C (=
)

ALGORITHMS FOR GRAPH DRAWING

A Library of Algorithms for Graph Drawing*

Carsten Gutwenger!, Michael Jiinger?, Gunnar W. Klau?3, Sebastian Leipert!,
Petra Mutzel®, and René Weiskircher®

1 Stiftung casesar, Bonn, Germany
2 Universitit zu Kéln, Germany
3 Technische Universitit Wien, Austria

1 Short Description

The AGD library provides algorithms, data structures, and tools to create geo-
metric representations of graphs and aims at bridging the gap between theory
and practice in the area of graph drawing. It consists of C++ classes and is
built on top of the library of efficient data types and algorithms LEDA; an op-
tional add-on to AGD requires ABACUS, a framework for the implementation
of branch-and-cut algorithms, and contains implementations of exact algorithms
for many NP-hard optimization problems in algorithmic graph drawing.

The fully documented library is freely available for non-commercial use at
http://www.ads.tuwien.ac.at/AGD. The site also contains an online manual,
links to AGD related papers, and contact information.

2 Layout Algorithms and Layout Features

The library contains a large number of state-of-the-art drawing algorithms for
many of which implementations can only be found in AGD. Figure [0 shows
UML-diagrams of three major components of the library: (a) planar draw-
ing algorithms, (b) hierarchical drawing algorithms, and (c) the planarization
method. Among the highlights in the latest version are implementations of the
Kandinsky- and the Giotto-algorithm, new heuristics and exact algorithms for
two-dimensional compaction, and new strategies for crossing minimization based
on a linear-time implementation of SPQR-trees.

* Partially supported by DFG-grants Ju204/7-3, Mul129/3-1, and Na 303/1-3. In
addition to the authors, the following persons have contributed to AGD: D. Alberts,
D. Ambras, R. Brockenauer, C. Buchheim, M. Elf, S. Fialko, K. Klein, G. Koch,
T. Lange, D. Liittke-Hiittmann, S. Naher, T. Ziegler

P. Mutzel, M. Jiinger, and S. Leipert (Eds.): GD 2001, LNCS 2265, pp. 473-H74], 2002.
(© Springer-Verlag Berlin Heidelberg 2002

http://www.ads.tuwien.ac.at/AGD

474 C. Gutwenger et al.

3 Architecture

Most successful approaches for drawing graphs consist of several phases. The
open and modular design of the library, realized by a strict compliance to the
object-oriented programming paradigm, facilitates the experimentation with dif-
ferent approaches to the various subtasks. It is easy to replace or extend existing
modules by plugging in an alternative method or providing a derived solution.

3.1 Programming Language and Operating Systems

The library is written in C++ and can be downloaded for Linux, Solaris, and
Windows platforms and different compilers.

4 Interfaces

AGD implements a generic layout interface that is independent of a fixed draw-
ing component. This partition makes it easy to integrate the library’s functional-
ity within application programs. However, several interface implementations are
already included in the library; most notably, two demo programs that use the
graph editor in LEDA provide instant access to the functionality of the base part
and the optional add-on of AGD. These interfaces can be easily extended and
adapted. Furthermore, due to the file- and socket-based AGD server interface,
the usage of AGD is not restricted to C++ applications.

2 e e e e e e [CanonicalOrder] LayoutModule
LayoutModule | il

<no_crossings> =
1S

l
1
1
, [GridLayoutiodure]

N KandinskyLayout
L
[ConvexbrawLayout}|——[MixedModelLayout

augmenter
FPPLayout
SchnyderLayout
VisibilityRepresentation|—

<no_crossings>

CompactionModule

‘ompaction]

PostCompactionModule

PlanarStraightLayout

PlanarbrawLayout
augmenter

QuasiOrthogonallayout
compactor
post_compactor

X ‘ompaction

FlowCompaction

OpiCompaction

<planar biconnected>

(a) Modules for planar graph drawing

PlanarizationGridLayout
< Planar_layouter
planarizer [PlanarizerModule]

SubgraphPlanarizer

<planar>
planar

inserter

[TwoL: Min} L] PlanarSubgraph
s
[BarycenterHeuristic] — oo 5 Edgeinserfiontiodud
~ ShortestPathinserter |
VedmnHeurSic anng - (o { RankAssignment] embaddngs = {SPORTEs
L =) conpcoord LongestPathRanking] _ i remove reinsert .
transpose subgraph > OneEdgeMinCrossinserter|
t—{ SifiingHeuristic | ropmodeRanking]
[Hierarchyl] piNodeRa
SplitHeursic [sbgreon — jo—— .
FastHierarchyLayout (c) Modules for the planarization method
1 ristic] [Coffm
OptCompCoord | Subgraph f— OptAcyclicSubgraph
GreedylnsertHeuristic <maximal acyclic>
DifsRanking
OptCrossMin

(b) Modules for hierarchical graph drawing

Fig. 1. UML-diagrams of selected AGD modules

	A Library of Algorithms for Graph Drawing
	Short Description
	Layout Algorithms and Layout Features
	Architecture
	Programming Language and Operating Systems

	Interfaces

