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Abstract. In this paper, we present a new compaction algorithm which
computes orthogonal drawings where the size of the vertices is given
as input. This is a critical constraint for many practical applications
like UML. The algorithm provides a drastic improvement on previous
approaches. It has linear worst case running time and experiments show
that it performs very well in practice.

1 Introduction

Orthogonal drawings of graphs are extensively used in many application areas.
Examples are UML class-diagrams in software engineering or ER-diagrams in
database management. One critical property in many of these diagrams is that
the vertices of the graph have prescribed size. Take again UML class-diagrams,
where the size of the vertices is determined by the contained text.

Traditional algorithms for orthogonal layout do not take prescribed vertex
sizes into account. Recently, algorithms based on the topology-shape-metrics
approach have been proposed for this problem [1], [11], and [5]. The topology-
shape-metrics approach introduced in [3] is a very popular algorithm framework
and consists of the three steps planarization, layout and compaction. The lengths
in the drawing are assigned in the compaction step. Therefore the prescribed
size constraints for vertices affect mainly this step. However, the input of the
compaction step, also called the shape of the drawing, must ensure that the
prescribed size constraints can be fulfilled. Algorithms based on the Kandinsky
framework [7] guarantee this.

The algorithm of Di Battista et. al. [1] creates in a first step a drawing
of the graph where the vertices are represented as points and edges overlap if
they are adjacent to the same vertex at the same side. Then each vertical and
each horizontal grid-line is expanded individually, i.e., each grid-line is replaced
by a set of grid-lines such that the vertices can be assigned their prescribed
sizes and the edges can be routed without overlap. This expansion is done by
solving a Min-Cost-Flow problem for each horizontal and each vertical grid-line.
The authors do not give any bounds on the time complexity of their algorithm.
They experienced up to 50 seconds computation time on graphs in the Rome
graphs test suite [4]. Klau et al. propose in [11] that their compaction approach
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originating from graph labeling can also be used to solve the compaction problem
for drawings with prescribed vertex size. The approach relies on branch-and-cut
and has, therefore, exponential worst case running time. The authors give neither
a detailed description of how the algorithm can be used in the prescribed vertex
size setting nor experimental results.

We will present in this work a new compaction algorithm which constructs
orthogonal drawings where vertices have prescribed size. The algorithm requires
linear running time which improves significantly on the existing algorithms. The
design of the algorithm allows us to also improve the quality of the result in the
expense of running time. We also provide the results of empirical tests which
demonstrate the effectiveness of the algorithm in practice. Since now, experi-
ments for compaction algorithms have only been performed for 4-graphs [9].

This paper is organized as follows: In section 2, we introduce basic con-
cepts of the topology-shape-metrics approach and the Kandinsky framework. In
section 3, we present a new linear time compaction algorithm for 4-graphs. In
section 4 we extend this algorithm for the Kandinsky model. In section 5, we
show how prescribed vertex sizes can be integrated in this algorithm. Section 6
deals with extensions, implementation issues and concludes with the results of
extensive empirical tests.

2 Preliminaries

We assume familiarity with the concept of planarity of graphs. An embedded
planar graph is a planar graph with a specific circular order of edges around
vertices and a specific external face, admitting a planar drawing that respects
the given embedding. Unless otherwise specified, the planar graphs we consider
are always embedded.

A planar orthogonal drawing of a planar graph is a planar drawing that maps
each vertex to a point and each edge to a sequence of horizontal and vertical
segments. In a planar orthogonal grid drawing the vertices and the bends along
the edges have integer coordinates. Note that a planar graph admits a planar
orthogonal grid drawing if and only if it is a 4-graph, i.e., the vertices of the
graph have degree less than or equal to 4. An orthogonal representation H is
a mapping from the set of faces F of a 4-graph G to clockwise ordered lists of
tuples (er, ar, br) where er is an edge, ar is the angle formed with the following
edge inside the appropriate face, stored as multiple of 90o, and br is the list of
bends of the edge. Note that in a planar orthogonal drawing, 1 ≤ ar ≤ 4 holds.
If there are no bends in H, we call H simple.

