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Abstract. We consider the problem of partitioning a directed acyclic
graph into layers such that all edges point unidirectionally. We perform
an experimental analysis of some of the existing layering algorithms and
then propose a new algorithm that is more realistic in the sense that
it is possible to incorporate specific information about node and edge
widths into the algorithm. The goal is to minimize the total sum of edge
spans subject to dimension constraints on the drawing. We also present
some preliminary results from experiments we have conducted using our
layering algorithm on over 5900 example directed acyclic graphs.

1 Introduction

The layering problem for directed acyclic graphs (DAGs) arises as one of the
steps of the classical Sugiyama algorithm for drawing directed graphs [6]. If the
nodes of a DAG are not pre-assigned to specific layers then it is necessary to sep-
arate them into such layers in order to draw the DAG in Sugiyama fashion. We
call an algorithm that finds a layering of a DAG a layering algorithm. Normally
a layering algorithm must find a layering of a DAG subject to certain aesthetic
criteria important to the final drawing. While these may be subjective, some
are generally agreed upon [4]: the drawing should be compact; large edge spans
should be avoided; and, the edges should be as straight as possible. Compactness
can be achieved by specifying bounds W and H on the width and the height
of the layering respectively. Short edge spans are desirable aesthetically because
they increase the readability of the drawing but also because the forced intro-
duction of dummy nodes, when an edge spans multiple layers, degrades further
stages of drawing algorithms. The span of edge (u, v) with u ∈ Vi and v ∈ Vj

is i − j. Further, the dummy nodes may also lead to additional bends on edges
since edge bends mainly occur at dummy nodes.

At present there are three widely-used layering algorithms which find lay-
erings of a DAG subject to some of the above aesthetic criteria. They all have
polynomial running time: the Longest Path algorithm finds a layering with mini-
mal height [4]; the Coffman-Graham algorithm finds a layering of width at most
W and height h ≤ (2 − 2/W )hmin, where hmin is the minimum height of a
layering of width W [3]; and the ILP algorithm of Gansner et al. finds a layering
with minimum number of dummy nodes [5]. An upper bound on the width of the
layering can be specified only in the Coffman-Graham algorithm. In the classical
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version of the Coffman-Graham algorithm the width of a layer is considered to
be the number of real nodes the layer contains while neglecting the introduced
dummy nodes. The algorithm can easily be modified to take into account the
widths of the real nodes, but the width of the final drawing may still be much
greater than expected, because of the contribution of the dummy nodes to it.
The algorithm of Gansner et al. usually results in compact layerings, but the
dimensions of the drawing are not controlled and they may be undesirable.

After introducing some basic definitions related to the layering problem we
compare the performance of the existing layering algorithms on over 5900 ex-
ample DAGs in Section 3. Then in Section 4 and Section 5 we introduce a new
approach to the layering problem based on Integer Linear Programming (ILP)
and identify a set of valid inequalities (some of which define facets) of the associ-
ated layering polytope. This approach allow us to construct a new ILP layering
algorithm which we study and compare to Gansner et al.’s layering algorithm in
Section 6. In Section 7 we discuss the results of this work and suggest further
research directions.

2 Basic Definitions

Definition 1. Given a DAG G = (V,E), where each node v ∈ V has a positive
width wv, a layering of G is a partition of its node set V into disjoint subsets
V1, V2, . . . , Vh, such that if (u, v) ∈ E where u ∈ Vi and v ∈ Vj then i > j. A
DAG with a layering is called a layered digraph.

Definition 2. The height of a layered digraph is the number of layers, h.

Definition 3. The width of layer Vk is traditionally defined as w(Vk) =∑
v∈Vk

wv and the width of a layered digraph (layering) is w = max1≤k≤h w(Vk).

Layered digraphs are conventionally drawn so that all nodes in layer Vk lie on the
horizontal line y = k and all edges point downwards. In the process of drawing a
layered digraph when an edge spans multiple layers, it is common to introduce
dummy nodes with in- and out-degree 1 in the intermediate layers.

