence” for the class was chosen by resemblance of the example from Fig. Bl)

Definition. Let C7,Cs, ..., Cy be a sequence of some k edge-disjoint graph cyc-

les, let Fg = C1UC5U. . .UCy be a graph, and let uy,us € V(C1), uz,ug € V(Cy).

The 5-tuple (Fo; ug, u2; ug, uq) is called a k-fence if the following conditions (F1-

4) are true:

(F1) For 1 < 4,5 < k and |i — j| > 2, the cycles C;, C; are vertex-disjoint.
Moreover, uy,us & V(C;) for i > 1, and usz, uy € V(C;) for i < k.

(F2) The graph Fy=C7U...UC} is connected and planar.

Let n =1,2. We define a set X,, C V(F) recursively as follows: u,, € X,,; and,
fori=1,2,...,k—1land j=i+1,ifx € X, NV (C;), 2’ € V(C;) NV (C};) are
such that there is a path P C C; with ends z, 2’ internally disjoint from C}, then
we add 2’ into X,,. We define sets X,,, n = 3,4 analogously fori =k, k—1,...,2
and j =14 — 1.

(F3) Forn=1,2 (for n = 3,4) and 2 <i < k — 1 the next holds: if P C C} is a
path with both ends in X, ﬂV(Cl) N V(Cl_l) (in X, OV(CZ) ﬂV(Ci+1) ),
then P intersects V(C;11) (P intersects V(C;—1)).

(F4) The sets X1, X2, X3, Xy are pairwise disjoint. For 1 < ¢ < k; if v, €
X, NV(C;), n =1,2,3,4, then the vertices vy, v3, v, vy lie in this cyclic
order on the cycle C;.

Moreover, a graph F' is called a crossed k-fence if FF' = FyU Q1 U Q2 U Q and
U1, Uz, U3, Uyg are such that the following is true:

(F5) Fy is a graph, uy, us, us,us € V(Fq), and (Fo;uq, us; uz, uq) is a k-fence.
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Fig. 3. A basic example of a crossed 8-fence. (The “fence”is winded on a cylinder.)

(F6) @, is a path with ends wuy,us internally disjoint from Fg, and Q9 is a
path with ends ug, uy internally disjoint from Fy U (1. For some internal
vertices w1 € V(Q1),wa € V(Q2) of the paths @1, Q2, the path Q) connects
w1, we and is internally disjoint from Fg U Q1 U Q5.

As an illustration to the above definition we present an example of a crossed
8-fence in Fig. 3. We also add some informal comments to the definition: By the
definition, the graph F is planar. Moreover, it immediately follows from (F1-
2) that we may draw Fy without crossings as a “bunch of concentric cycles”,
i.e. each cycle C; is a closed curve separating C; U...UC;—; from Cyj4; U... U
Cy. (See also Fig. @) Notice that the definition of a fence (Fo;u1,u2;us, uq) is
symmetric with respect to any one of uq, us, us, us (possibly reversing the order
of cycles in Fy). Notice also that the sets X, n = 1,2, 3,4 intersect all cycles of
F(y. More properties of a fence are illustrated by two easy lemmas.

Lemma 4.1. Let (Go;uy,uz;us, uq) be a k-fence, k > 2, where Go = C1UCy U
...UC. We denote by Gy = CoUC3U...UCy, and by ul, i = 1,2 some vertex
of C1 N Cy such that there is a path P; C Cy with ends u;, ) internally disjoint
from Co. Then (Gg;ul, ub;uz,uy) is a (k — 1)-fence.

Proof. Let us look at the definition of a fence on page[I08 The conditions (F1-
2) from the definition are clearly satisfied for G{. In particular, u},us & V(C;)
for i > 2 since u},u)H € V(C1). We denote by X/, n =1,2,3,4 the sets defined
analogously to X,, for Gj. Then X! = X,, \ V(Cy) for n = 3,4, and X, C X,
for n = 1,2 since u,, € X,, by the definition. So validity of the conditions (F3-4)
for Gy, follows easily, and Gy, forms a (k — 1)-fence. ]

Lemma 4.2. Let G be a crossed k-fence, k > 1. Then cr(G) < k, and
cr(G —e) <k —1 for all edges e € E(G).