A planar orthogonal box drawing of a planar graph is a planar drawing that
maps each vertex to a box and each edge to a sequence of horizontal and vertical
segments. In the corresponding grid drawing the center of the boxes and the
bends along the edges have integer coordinates. A quasi-orthogonal representa-
tion Q is defined analogously to orthogonal representation with the difference
that 0o angles are allowed. A 0o angle denotes that the following edge is adjacent
to the same side of the vertex as the preceding edge. Note that quasi-orthogonal
representations are not related to quasi-orthogonal drawings as described in [10].
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Different drawing conventions have been proposed for planar orthogonal
box drawings. We will concentrate on the so-called Kandinsky-models. All
Kandinsky-models impose the following constraints on the drawing which we
call Kandinsky-properties: the bend-or-end property and the non-empty face
property. The bend-or-end property is defined as follows: Let G=(V,E) be an
embedded graph and Γ be an planar orthogonal box drawing of G. Let e1 and
e2 be two edges adjacent to the same side of a vertex v, e1 following e2 in the
embedding. Let f be the face to which e1 and e2 are adjacent. Then either e1
must have a first bend with a 270o angle in f or e2 must have a first bend with
270o angle in f . The non-empty face condition forbids some degenerated cases
for triangles in the graph. See [7] for a detailed description of the Kandinsky-
properties.

There are several variations of Kandinsky-models: In the original version all
vertices were represented by squares of equal size, arranged on a coarse vertex
grid [7]. In the big-node model [8], the size of the vertices is determined by the
number of edges attached to the different sides of the vertex. We also consider
the point model, in which the vertices are represented by points. As pointed
out above, these drawings might not be valid orthogonal drawings since edge
overlap may occur. In [1] the podavsnef-model is introduced in which vertices
have prescribed size. We refer to this model as the prescribed-size Kandinsky-
model in this work.

We assume that the (quasi-)orthogonal representations, which stem from the
second phase of the topology-shape-metrics algorithm have only a linear number
of bends. The algorithm works also for cases where the representations have
more bends, but the time bounds are no longer valid. The above assumption is
justified, since to our knowledge, all algorithms which create (quasi-)orthogonal
representations follow this assumption.

3 Compaction of 4-Graphs

In this section, we treat the compaction problem for orthogonal drawings and
propose a linear time algorithm for it. Our algorithm is a combination of the
exact compaction algorithm [12] and the rectangular decomposition technique
[15]. Rectangular decomposition already leads directly to a linear time algorithm,
but the insight that we gain in combining the two techniques is the base for the
following sections. The problem is stated as follows:
Problem 1: Given an embedded 4-graph G with orthogonal representation H,
find a drawing Γ of G with orthogonal representation H.

Note that every orthogonal representation can be reduced to a simple or-
thogonal representation by replacing the bends in H by dummy vertices. We
therefore assume for the rest of the section that H is simple. We first review the
exact compaction algorithm and then derive our algorithm from it.

3.1 The Approach of Klau/Mutzel

Given an embedded graph G with orthogonal representation H. We calculate
from G and H a mapping dir : E → {r, u} and an orientation of G such that
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there exists an orthogonal drawing Γ of G with orthogonal representation H
where the directed edge e points upward if dir(e) = u and points to the right
if dir(e) = r. We can calculate this in linear time. Note that this assignment
is not unique, but the set of solutions are rotations of each other. Note also
that for each edge, there are two entries in H. In one of these entries, the edge
orientation is the same as the traversal direction of the face and in one of these
entries the traversal direction is the opposite of the edge orientation. From this
fact we can derive in which absolute direction d ∈ {up, down, left, right} an
edge is traversed in a face-traversal and append this information directly to the
tuple in H. We assume for the rest of the section that G is directed according
to the orientation stated above.

We denote with Gr = (V,Er) the subgraph of G which contains only horizon-
tal edges, i.e., Er = {e ∈ E : dir(e) = r} and with Gu = (V,Eu) the subgraph
of G which contains only vertical edges, i. e., Eu = {e ∈ E : dir(e) = u}.

The connected components of Gr, resp. Gu, are directed paths and form a
line in a drawing of G with orthogonal representation H. We denote with Sr,
resp. Su, the set of connected components of Gr, resp. Gu, and call the elements
of it horizontal segments, resp. vertical segments. We say that two segments are
adjacent if they share a point. We denote with α(s) the start node of the path
which forms a segment s and with ω(s), the endpoint of this path. Every edge
e is contained in exactly one segment seg(e) and each node v is contained in
exactly one vertical segment vert(v) and one horizontal segment hor(v).