We denote by d−(v) and d+(v) the in- and out-degree of node v ∈ V , respec-
tively. For G = (V,E) with unitary edge lengths, define lp(v) to be the length of
the longest path from any node u to v where d−(u) = 0. Similarly, define ls(v) to
be the longest path from v to any node u where d+(u) = 0. That is, the values
lp(v) and ls(v) refer, respectively, to the length of the longest path from any
predecessor to v and to the length of the longest path from v to any successor.
Let the node set V of G be constrained to be partitioned into at most H layers.
Then for each node v ∈ V there is a set of consecutive layers where the node can
be potentially placed in if all the edges are required to point downwards. The
following three definitions describe this set.

Definition 4. The roof of node v is the number of the highest layer node v can
be placed in. We denote the roof of v by ρ(v), i.e. ρ(v) = H − lp(v).
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Definition 5. The floor of v is the lowest level node v can be placed in. We
denote the floor of v by ϕ(v), i.e. ϕ(v) = ls(v) + 1.

Definition 6. The layer span of node v is L(v) = {k ∈ IN : ϕ(v) ≤ k ≤ ρ(v)}.
That is, L(v) refers to the set of layers in which node v can be potentially placed
if all the edges are required to point downwards.

By definition the roof and the layer span of node v depend on the upper bound
on the number of layers H. We do not include H in the notations of the roof and
the layer span for simplicity of notation. Normally, it is clear from the context
what is the value of H.

3 Performance of Existing Layering Algorithms

In this section we look at the behavior of the algorithms described earlier on a
variety of inputs. As motivation for what is to follow we look at the output of the
three algorithms on a specific graph, firstly. Then we consider their aggregate
performance over a range of measures.

3.1 Three Layerings of a Graph

Figure 1 illustrates how the same DAG, Grafo1012.22 from the graph database
introduced by Di Battista et al. [1], is layered by the three algorithms described
earlier.

The layering in Figure 1(a) is the output of the Longest Path algorithm and
it clearly shows its weakness: the width of the bottom layers is much larger than
the width of the top layers. The layering in Figure 1(b) is the output of the
Coffman-Graham algorithm with an input parameter W = 5 (i.e. maximum 5
nodes in a layer). As can be seen, the final width of the drawing can exceed the
input parameter. The third layering in Figure 1(c) is the output of the Gansner
et al.’s ILP layering algorithm. In this case the drawing has the minimum number
of dummy nodes, but this algorithm does not put any bounds on the dimensions
of the layering, which may result in a final drawing which does not fit the drawing
area. For instance, if we need the same DAG Grafo1012.22 drawn on less than
9 layers (9 is the number of layers in Figure 1(c)) we may prefer to have the
DAG layered as it is in Figure 1(d) which shows a more compact drawing of
Grafo1012.22 having three dummy nodes more than the minimum.

3.2 Aggregate Performance of Layering Algorithms

Each of the three algorithms described above has some positive attribute: the
Longest Path algorithm finds a layering of minimum height; Gansner et al.’s
algorithm minimizes the number of dummy nodes; and, the Coffman-Graham
algorithm permits one to specify a bound on the width of the drawing. We
investigate the three algorithms’ performance now on a large sample of graphs
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according to some accepted aesthetics. These aesthetics are 1) the area of the
layering and 2) the number of dummy nodes that the algorithms introduce. We
ran all three algorithms on 5911 connected DAGs from the graph database of
Di Battista et al. [1]. The DAGs have node counts ranging from 10 to 100 and
the average number of nodes is 48.34. The node labels in all DAGs are numbers,
which makes all the nodes equally wide and allow us to set the node width equal
to 1. We separated the graphs into “buckets” according to their node count,
putting a graph of n nodes into bucket �n/2�. (A similar separation according
to edge count was rejected because of the number of buckets with just a single
graph.)
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Fig. 1. Grafo1012.22 layered with (a) the Longest Path algorithm (b) the Coffman-
Graham algorithm and (c) Gansner et al.’s algorithm. The drawing in (d) is a compact
representation of Grafo1012.22 with three dummy nodes more than the minimum num-
ber of dummy nodes.