Proof. This is an easy proof again, so we only sketch it. (See the scheme in
Fig. @) We use the notation G = Go U Q1 UQ2UQ and Gy = C1 U ... U Cy
analogously to the definition of a crossed fence. As noted above, Gy can be
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Fig. 4. A generic plane drawing of a crossed k-fence.

drawn without crossings as a “bunch” of concentric cycles. We may add the
paths @1, Q2 “outside” and “inside” to G again without crossings. Finally, we
draw the path @ connecting a vertex of ()1 to a vertex of Q2 so that it crosses
each of the k cycles C; of Gy exactly once.

Next, we show how to modify the previous drawing of G to get a drawing of
G — e with less than & crossings: If e € E(Gy), then we may avoid the crossing
of Q with the cycle C;, e € E(C)). If e € E(Q), then G — e is planar. Lastly, if
e € E(Q1) (which is symmetric to e € E(Q2) ), then we may redraw (QUQ1) —e
so that it does not cross C;. ]

Lemma 4.3. Let G be a crossed k-fence, k =1 or k > 3. Then cr(G) > k.

Proof. We use induction on k. In the base case k = 1, G is a subdivision of the
nonplanar graph K3 3, and so cr(G) = 1. Unfortunately, our statement is false
for kK = 2; a crossed 2-fence may have crossing number 1. Thus we must avoid
referring to that case in the induction. We first present a general inductive step,
and then we show how to overcome the exceptional value of 2.

\4// Ck+1

Fig. 5. An illustration to the proof.

Let us have an optimal drawing H of a crossed (k+1)-fence, where H =
HyUQ1UQUQ and Hy =C1 U.. .Uck+17 Uy, U € V(Cl>, Uz, Uqg € V(Ck+l>7
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as in the definition of a crossed fence. By connectivity of H, there are two
(possibly equal for now) vertices vi,w; € V(Cy) NV (Cs) such that the edge-
disjoint paths Ry, R} C C} connecting u; to v1 and u; to wy, resp., are internally
disjoint from Cs. (See Fig. [Bl) We define vertices vq, we and paths Rs, R, C C
analogously for us. Then vy, w; € X; and wve,ws € X by the definition. It
follows from (F4) that vy, w1, vy, wy are pairwise distinct.

We first assume that some edge e € E(C) is crossed in H. Up to symmetry,
we may assume that e € F(R1) and e € E(Rz). We set Hy = CoUC3U. . .UCk41,
uy = vy, uh = vo. By Lemma 0] (Hy; ), ub;us, uyg) is a k-fence; and hence
H' = Hyu(Q1UR;)U(Q2URy)UQ is a crossed k-fence. However, the drawing
H' has at least one crossing less than H since e ¢ E(H'). Therefore, cr(H) >
c(H)+1>k+1ifk#2.

Second, we assume that no edge of C is crossed in H. We denote by S1 C Cy
the path with ends vy, w; and disjoint from vo, we; and S C Co with ends vs, wo
analogously. By (F3), both paths S7, .55 intersect the cycle C3. Moreover, since
CsU...UCK1UQR1UQR2UQ is a connected graph, all three paths Sp,.5;,Q; are
drawn in the same region of C; by the Jordan Curve Theorem. (Recall that C;
is drawn as an uncrossed closed curve.) It follows from the order of the path ends
on C; that the path @ must cross both paths S1, Ss, say in edges e; € E(S1),
es € E(S2). We denote by t, € V(S,) NV (Cs), n = 1,2 vertices such that (F3)
there are subpaths S/, C S,, — e,, connecting v,, (or wy, up to symmetry) to t,
and internally disjoint from C3. We set Hy = C3U...UCly1, uf = t1, uf = to.
Then (H{;uy, ub;us,uyg) is a (k — 1)-fence by double application of Lemma [41]
and so H' = H{jU(Q1UR;UST)U(Q2UR2US,)UQ is a crossed (k — 1)-fence.
Therefore, cr(H) > cr(H") +2>k+1if k-1 # 2.