The concept of constraint graph describes the ordering of the segments of one
type. The edge sets of the constraint graphsDu = {Sr, Au}, resp.Dr = {Su, Ar},
are defined as:

Au = {(hor(v), hor(w)) : (v, w) ∈ Eu}, and
Ar = {(vert(v), vert(w)) : (v, w) ∈ Er}

The shape description S = (Dr, Du) combines two constraint graphs.
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Fig. 1. Examples of segments and the corresponding constraint graph.

Definition 1. Let sr be a vertical segment and su be a horizontal segment which
are not adjacent. We call sr and su to be separated if one of the following
conditions hold:
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1. su
∗−→Dr

ver(α(sr)) 2. ver(ω(sr))
∗−→Dr

su

3. sr
∗−→Du hor(α(su)) 4. hor(ω(su))

∗−→Du sr

A shape description is called complete if every pair of segments with opposite
direction is separated.

We define the linear program (LP ) as:

xb − xa ≥ 1 ∀(a, b) ∈ Ar

yb − ya ≥ 1 ∀(a, b) ∈ Au

xs ≥ 0 ∀s ∈ Su

ys ≥ 0 ∀s ∈ Sr

Lemma 1. [12] If S is complete a feasible solution (x, y) of the linear pro-
gram (LP ) induces an orthogonal drawing Γ : V → IN × IN with Γ (v) =
(xvert(v), yhor(v)) of G with orthogonal representation H.

We can find a feasible solution of (LP ) in linear time by solving a longest path
problem [13]. When the shape description is not complete, there may be feasible
solutions of the (LP ) which induce non-valid orthogonal drawings. In [12], it is
shown that there always exists a superset of S which is a complete shape de-
scription. We call this superset Sext a complete extension of S. Klau/Mutzel [12]
propose a branch and cut algorithm which finds the complete extension such
that the resulting drawing has minimal edge length. This approach has the dis-
advantage that it has exponential worst-case running time. We cannot hope to
do better when we try to optimize the edge length, since this problem is NP-
hard[14]. If we drop the goal to achieve optimality, we can get a much faster
algorithm by searching a complete shape extension by heuristics.

3.2 A Fast Heuristic

We propose the following strategy to solve the compaction problem:

1. Calculate orientation and dir of G and H.
2. Calculate shape description S = (Dr, Du) .
3. Calculate a complete extension of S.
4. Solve corresponding longest path problem on Dr and Du.
5. Assign coordinates according to longest distances.

It remains to be shown how we can find a complete extension. The heuristics
we use is based on the technique of rectangular decomposition[15]. The starting
point for the rectangular decomposition strategy is the observation that if all
faces of the graphs are rectangles, we can easily solve the compaction problem by
applying longest path or network flow algorithms to it. The idea is to subdivide
those faces which are not rectangular into rectangles and then solve the problem
on this subdivision. This induces a valid embedding on the original graph. What
remains is to perform this subdivision efficiently, which can be done by searching
certain patterns of angles on the face. We denote 90o angles on a face with a
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′0′ and 270o angles with a ′1′. Every time we find the pattern 100, we cut a
rectangle from the face and continue to search the pattern on the remaining
face. See Fig. 2 for an illustration. We terminate if there are no more patterns
in any face. Using a list, rectangle decomposition can be done in linear time.

Function init-list(Face f )
List l← ε;
for each (e = (v, w), a, ε, d) in f do

// Let d’ be the direction obtained by rotating d by 90o.;
if a = 1 then append (0, seg(e), d) to l;
if a = 3 then append (1, seg(e), d) to l;
if a = 4 and e ∈ Eu then append (1, seg(e), d), (1, hor(w), d′) to l;
if a = 4 and e ∈ Er then append (1, seg(e), d), (1, ver(w), d′) to l;

end
return l

1

0 0

0 1

0 0

s1

s4s2
s3

Fig. 2. Decomposition of a face into a rectangle and a remaining face.