In the following, we refer to the three algorithms as Longest Path, Coffman-
Graham and Gansner. For Coffman-Graham, the width bound for a graph was
specified to be equal to Gansner’s width for the same graph.

Figure 2(a) illustrates the three algorithms’ performance according to the
area aesthetic. For this figure, area was calculated to be the product of the num-
ber of layers and the width of the graph in terms of real nodes. Although Longest



20 P. Healy and N.S. Nikolov

Path’s height is optimal, its width is so poor that it results in an increasingly
poor performance. On the other hand, Gansner maintains a very close watch
on Coffman-Graham in spite of there being no explicit mechanism to control its
dimensions. This may be due to the following reason: the Coffman-Graham algo-
rithm requires a bounding width, W , as input and the bound that we provided
in all cases was the width resulting from the Gansner layering.
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Fig. 2. Area Computed by the Layering Algorithms (a) excluding and (b) including
the dummy nodes contribution to the width of the layering.

If we include the dummy nodes as part of the width of a layer then the
picture changes. Figure 2(b) shows the areas of the layerings found by the three
algorithms when a nominal charge of 1 is applied to dummy nodes. That is,
a dummy node makes the same contribution to the width as a real node –
a charge that is at the upper limit of what seems reasonable. For the larger
graphs, the best area is now almost double the previous best. The Coffman-
Graham algorithm has slipped to a very convincing last place however.

Although space restrictions prevents us from reporting in more detail, the
aspect ratio (AR) of the resulting graphs1 tells a similar story: ignoring dummy
nodes, Gansner and Coffman-Graham behave similarly and better than Longest
Path in that they have AR closer to unitary; when dummy nodes are factored
into the calculations, Gansner is considerably better than the other two, which
behave broadly similarly. Since Longest Path always has minimum height, its
AR will be biased towards larger values. (An interesting observation about AR
is that in all three algorithms, it peaks in the data at about |V | = 75 and then
declines.)

To investigate further the apparent impact of dummy nodes on aesthetics
such as area and aspect ratio, we computed both the average and maximum
ratios of dummy nodes to real nodes in each of the graphs. We define these two
parameters as follows.
1 Aspect ratio is computed as the ratio of width to height.
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Definition 7. Let G = (V,E) be a layered DAG. Maximum Layer Bloat (MLB)
of a layering of G is the maximum ratio of the number of dummy nodes in a
layer to the number of real nodes in the same layer over the layers of a graph.

Definition 8. Let G = (V,E) be a layered DAG. Average Layer Bloat (ALB)
of a layering of G is the average of the ratios of the number of dummy nodes in
a layer to the number of real nodes in the same layer over the layers of a graph.

Table 1 summarises the maximum and average bloat values for the 5911
DAGs. A more detailed breakdown is shown in Figure 3 where it can be seen
that Gansner is a clear winner: the maximum bloat of this algorithm behaves
similar to the average of the other two algorithms. The aspect ratio and area
aesthetics which are determined by the widest layer will be poorest with either
Coffman-Graham or Longest Path. However, even for Gansner the number of
dummy nodes is becoming significant for larger node counts.

Table 1. Average values of MLB and ALB for 5911 sample DAGs.

Layering MLB ALB
Longest Path 6.41 2.34
Coffman-Graham 5.76 2.01
Gansner 2.38 0.81
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Fig. 3. (a) Maximum and (b) Average Layer Bloats Computed by the Layering Algo-
rithms.

The number of dummy nodes introduced by a layering algorithm impacts
on later stages of hierarchical graph drawing methods so we investigate this
parameter. Figure 4(a) displays the number of dummy nodes introduced by
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the three algorithms normalized by the number of nodes in the original graph.
Gansner computes the optimal number of dummy nodes and, although growing
at a super-linear rate, it easily outperforms the other two. In this context again,
their performance is quite similar.

