
A Library of Algorithms for Graph Drawing�

Carsten Gutwenger1, Michael Jünger2, Gunnar W. Klau3, Sebastian Leipert1,
Petra Mutzel3, and René Weiskircher3

1 Stiftung casesar, Bonn, Germany
2 Universität zu Köln, Germany

3 Technische Universität Wien, Austria

1 Short Description

The AGD library provides algorithms, data structures, and tools to create geo-
metric representations of graphs and aims at bridging the gap between theory
and practice in the area of graph drawing. It consists of C++ classes and is
built on top of the library of efficient data types and algorithms LEDA; an op-
tional add-on to AGD requires ABACUS, a framework for the implementation
of branch-and-cut algorithms, and contains implementations of exact algorithms
for many NP-hard optimization problems in algorithmic graph drawing.

The fully documented library is freely available for non-commercial use at
http://www.ads.tuwien.ac.at/AGD. The site also contains an online manual,
links to AGD related papers, and contact information.

2 Layout Algorithms and Layout Features

The library contains a large number of state-of-the-art drawing algorithms for
many of which implementations can only be found in AGD. Figure 1 shows
UML-diagrams of three major components of the library: (a) planar draw-
ing algorithms, (b) hierarchical drawing algorithms, and (c) the planarization
method. Among the highlights in the latest version are implementations of the
Kandinsky- and the Giotto-algorithm, new heuristics and exact algorithms for
two-dimensional compaction, and new strategies for crossing minimization based
on a linear-time implementation of SPQR-trees.
� Partially supported by DFG-grants Ju204/7-3, Mu1129/3-1, and Na 303/1-3. In
addition to the authors, the following persons have contributed to AGD: D. Alberts,
D. Ambras, R. Brockenauer, C. Buchheim, M. Elf, S. Fialko, K. Klein, G. Koch,
T. Lange, D. Lüttke-Hüttmann, S. Näher, T. Ziegler

P. Mutzel, M. Jünger, and S. Leipert (Eds.): GD 2001, LNCS 2265, pp. 473–474, 2002.
c© Springer-Verlag Berlin Heidelberg 2002

http://www.ads.tuwien.ac.at/AGD


474 C. Gutwenger et al.

3 Architecture

Most successful approaches for drawing graphs consist of several phases. The
open and modular design of the library, realized by a strict compliance to the
object-oriented programming paradigm, facilitates the experimentation with dif-
ferent approaches to the various subtasks. It is easy to replace or extend existing
modules by plugging in an alternative method or providing a derived solution.

3.1 Programming Language and Operating Systems

The library is written in C++ and can be downloaded for Linux, Solaris, and
Windows platforms and different compilers.

4 Interfaces

AGD implements a generic layout interface that is independent of a fixed draw-
ing component. This partition makes it easy to integrate the library’s functional-
ity within application programs. However, several interface implementations are
already included in the library; most notably, two demo programs that use the
graph editor in LEDA provide instant access to the functionality of the base part
and the optional add-on of AGD. These interfaces can be easily extended and
adapted. Furthermore, due to the file- and socket-based AGD server interface,
the usage of AGD is not restricted to C++ applications.

TwoLayerCrossMin

SplitHeuristic

SifitingHeuristic

BarycenterHeuristic

MedianHeuristic

WeightedMedianHeuristic

GreedyInsertHeuristic

GreedySwitchHeuristic

OptCrossMin

HierarchyLayoutModule

FastHierarchyLayout

OptCompCoord

LayoutModule

SugiyamaLayout
ranking

cross_min
comp_coord

runs
transpose SubgraphModule

LEDAMakeAcyclic

OptAcyclicSubgraph

GreedyCycleRemoval

<maximal acyclic>

<maximal acyclic>

RankAssignment

DfsRanking

LongestPathRanking
subgraph

OptNodeRanking
subgraph

CoffmanGrahamRanking
subgraph

LayoutModule

GridLayoutModule

VisibilityRepresentation

ConvexLayout

CanonicalOrder

ConvexDrawLayout

KandinskyLayout

FPPLayout

SchnyderLayout

MixedModelLayout
augmenter

PlanarStraightLayout
augmenter

PlanarDrawLayout
augmenter

<planar biconnected><no_crossings>

LEDAMakeBiconnected

PlanAug

OptPlanAug

AugmentationModule

<planar biconnected>

<<uses>>

<<uses>>

(a) Modules for planar graph drawing

(b) Modules for hierarchical graph drawing

LayoutModule

CompactionModule

PostCompactionModule

OptCompaction

TurnRegularityCompaction

PlanarizerModule

SubgraphPlanarizer
subgraph
inserter

GridLayoutModule

PlanarizationGridLayout
planar_layouter

planarizer

PureOrthogonalLayout
compactor

post_compactor

QuasiOrthogonalLayout
compactor

post_compactor

GiottoLayout
compactor

post_compactor

ShortestPathInserter
embeddings

remove_reinsert

OneEdgeMinCrossInserter
embeddings

OrthogonalLayout
compactor

post_compactor

SubgraphModule

PlanarSubgraph
runs

SPQRTree

OptPlanarSubgraph

<planar>

<planar>

<no_crossings>

<no_crossings>

<<uses>>

LongestPathCompaction

FlowCompaction

EdgeInsertionModule

(c) Modules for the planarization method 

Fig. 1. UML-diagrams of selected AGD modules


	A Library of Algorithms for Graph Drawing
	Short Description
	Layout Algorithms and Layout Features
	Architecture
	Programming Language and Operating Systems

	Interfaces