From this algorithm we can directly derive a completion heuristic. Assume
that we are in the situation illustrated in Fig. 2. Instead of introducing a dummy
node and a dummy edge in the graph, we simply add edges to the constraint
graph. In the case above, we insert the edge (s1, s3) in Du and the edge (s2, s4)
in Dr. We handle the other three cases symmetrically. The function define-box
describes the four cases:

Function define-box(Shape description S,Direction d,Segments s1, s2, s3, s4)
Let S = ((Su, Ar)(Sr, Au));
If d = up then Au ← Au ∪ (s2, s4), Ar ← Ar ∪ (s3, s1);
If d = down then Au ← Au ∪ (s4, s2),Ar ← Ar ∪ (s1, s3);
If d = left then Au ← Au ∪ (s1, s3),Ar ← Ar ∪ (s2, s4);
If d = right then Au ← Au ∪ (s3, s1),Ar ← Ar ∪ (s4, s2);

The completion algorithm executes on every face first init-list and then
decompose.

Lemma 2. With the above algorithm, we can calculate a complete shape exten-
sion of size O(n) in linear time.
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Function decompose(Shape description ,List l)
while size(l) > 4 do

// denote with ti = (ai, si, di) the i-th tuple in l;
if (a1 = 1) and (a2 = 0) and (a3 = 0) then

define-box(S, d1, s1, s2, s3, s4);
replace t1 with (0, s1, d1);
remove t2 and t3 from l;

else
move t1 to the rear of l

end
end
define-box(S, d1, s1, s2, s3, s4);

Proof. We first show that the complete shape extension has size O(n). The ini-
tial shape description has linear size by Euler’s formula. Since the rectangle
decomposition introduces O(n) rectangles and we insert two edges into it per
rectangle, the complete shape extension has linear size. The linear running time
follows immediately from this fact, too. It remains to be shown that the exten-
sion is complete. Take a drawing of G produced by the conventional rectangle
decomposition algorithm and take a vertical segment sr and a horizontal seg-
ment su which are not adjacent. Because the drawing is planar, sr and su do not
cross, so one of the four following cases must hold: sr is above su, sr is below su,
sr is left of su or sr is right of su. Assume w.l.o.g. that su is above sr and that
su is not to the left of sr. The other cases are symmetric. Since su is above sr,
s′ = hor(α(su)) is also above sr. Assume that one of the following cases holds:

1. There is a sv ∈ Su such that the intersection of the projection of sv and su

on the y-axis is non-empty and there is a path from vert(ω(sr)) to su in Dr.
2. There is a segment sh ∈ Sr such that the intersection of the projection of sh

and s′ on the x-axis is non-empty and there is a path from sr to sh in Du.

If the assumption is true, we are done. To see this, assume that the second
case holds. Then just take a line parallel to the y-axis with x-coordinate in the
intersection of the projections. From the rectangles which are intersected by the
parallel line, we can now easily construct a path from sh to s′ in Du.

We give a constructive proof that either sv or sh exists. Start at segment sr

and go to the lowest rectangle to the right of it, if such a rectangle exists. In
this case, go from this rectangle to the leftmost rectangle above. Iterate until a
segment is found which induces an intersection of the projections. Because we
proceed monotonically increasing in x- and y-coordinates, such a segment must
exist for monotonicity reasons. The existence of the path follows from how we
traverse the rectangles.

Theorem 1. The above algorithm solves the Problem 1 in linear time.
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4 Compaction in the Kandinsky Point Model

Before we present the compaction algorithm for prescribed vertex sizes in the
next section, we take a step in between and consider the compaction problem
for the Kandinsky point model, which is presented in this section.

Problem 2: Given an embedded graph G with simple quasi-orthogonal rep-
resentation Q having the Kandinsky properties. Find a drawing Γ of G with
quasi-orthogonal representation Q, in which the vertices of G are represented as
points.

We assume as in the previous section that G is oriented, marked with direc-
tion tags and that bends are replaced by dummy vertices.

In a quasi-orthogonal representation there may be more than one edge ad-
jacent to a side of a vertex. As a consequence a segment does not represent a
directed path of edges with the same direction tags as in the previous section.
See Fig.3 for such a segment.

c g

b

a

de f

Fig. 3. A segment in a quasi-orthogonal representation, where vertices are denoted as
rectangles.

We therefore refine the segment definition and introduce the concept of sub-
segment. We call two edges (u, v) and (v, w) a right-join (left-join) if they have
the same direction and between them in the cyclic order (reverse cyclic order)
there are only edges with different directions. In Fig. 3, edges b and e form a
right-join and edges a and c a left-join.

Definition 2. Let p be a directed path consisting of edges with the same direction
tag. The path p is a sub-segment if every two consecutive edges in the path are
a right-join or every two consecutive edges in the path are a left-join or if p
consists of one single edge. The path p is a maximal sub-segment if there is no
sub-segment containing it.