Finally, we compare the running times of the three layering algorithms in
Figure 4(b). As can be seen, Longest Path has the best running time, followed by
Gansner, and Coffman-Graham is the slowest, but still very fast. (We attribute
the stratified nature of the plots to clock resolution.)
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Fig. 4. (a) Normalized Number of Dummy Nodes introduced by the Layering Algo-
rithms (b) Running times.

On the basis of these experiments we conclude that Gansner’s algorithm is
the superior of the three. However, the disadvantage in using this algorithm
over the Coffman-Graham algorithm is that it is not possible to take account of
variable node widths; nor is it possible to find a layering with a restriction on the
width. Thus the goal of this work is to find a method for layering a DAG subject
to specified maximum dimensions, where nodes and edges have variable widths.
The dimensions of the layering should be true in that the width of dummy nodes
should not be assumed to be negligible and the layering should minimize the sum
of the edge spans (or equivalently the number of dummy nodes). We call this
optimization problem WHS-Layering.

The width of the dummy nodes at the layering phase can be taken into ac-
count only heuristically, because it mainly depends on the last phase of Sugiyama
algorithm for drawing DAGs, which is the tuning of the final position of the
nodes. We see two different heuristic approaches. First, we may decide to assign
a unit width to all dummy nodes and use this unit width to express the width
of the other nodes of the DAG. In such case all the dummy nodes have width 1
at the layering phase. Alternatively, each edge may have different width of the
dummy nodes which has to be placed on it. The experimental results we present
in this paper are based on the assumption that all the dummy nodes of a DAG
have unitary width.
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4 An ILP Approach to WHS-Layering

Taking into account the dimensions constraints (width and height) alone
makesWHS-Layering NP-hard since the Precedence Constrained Multiprocessor
Scheduling problem can be reduced straightforwardly to it [3]. We have taken a
combinatorial optimisation approach to WHS-Layering aiming to construct an
exact ILP algorithm which finds a layering with minimum number of dummy
nodes for specified upper bounds on the height and the width of the layering.

Let G = (V,E) be a DAG the nodes of which have to be partitioned into
at most H > 0 layers V1, V2, . . . , VH of width at most W > 0. We construct a
layering DAG or LDAG LH

G = (VL, EL) as follows. For each v ∈ V and each
k ∈ L(v) there is a node λvk ∈ VL. That is, node λvk corresponds to node v ∈ V
placed in layer Vk. The pair (λuk, λvl) ∈ EL if and only if (u, v) ∈ E.

Property 1. Let LH
G = (VL, EL) be an LDAG of G = (V,E), H > 0. If (u, v) ∈ E

then ϕ(u) > ϕ(v) and ρ(u) > ρ(v).

Property 2. Let LH
G = (VL, EL) be an LDAG of G = (V,E), V = n,E = m,

H > 0. Then |VL| = O(n2) and |EL| = O(mn2).

Definition 9. The set F ⊆ VL partially represents G if 1) λuk ∈ F , λvl ∈ F
and k �= l imply u �= v and 2) all the edges of LH

G [F ], i.e. the subgraph of LH
G

induced by F , point downwards. We call F a partial layering of G.

Definition 10. F ⊆ VL represents G if F partially represents G and for each
node v ∈ V there is a node λvk ∈ F for some k.

Note that if F partially represents G then LH
G [F ] is a layered digraph, where

each node v ∈ V is represented by at most one node of LH
G . The pair (VL, I),

where I is the family of all the subsets of VL which represent G and induce
layered digraphs of width at most W , is an independence system. The problem
of finding a layering of G on at most H layers of width not greater than W and
minimum total sum of edge spans can be expressed as an optimization problem
over the independence system (VL, I) as follows: min{C(F ) : F ∈ I}, where
C(F ) =

∑
λ∈F c(λ) and c(λ) is a weight associated with each node λ ∈ VL.