Finally, we resolve the exceptions left above. Suppose that k = 2 in the first
case, and that the second case cannot be symmetrically applied (i.e. C3 is crossed
as well). Then we may actually repeat this step twice (for C; and C5 in H),
and refer to the inductive assumption for £k — 1 = 1. Suppose that £k = 3 in the
second case, and that the first case cannot be symmetrically applied (i.e. neither
Cy is crossed). Then again, we argue twice in the same way, showing that both
cycles Cy,C3 of H are crossed at least twice each by the paths @1, Q2, resp.
Hence cr(H) > 2+ 2 = 4 in this case, as desired. |

The previous Lemmas L2413 immediately imply:

Theorem 4.4. Let G be a crossed k-fence, k = 1 or k > 3. Then G is a k-
crossing-critical graph.

5 Lower Bounds

In this section we are going to prove Theorem by exhibiting crossed fences
that contain large binary trees. (The example of a crossed k-fence from Fig. B
contains a subdivision of a binary tree of height about %, however, we provide
even better constructions now.)
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Lemma 5.1. There exists a graph H*, k> 1 such that H* is a crossed k-fence,
and that H* contains a binary tree of height k + 2.

Fig. 6. A scheme of the construction of graph H* (cf. Lemma [5.1)).

Proof. We denote by A a graph described as follows: The vertex set of A*
consists of all words starting with a symbol r and appending a sequence of at
most k symbols chosen from 0, 1. Each vertex (word) (z) of A¥ is adjacent to
both (x0), (x1) (unless z is longer than k). Moreover, each vertex of pattern
(y01%), i > 1 in A" is adjacent to (y10%). (The exponent of a symbol counts
repetition of this symbol in the word.) The construction is illustrated by an
example of A% on the top of Fig. Bl Clearly, A* has a spanning binary tree with
the root (r).

A graph H’g is a disjoint union of four copies A]f, A’;, A’;, AZ of A* joined
by edges in the following way: For i = 1,...,k, a vertex (r0%) of A]f is adjacent
to a vertex (r0Ft1=%) of A%: and a vertex (r1%) of AY is adjacent to a vertex
(r 154170y of AL Vertices of A% are analogously adjacent to A% and to Af.
Fig. B shows a scheme of the construction. We claim that Hp is a k-fence (see
the definition on page [[08)): It is easy to see the cycles C; — the vertex set V(C;)
is formed by all words in A’f, A’; of length 7 or ¢« + 1, and by all words in Ag,
AZ of length k+2 —i or k+ 1 — . The vertices uq, us, us3, u4 from the definition
are the respective roots, and the sets X1, X5, X3, X4 are the respective vertex
sets, of AY, A5 AL AL

The graph HP results from H’S by adding paths @1, @2 and @, each of length
two, as required by the definition of a crossed fence. Then H ¥ has a spanning
binary tree of height k + 2, the root of which is the middle vertex of path Q. 1
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Lemma 5.2. There exists a simple 3-connected graph I~{k, k> 1 such that H*
is a crossed k-fence, and H* contains a binary tree of height k — 1.

Fig. 7. A modified construction of a graph AS (cf. Lemma [5.2)).

Proof. The construction of H* is almost the same as the previous construction
of H”, but we use copies of a graph AF instead of AF. Simply speaking, Ak
is obtained from A*~? by adding two paths that “form a lace on the bottom
vertices”, as shown in Fig. [l Rest follows the scheme in Fig. @] with a minor
variation that the path Q now consists of one edge.

We formally describe the construction as follows: The graph AF results from
ARt (see in the proof of Lemma by contracting all edges of the pattern
{(y01%), (y10")} where y is a prefix of length k — 1 — 4, and by adding all edges
of the pattern {(20), (2 1)} where z is a prefix of length k — 1. Then HF is con-
structed from four copies A¥, A5 Ak Ak of A*. A vertex (r0%),i=2,...,k—1
of Al is adJacent to a vertex (r0Ft1=7) of Ak a vertex (r0) of A¥ is adjacent

o (r0F=1) of Ak and (r0%=1) of Ak is adjacent to (r0) of Ag Analogously,
Vertlces of A are adjacent to vertices of A4, and vertices of A are adjacent
to vertices of A and of Ak

It is a routine work to verify that HF is a simple 3-connected graph and a
crossed k-fence. The largest binary tree in HF spans Ak U A’“ U @1 and it has
height k& — 1. |

Using Theorem [£.4] the proof of Theorem [2.5]is now finished.