Because we will only consider maximal sub-segments, we will omit the word
’maximal’ for the rest of this work. Note that the terms sub-segment and
maximal-sub-segment have a different meaning as in [12]. The sub-segments
of the segment shown in Fig. 3 are (a, c, g),(b, e),(d) and (c, f). An edge is part
of at most two sub-segments. As for segments, we distinguish between vertical
sub-segments and horizontal sub-segments. A vertex may be adjacent to an ar-
bitrary number of sub-segments. If s is a sub-segment, we denote with seg(s)
the segment which contains s. Note that α and ω are no longer well defined on
segments, but are well-defined for sub-segments. We define S = (Dr, Du) and
(LP ) analogous to the previous section.
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Definition 3. Let sr be a vertical sub-segment and su be a horizontal sub-
segment which are not adjacent. We call sr and su separated if one of the
following conditions hold:

1. seg(su)
∗−→Dr seg(α(sr)) 2. seg(ω(sr))

∗−→Dr seg(su)
3. seg(sr)

∗−→Du seg(α(su)) 4. seg(ω(su))
∗−→Du seg(sr)

We call a shape description complete if every pair of sub-segments with op-
posite direction is separated unless the overlap of these two segments cannot be
avoided because of the representation of vertices as points.

With the same argumentation as in Lemma 1, it follows that if S is complete,
a feasible solution (x, y) of (LP ) induces an orthogonal drawing Γ : V → IN× IN
with Γ (v) = (xvert(v), yhor(v)) ofG with quasi-orthogonal representationQ. As in
the previous section a feasible solution of (LP ) can be found with a longest path
algorithm in linear time. It remains to be shown how we can calculate a complete
shape extension for S. We again use rectangle decomposition to perform this,
but this time we need two rounds.

Let f be a face in Q. In the first round, we eliminate all 0o angles from f . We
modify for this purpose the init-list function described in the previous section
in two points: we denote a 0o angle with a ’−1’ in the cyclic-list and we store
the sub-segments rather than the segments in the list entries. Then, we perform
a modified version of the decompose function on this list. The first modification
is that we search for patterns described in Fig. 4. The choice of rule (c) or (d)
depends on some technical constraints, see [6] for a detailed description. The
define-box function takes sub-segments instead of segments as arguments. It
connects the segments in the constraint graph which correspond to the sub-
segments unless it would connect a segment with itself. We terminate when we
have traversed the entire cyclic list. Let l′ denote the resulting cyclic list. In the
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Fig. 4. Rules to eliminate zero degree angles

second round, we simply perform decompose on l′.
From the correctness and time bounds proven in the previous section, to-

gether with the fact that the traditional version of rectangle decomposition de-
scribed in [6] is correct, the following theorem follows:

Theorem 2. The above algorithm solves Problem 2 in linear time.
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5 Compaction in the Prescribed-Size Kandinsky Model

In this section we provide a compaction algorithm for the prescribed-size Kan-
dinsky-model. We denote with width(v) the prescribed width of a vertex in G
and with height(v) the prescribed height. We assume that the number of edges
adjacent to the top/bottom side of a vertex v is less than width(v) + 1 and the
number of edges adjacent to the left/right side is less than height(v) + 1.

Problem 3: Given an embedded graph G with quasi-orthogonal representation
Q having the Kandinsky properties. Find a drawing Γ of G with orthogonal
representation Q, in which each vertex v of G is represented by a box of the size
(width(v), height(v)).

We assume as in the previous section that G is oriented, marked with direc-
tion tags and that bends are replaced by dummy vertices.

The algorithm proceeds as follows: It first replaces each non-dummy vertices
by a rectangular face. The result of this transformation is a 4-graph with a
simple orthogonal representation. It creates for this orthogonal representation a
complete shape description which is compatible with the vertex size constraints.
Finally, it calculates the drawing from the complete extension. We now give a
detailed description of the algorithm.