We need such a weight function C with co-domain IR, so that C(F ) reaches
its minimum at a set F which induces a layered digraph with minimum total
sum of edge spans. In order to do this consider the binary variables xvk for each
node v ∈ V and each k ∈ L(v). Let xvk be 1 if node v has to be placed in layer
Vk, and 0 otherwise. Then the expression

∑
(u,v)∈E

( ρ(u)∑
k=ϕ(u)

kxuk −
ρ(v)∑

k=ϕ(v)

kxvk

)
=

∑
v∈V

ρ(v)∑
k=ϕ(v)

k
(
d+(v)− d−(v)

)
xvk

represents the sum of edge spans of LH
G [F ]. If we set c(λvk) = k(d+(v)− d−(v))

then the minimum of the weight function would correspond to a layering with
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minimum total sum of edge spans. But the minimum can potentially be reached
at a partial layering which does not represent G. To ensure that the minimum
will be reached at a set that represents G we set c(λvk) = k(d+(v)−d−(v))−M ,
where M is an appropriately large positive number, for instance, M = H × |E|.
Then the optimization problem over (VL, I) takes the form

min
{ ∑

λvk∈F

[k(d+(v)− d−(v))− M ] : F ∈ I
}

.

We call the polytope associated with the family of subsets I, the graph layering
polytope and we denote it by GLP(LH

G ,W ).
In the next section we summarize the properties of GLP(LH

G ,W ).

5 Properties of the Layering Polytope

So far we have identified a number of nontrivial generic types of valid inequalities
for the layering polytope GLP(LH

G ,W ), the most interesting of which are listed
below.

Assignment inequalities
ρ(v)∑

k=ϕ(v)

xvk ≤ 1 (1)

for all v ∈ V . These inequalities express the fact that if F is a partial layering
of the DAG G then each node of LH

G [F ] corresponds to at most one node of G.
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Fig. 5. Illustration of (a) weak RO and (b) strong RO inequalities.
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Weak relative-ordering (RO) inequalities

ρ(v)∑
i=k

xvi −
ρ(u)∑

i=k+1

xui ≤ 0 (2)

with max(ϕ(v), ϕ(u)− 1) ≤ k ≤ ρ(v). These inequalities are valid when we have
established that node u must be placed above node v. This might be true either
because there is an edge (u, v) or because not placing u above v leads to a layering
of width greater than W . In this case if

∑ρ(v)
i=k xvi = 0, then −∑ρ(u)

i=k+1 xui ≤ 0;

and if
∑ρ(v)

i=k xvi = 1 then node v is placed in one of the layers from Vk to Vρ(v)
and in that case, node u is placed above node v, i.e. in one of the layers from
Vk+1 to Vρ(u) and therefore

∑ρ(u)
i=k+1 xui = 1. (See Figure 5(a).)

Strong relative-ordering (RO) inequalities

k∑
i=ϕ(u)

xui +
ρ(v)∑
i=k

xvi ≤ 1 (3)

with ϕ(u) ≤ k ≤ ρ(v). These inequalities are also valid in case we have es-
tablished that node u must be placed above node v. (See their illustration in
Figure 5(b).)

Path-augmented layer (PAL) inequalities

r∑
i=1

xvik +
mp∑
i=1

xup
i
k +

ms∑
i=1

xus
i
k ≤ r − 1 (4)

where

– nodes v1, v2, . . . , vr are pairwise independent (without a direct path between
any two of them) which cannot be placed together into the same layer with-
out causing the width of the layering to exceed the upper bound W ;

– mp ≥ 0 and nodes up
1, . . . , u

p
mp

form a directed path (up
mp

, . . . , up
1) where up

1
is a common immediate predecessor to each of the nodes v1, . . . , vr;

– ms ≥ 0 and nodes us
1, . . . , u

s
ms

form a directed path (us
1, . . . , u

s
ms

) where us
1

is a common immediate successor to each of the nodes v1, . . . , vr;
– k ∈

( ⋂r
i=1 L(vi)

) ⋂ ( ⋂mp

i=1 L(u
p
i )

) ⋂ ( ⋂ms

i=1 L(u
s
i )

)
.

