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1 Short Description

The AGD library provides algorithms, data structures, and tools to create geo-
metric representations of graphs and aims at bridging the gap between theory
and practice in the area of graph drawing. It consists of C++ classes and is
built on top of the library of efficient data types and algorithms LEDA; an op-
tional add-on to AGD requires ABACUS, a framework for the implementation
of branch-and-cut algorithms, and contains implementations of exact algorithms
for many NP-hard optimization problems in algorithmic graph drawing.

The fully documented library is freely available for non-commercial use at
http://www.ads.tuwien.ac.at/AGD. The site also contains an online manual,
links to AGD related papers, and contact information.

2 Layout Algorithms and Layout Features

The library contains a large number of state-of-the-art drawing algorithms for
many of which implementations can only be found in AGD. Figure 1 shows
UML-diagrams of three major components of the library: (a) planar draw-
ing algorithms, (b) hierarchical drawing algorithms, and (c) the planarization
method. Among the highlights in the latest version are implementations of the
Kandinsky- and the Giotto-algorithm, new heuristics and exact algorithms for
two-dimensional compaction, and new strategies for crossing minimization based
on a linear-time implementation of SPQR-trees.
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3 Architecture

Most successful approaches for drawing graphs consist of several phases. The
open and modular design of the library, realized by a strict compliance to the
object-oriented programming paradigm, facilitates the experimentation with dif-
ferent approaches to the various subtasks. It is easy to replace or extend existing
modules by plugging in an alternative method or providing a derived solution.

3.1 Programming Language and Operating Systems

The library is written in C++ and can be downloaded for Linux, Solaris, and
Windows platforms and different compilers.

4 Interfaces

AGD implements a generic layout interface that is independent of a fixed draw-
ing component. This partition makes it easy to integrate the library’s functional-
ity within application programs. However, several interface implementations are
already included in the library; most notably, two demo programs that use the
graph editor in LEDA provide instant access to the functionality of the base part
and the optional add-on of AGD. These interfaces can be easily extended and
adapted. Furthermore, due to the file- and socket-based AGD server interface,
the usage of AGD is not restricted to C++ applications.
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Fig. 1. UML-diagrams of selected AGD modules
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