5.1 Simplification

Let B ⊂ V denote the dummy vertices representing bends. The elements in
B have zero size. In a first step, the vertices with non-zero size are replaced by
rectangular faces. Let v be such a vertex. For each edge adjacent to v, a new node
p(e, v) is created which represents the port of e on v. Also, four corner nodes
nw(v), ne(v), sw(v) and se(v) are created. See Fig. 5 for an example. Each
node face has four adjacent node-segments: the top segment t(v), the bottom
segment b(v), the left segment l(v), and the right segment r(v). The result of this
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Fig. 5. Transformation of a vertex into a face and an invalid compaction.

simplification step is a 4-graph GS = (VS , ES) with orthogonal representation
HS . The mapping simple : E → ES maps every edge in E to the corresponding
edge in ES . GS has 4|V |+2|E|+ |B| nodes. Since G and GS are planar it follows
with Eulers formula that the above transformation causes a constant blow up.
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5.2 Problem Description

We now try to find a drawing of GS which induces a valid drawing on G. We
call these drawings valid drawings of GS . There are two differences between a
valid drawing of GS and a valid drawing of a 4-graph described in Sec. 3:

1. The edges adjacent to a corner node may have zero length.
2. The segments of the node-faces have prescribed distance.

We extend the algorithm of the previous section to match these requirements.
This is done by refining the constraint graph definition of the previous section
by adding a length function to the constraint graphs, and introducing auxiliary
edges which denote the vertex size. These refinings are similar to the ones in
[11]. We define the edge-set of the constraint graph D′

u as A′
u = Au ∪N+

u ∪N−
u ,

with
N+

u = {(b(v), t(v)) : v ∈ V }, and N−
u = {(t(v), b(v)) : v ∈ V }

The constraint graph D′
r is defined analogously, and S ′ = (D′

r, D
′
u) is the

corresponding shape description. Additionally, we define the length function
length : A′

u ∪A′
r → Z in the following way:

length(e) =




0 if e ∈ Au, e is induced by an edge adj. to a corner
height(v) if e ∈ N+

u

−height(v) if e ∈ N−
u

1 otherwise

The values of length for A′
r are defined analogously. This leads to the Kandinsky

linear program (KLP ):

xb − xa ≥ length(e) ∀e = (a, b) ∈ A′
u

yb − ya ≥ length(e) ∀e = (a, b) ∈ A′
r

xs ≥ 0 ∀s ∈ Su

ys ≥ 0 ∀s ∈ Su

As in the previous sections, we need a characterization of the shape descrip-
tions whose solution of (KLP ) induce valid drawings. But, this time, it is not
enough to demand that all segments have to be separated, since there are cases
where all segments are separated but there is no feasible solution for (KLP ).
The reason for this is that we might violate the maximum length condition for
node faces, see Fig. 5(c) for an example.

Definition 4. A shape description S ′ is length-complete if S ′ is complete and
every cycle in the constraint graphs of S ′ has non-positive length.

Lemma 3. Let S ′ be a complete shape description. (KLP ) has a feasible so-
lution if and only if every cycle in the constraint graphs of S ′ has non-positive
length.
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Proof. It is shown in [12] that if a constraint graph in S has a positive length
cycle, then (KLP ) is not feasible. We can transform (KLP ) to a system of
difference constraints by multiplying each constraint by −1. This transforms
every positive length cycle in a negative length cycle and vice versa. It holds
now that a system of difference constraints is feasible if and only if it has no
negative length cycle, see, i.e., [2] for a proof.

We cannot apply the longest path algorithms of the previous sections to find
a feasible solution of (KLP ) because there are cycles and negative edges in the
constraint graphs. In the remainder of this section, we will present an algorithm
which finds a feasible solution of (KLP ) in linear time.

A segment s ∈ Q induces a set of segments simple(s) in HS . Note that every
negative length edge in a constraint graph connects two segments in HS which
belong to the same segment in Q. Our algorithm considers one segment of Q
at a time. Let s be a vertical segment in Q. A critical role is played by the
edges in s which are not adjacent to bends. We denote these edges by nb(s) and
the corresponding edges in HS by nbS(s). Because of the bend-or-end property
the edges in nb(s) form a path in s. Let e = (v, w) ∈ nb(s), eS = simple(e).
We denote with d(v, e) the minimal distance from left(v) to e in Dr. The same
holds for w and d(w, e). This value can be calculated in amortized constant time
from the shape. Given an x-value x̄ for one arbitrary edge eS ∈ nbS(s), where
e = (v, w) is the corresponding edge in Q. We define x(left(v)) = x(eS)−d(eS , v)
and x(left(w)) = x(eS)− d(eS , w). Let e′

S be the following edge of e in the path
nb(s), and e′′

S the preceding edge. We define x(e′
S) = x(left(v)) + d(e′

S , v) and
x(e′′

S) = x(left(w)) + d(e′
S , w). We proceed recursively until x is determined for

all left sides of nodes and all edges in nbS . Given e ∈ nbS(s) and x̄ = 0 and
the rest of the x-values calculated as described above. Then we let off(e, s) =
mine′∈nbS(s){x(e′)}.