Capacity inequalities
∑

v∈V (k)

wvxvk +
∑

(u,v)∈E

we

( ∑
l∈L(u), l>k

xul −
∑

l∈L(v), l≥k

xvl

)
≤ W (5)

where 1 ≤ k ≤ H and we is the width of the dummy nodes placed in edge
e. In this way we are able to localize dummy node widths for each edge of



26 P. Healy and N.S. Nikolov

a DAG. Inequalities (5), called capacity constraints, restrict the width of each
layer (including the dummy nodes) to be less than or equal to W : the first sum
on the left hand side represents the contribution of the real nodes to layer Vk

while the second sum is the contribution of the dummy nodes. The value of the
expression inside the brackets in (5) is 1 if and only if the edge (u, v) spans layer
Vk. Otherwise it is 0.

The two lemmas2 below describe some trivial properties of the layering poly-
tope GLP(LH

G ,W ).

Lemma 1. The dimension of the layering polytope of G = (V,E) is equal to∑
u∈V (ρ(u) − ϕ(u) + 1), so it is full dimensional. For each node λvk of of LH

G

the inequalities xvk ≥ 0 define facets of GLP(LH
G ,W ).

Lemma 2. The weak RO inequalities (2) are not facet defining for the layering
polytope.

The following two theorems describe facet-defining properties of the assign-
ment inequalities and the strong RO inequalities.

Theorem 1. The assignment inequalities (1) are facet defining for the layering
polytope.

Theorem 2. Let G = (V,E) be a DAG. The strong RO (relative-ordering)
inequalities (3) are facet-defining for GLP(LH

G ,W ) in the following two cases.

– (u, v) ∈ E is a non-transitive edge.
– u and v are two independent nodes (without a directed path between them)

and u has to placed above v in order for the layering to have width at most
W .

Note that the strong RO inequalities for all the non-transitive edges are sufficient
to ensure that all the edges of the layered digraph point downwards.

6 Experimental Results

We have constructed an ILP formulation, called ULair, which models the layer-
ing problemWHS-Layering employing the assignment inequalities (1), the strong
RO inequalities (3) and the capacity inequalities (5). ULair is solved currently
by running an ILP solver directly from CPLEX 7.0 on an Intel Pentium III/Red
Hat Linux 6.2 platform. As we have shown in Section 3 Gansner outperforms the
other present layering algorithms aesthetically. Thus we compared ULair’s per-
formance to Gansner’s. We ran Gansner and ULair with the same 5911 DAGs,
2 Proofs of all lemmas and theorems in this section are available upon request.
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described in Section 3.2, measuring a variety of parameters of the layering solu-
tions: MLB, ALB, maximum edge density between two adjacent layers, aspect
ratio of the width and the height of the layerings as well as their area.

ULair has two input parameters: an upper bound on the height of the lay-
ering, H, and an upper bound on the width of the layering, W . We conducted
two groups of experiments over the 5911 example DAGs.

First group of experiments. Firstly we ran Gansner on all the 5911 DAGs.
Suppose Gansner gives a solution with height HG and width WG and WG ≥ HG