6 Conclusions

We have shown polynomial lower and upper bounds on the height f(k) of a
subdivision of a largest binary tree that may be contained in a k-crossing-critical
graph. Unfortunately, these bounds are still far apart. We do not make any
conjecture about the correct asymptotic for the function f(k) from Theorem 23]
but we think that it would be closer to the linear lower bound than to the cubic
upper bound.



114

P. Hlinény

References

1.

10.

11.
12.

13.

14.

15.

16.

17.

18.

19.

M. Ajtai, V. Chvatal, M.M. Newborn, E. Szemerédi, Crossing-free subgraphs., The-
ory and practice of combinatorics, 9-12, North-Holland Math. Stud. 60, North-
Holland, Amsterdam-New York, 1982.

D. Bienstock, N. Robertson, P. Seymour, R. Thomas, Quickly excluding a forest,
J. Combin. Theory Ser. B 52 (1991), 274-283.

S.N. Bhatt, F.T. Leighton, A frame for solving VLSI graph layout problems, J. of
Computer and Systems Science 28 (1984), 300—343.

G. Di Battista, P. Eades, R. Tamassia, I.G. Tollis, Graph Drawing: Algorithms for
the Visualization of Graphs, Prentice Hall 1999 (ISBN 0-13-301615-3).

G. Ding, B. Oporowski, R. Thomas, D. Vertigan, Large four-connected nonplanar
graphs, in preparation.

M.R. Garey, D.S. Johnson, Crossing number is NP-complete, SIAM J. Algebraic
Discrete Methods 4 (1983), 312-316.

J. Geelen, B. Richter, G. Salazar, Embedding grids on surfaces, manuscript.

L.Y. Glebsky, G. Salazar, The conjecture cr(Cp, X Cp) = (m — 2)n is true for all
but finitely n, for each m, submitted.

P. Hlinény, Crossing-number critical graphs have bounded path-width, submitted.
http://wuw.mcs.vuw.ac.nz/ hlineny/doc/crpath2.ps.gz

M. Kochol, Construction of crossing-critical graphs, Discrete Math. 66 (1987), 311—
313.

F.T. Leighton, Complexity Issues in VLSI, M.I.T. Press, Cambridge, 1983.

P. Mutzel, T. Ziegler, The Constrained Crossing Minimization Problem, In: Pro-
ceedings Graph Drawing '99, Stiffn Castle, Czech Republic, September 1999 (J.
Kratochvil ed.), 175-185; Lecture Notes in Computer Science 1731, Springer Ver-
lag, Berlin 2000 (ISBN 3-540-66904-3).

J. Pach, G. T6th, Which crossing number is it, anyway?, Proc. 39th Foundations
of Computer Science (1998), IEEE Press 1999, 617-626.

H. Purchase, Which Aesthetics has the Greates Effect on Human Understanding, In:
Proceedings Graph Drawing '97, Rome, Italy, September 18-20 1997 (G. DiBattista
ed.), 248-261; Lecture Notes in Computer Science 1353, Springer Verlag, Berlin
1998 (ISBN 3-540-63938-1).

R.B. Richter, C. Thomassen, Intersections of curve systems and the crossing num-
ber of Cs x Cs, Discrete Comput. Geom. 13 (1995), 149-159.

R.B. Richter, G. Salazar, The crossing number of Cs x Cy,, Australas. J. Combin. 23
(2001), 135-143.

N. Robertson, P. Seymour, Graph minors I. Ezcluding a forest, J. Combin. Theory
Ser. B 35 (1983), 39-61.

F. Shahrokhi, I. Vrt'o, On 3-Layer Crossings and Pseudo Arrangements, In: Pro-
ceedings Graph Drawing '99, Stifin Castle, Czech Republic, September 1999 (J.
Kratochvil ed.), 225-231; Lecture Notes in Computer Science 1731, Springer Ver-
lag, Berlin 2000 (ISBN 3-540-66904-3).

W.T. Tutte, Toward a theory of crossing numbers, J. Combinatorial Theory 8
(1970), 45-53.



	Crossing-Critical Graphs and Path-Width
	 Introduction 
	 Definitions and Results 
	 Upper Bound Sketch 
	"Crossed-Fence'' Construction 
	 Lower Bounds 
	 Conclusions 
	References