The algorithm to calculate x works now as follows: First, we determine the
vertical segments of Q and calculate a topological numbering s1, . . . , sk of them.
We denote with Ui ⊆ S′

u, 0 ≤ i < k the set of vertical segments in HS whose
corresponding segment in Q is si. We then calculate a topological numbering on
the vertical segments of HS where the Ui appear in an interval. For every i, we
do the following: We perform the standard DAG algorithm for longest paths on
Ui. Then we search the edge e ∈ nbS(si) with maximal x-value. We add off(e, si)
to this x-value and apply the above algorithm to determine the x-values of all
other segments in si. This algorithm has linear running time.

Lemma 4. A feasible solution of (KLP ) can be found in time O(n).

5.3 Rectangular Decomposition

We will again use the rectangular decomposition method to obtain a length-
complete shape extension.
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to a meta-segment node at most twice. From this it follows that HS has linear
size. All segments which take part in a decomposition step are separated. With
a similar argument as in Lemma 2 then follows that all non-adjacent segments
in Q are separated.

Theorem 3. The above algorithm solves Problem 3 in linear time.

6 Practical Issues and Experiments

We assumed in the previous section that vertices have sufficient width resp.
height to connect all edges adjacent to a certain side. But this assumption may
be not satisfied by the layout algorithm which provides the input for the com-
paction. In this case, we define in the simplification step the distances between
certain edges adjacent to the same side of a vertex as zero such that the size
constraint can be fulfilled. With a slight modification the non-bending edge on
a vertex side can be placed in the middle of the side which yields nice drawings.

We performed no empirical comparison with [1], but we are convinced that
the quality of the drawings with respect to the drawing area is as least as good
as in [1]. The edge length may be worse, but to further improve the quality of
the drawing, we can solve the occurring linear programs with a Min-Cost Flow
algorithm instead of using longest path algorithms. Of course this increases the
running time. The solution obtained by using the Min-Cost Flow algorithm has
minimal edge length with respect to the given complete shape extension (see,
e.g., [12]). To improve an existing drawing, we can apply one-dimensional com-
paction, known from VLSI-design (see, e.g., [13]), as postprocessing. We can reuse
for this case the compaction algorithm; we only have to replace the rectangle
decomposition step by a separation function based on the visibility of segments
in the input drawing.
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Fig. 7. Average running time of the algorithm on the Rome graphs.

We tested the algorithm on the so called Rome graphs test suite [4]. We
assigned to each vertex a random width and height between zero and ten. The
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input of the compaction algorithm was generated by an implementation of the
Kandinsky bend-minimizing algorithm [7]. The running time of the algorithm
was always below 4 seconds using the virtual machine provided in the JDK 1.2.2
of Sun Microsystems, with a 64MB memory limit on a Sun Ultra 5 with 333
MHz. The average running time of the algorithm is shown in Fig. 7.

References

1. G. Di Battista, W. Didimo, Maurizo Patrignani, and Maurizio Pizzonia. Orthogo-
nal and quasi-upward drawings with vertices of prescribed size. In J. Kratochvil, ed-
itor, Proceedings of the 7th International Symposium on Graph Drawing (GD’99),
volume 1731 of LNCS, pages 297–310. Springer, 1999.

2. T.H. Cormen, C.E. Leiserson, and R.L. Rivest. Introduction to Algorithms.
McGraw-Hill, 1990.

3. G. Di Battista, P. Eades, R. Tamassia, and I. G. Tollis. Graph Drawing: Algorithms
for the Visualization of Graphs. Prentice Hall, 1999.

4. G. Di Battista, A. Garg, , G .Liotta, R. Tamassia, E. Tassinari, and F. Vargiu.
An experimental comparison of four graph drawing algortihms. Comput. Geom.
Theory Appl., 7:303–325, 1997.

5. M. Eiglsperger. Constraints im Kandinsky-Algorithmus. Master’s thesis, Univer-
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