(alternatively HG > WG) for a DAG G. Then we took W = WG and H = W/AR
(alternatively H = HG and W = H/AR), where AR is the desired aspect ratio
of the width and the height, as input parameters to ULair. We have tried two
values of AR: the golden mean 1.618 and 1.0. In the case AR = 1.618 ULair
reported solutions for 84.88% (5017 DAGs) of all the 5911 DAGs and in the case
AR = 1.0 ULair reported solutions for all the DAGs except one. The values
of all the parameters of the layerings we watched are slightly better than the
parameters of the solutions given by Gansner, which shows that ULair gives
the same quality of solutions when the dimensions are approximately the same
as the dimensions of Gansner’s solutions. In Figure 6 we present the maximum
edge density between adjacent layers in Gansner’s and ULair solutions. The edge
density is normalized (i.e. divided by the total number of edges). In this group
of experiments, the maximum edge density is the parameter on which Gansner
and ULair differ most. The better values of edge density in ULair’s layerings are
encouraging, because they suggest a more even distribution of the graph over
the drawing area and perhaps to a fewer number of edge crossings at a later
stage of the Sugiyama algorithm. This is a subject of further research.
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Fig. 6. First group of experiments: Maximum edge density when (a) AR = 1.618 and
(b) AR = 1.0.
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Second group of experiments. We then ran Gansner and ULair indepen-
dently for the 5911 example DAGs. The input parameters of ULair were set
according to a certain aspect ratio AR of the width and the height of a layering,
assuming that the nodes are distributed evenly over the layers and the expected
number of dummy nodes is equal to the number of real nodes. That is, H is the
larger of

√
2n/AR and the longest path in the DAG, and W = H × AR. We

performed these experiments for AR = 1.618 and ULair reported solutions for
70.39% (4161 DAGs) of all the 5911 DAGs. Here ULair performed better than
in the previous group. Figure 7(a) compares the area and Figure 7(b) compares
the edge density of the layerings of Gansner and ULair.
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Fig. 7. Second group of experiments: (a) area and (b) maximum edge density of the
layering solutions (AR = 1.618).

The running times for the two groups of experiments are presented in Fig-
ure 8. When we changed AR from 1.618 to 1.0 in the first group of experiments,
the running time visibly increased (see Figure 8(a)). Smaller AR means either
larger height upper bound H or smaller width upper bound W (because we
chose AR = W/H). Our experience working with ULair has shown that when
the width upper bound is constant then decreasing the height upper bound
speeds up ULair, and when the height upper bound is constant then decreasing
the width upper bound slows down the layering procedure. Since the problem
under investigation is NP-hard we do not expect better running time than the
existing layering algorithms which have polynomial time complexity. However,
we believe that ULair – as it presently stands – is a better alternative for DAGs
having up to 100 nodes (and possibly more), as well as in any case when the
time for drawing is less important than the quality of the final picture.
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Fig. 8. Running time of ULair for (a) the first group and (b) the second group of
experiments.

7 Conclusions

The experimental results show that ULair combines the positive attributes of
the existing layering algorithms, namely, Longest Path, Coffman-Graham and
Gansner. The width bound we specify when solving ULair represents the width
of the final drawing much more accurately than the width bound used in the
Coffman-Graham algorithm. The variety of parameters we can specify – width
and height bounds, and the widths of nodes and edges (dummy nodes) – makes
possible a family of layering solutions, permitting the user to choose the best one
of them. This also makes ULair a good tool for studying from experimental point
of view the relationship between various aesthetic parameters like the dimensions
of a layering, the number of dummy nodes and the number of edge crossings in
the final drawing.

As a final example we show two layerings of one of the small connected
components of Graph A from the Graph Drawing Contest 2000 [2]. Graph A
represents the structure of a software system from programmer’s point view and
contains large node labels. The layering in Figure 9 is a result of Gansner and
the layering in Figure 10 is one of the alternative solutions given by a ULair
when we draw the DAG putting different upper bounds on its width.

Our further work will be a more detailed study of the structure of the layer-
ing polytope GLP(LH

G ,W ) in terms of valid inequalities and facets in order to
develop a branch-and-cut algorithm for solving ULair, and comparing its per-
formance to the present solution method. This, we believe, will make it possible
to accurately layer graphs well in excess of the 100-node examples that we have
been working with.

Acknowledgments. We would like to thank Petra Mutzel and Gunnar Klau
for the graph database they kindly let us use for performing our experiments.
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Fig. 9. Graph A: Gansner’s layering (all edges point downwards).

Fig. 10. Graph A: ULair’s layering (all edges point downwards).
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