
Service Centric Computing – Next Generation
Internet Computing

Jerry Rolia, Rich Friedrich, and Chandrakant Patel

Hewlett Packard Labs, 1501 Page Mill Rd., Palo Alto, CA, USA, 94304
{jerry rolia,rich friedrich,chandrakant patel}@hp.com

www.hpl.hp.com/research/internet

Abstract. In the not-too-distant future, billions of people, places and
things could all be connected to each other and to useful services through
the Internet. In this world scalable, cost-effective information technology
capabilities will need to be provisioned as service, delivered as a service,
metered and managed as a service, and purchased as a service. We re-
fer to this world as service centric computing. Consequently, processing
and storage will be accessible via utilities where customers pay for what
they need when they need it and where they need it. This tutorial in-
troduces concepts of service centric computing and its relationship to
the Grid. It explains a programmable data center paradigm as a flexible
architecture that helps to achieve service centric computing. Case study
results illustrate performance and thermal issues. Finally, key open re-
search questions pertaining to service centric computing and Internet
computing are summarized.

1 Introduction

In the not-too-distant future, billions of people, places and things could all be
connected to each other and to useful services through the Internet. Re-use
and scale motivate the need for service centric computing. With service centric
computing application services, for example payroll or tax calculation, may be
composed of other application services and also rely on computing, network-
ing, and storage resources as services. These services will be offered according
to a utility paradigm. They will be provisioned, delivered, metered, managed,
and purchased in a consistent manner when and where they are needed. This
paper explains the components of service centric computing with examples of
performance studies that pertain to resources offered as a service.

Figure 1 illustrates the components of service centric computing. Applications
may be composed of application and resource services via open middleware such
as Web services. Applications discover and acquire access to services via a grid
service architecture. Resource utilities offer computing, network, and storage
resources as services. They may also offer complex aggregates of these resources
with specific qualities of service. We refer to this as Infrastructure on Demand
(IOD).

M.C. Calzarossa and S. Tucci (Eds.): Performance 2002, LNCS 2459, pp. 463–479, 2002.
c© Springer-Verlag Berlin Heidelberg 2002

464 J. Rolia, R. Friedrich, and C. Patel

Applications

Grid Service Architecture

Resource Utilities

 W

eb
 s

er
vi

ce
s

O
pe

n
M

id
dl

ew
ar

e:

.

Fig. 1. Service centric computing

Section 2 describes several classes of applications and their requirements on
infrastructure for service centric computing. Web service technologies are also in-
troduced. An example of a Grid resource management system and a Grid Service
Architecture are introduced in Section 3. Section 4 describes resource utilities,
resources as services, and IOD. A programmable data center is introduced as an
example of IOD. Next we describe a broad set of technologies that can be inte-
grated to offer IOD with specific qualities of service. Case studies illustrate key
issues with regard to IOD. A list of research challenges is offered in Section 5.
Concluding remarks are given in Section 6.

2 Applications and Web Services

This section discusses the requirements of applications on service centric com-
puting with a focus on issues that pertain to infrastructure. This is followed by
a brief discussion of Web service technologies as an open middleware for service
interaction.

2.1 Applications

We consider technical, commercial, and ubiquitous classes of applications and
their requirements on service centric computing.

Technical applications are typically processing, data, and/or communications
intensive. Examples of applications are found from life and material sciences,
manufacturing CAE and CAD, national defense, high-end film and video, elec-
tronic design simulation, weather and climate modeling, geological sciences, and
basic research. These applications typically present batch style jobs with a finite
duration.

Commercial applications may be accessed via Intranet or Internet systems.
They often rely on multi-tier architectures that include firewall, load balancer
and server appliances and exploit concepts of horizontal and vertical scalability.

Service Centric Computing – Next Generation Internet Computing 465

Examples of applications include enterprise resource management systems, E-
commerce systems, and portals. These applications typically require resources
continuously but may require different quantities of resources depending on fac-
tors such as time of day and day of week.

With ubiquitous computing there is a potential for literally billions of inter-
connected devices each participating in many instances of value added services.
Examples of devices include personal digital assistants, tools used for manufac-
turing or maintenance, and fixtures. Consider the following example of a value
added service for a maintenance process. Instrumentation within tools and an
aircraft under service record the steps of maintenance procedures as they are
completed to help verify that appropriate service schedules are being followed
correctly.

Applications place many requirements on service centric computing. They
include the following.

For technical computing:

– Expensive and/or specialized resources need to be easy to share
– Utilize geographically distributed resources effectively
– Share computing, storage, data, programs, and other resources
– Take advantage of underutilized resources

The above requirements have driven the development of grids for high perfor-
mance computing. The following additional requirements arise for commercial
and ubiquitous computing:

– Automate the deployment and evolution of complex multi-tier applications
and infrastructure

– Support applications that execute continuously
– Provide access to resources with some level of assurance
– Scale: enable the deployment of many small distributed services that would

not otherwise be possible
– Mobility: take computation/data closer to the client(s)

Technical computing applications express demands for numbers of resources
and their capacities. For some applications these demands may constrain the
topology of a supporting grid’s infrastructure – for example requiring the use of
high capacity low latency communication fabrics. However the actual topology of
a grid’s infrastructure is in general deliberately transparent to such applications.
We refer to this as infrastructure transparency.

In contrast multi-tier commercial and ubiquitous computing applications can
require explicit networking topologies that include firewalls and load balancers.
Networking topology and appliance configuration may implement security and
performance policies and as a result can be explicit features of such applications.
As a result such applications are not necessarily infrastructure transparent. They
may require changes in infrastructure in response to changes in workload, device
mobility, or maintenance.

To reduce the time and skills needed to deploy infrastructure; avoid the
pitfalls of over or under-provisioning; and to enable large scale and adaptive

466 J. Rolia, R. Friedrich, and C. Patel

service deployment (due to changing workload demands and/or mobility), com-
mercial and ubiquitous computing applications need automated support for the
deployment and maintenance of both applications and their infrastructure. Fur-
thermore such applications need assurances that they will be able to acquire
resources when and where they need them.

2.2 Web Services

Web services [1] are a collection of middleware technologies for interactions be-
tween services in Internet environments. They are platform and application lan-
guage independent. The following Web service technologies are likely to be ex-
ploited by applications to discover and bind with other application services and
infrastructure services.

– XML, descriptive data
– Messaging (SOAP, etc), message formats
– Description of documents (WSDL, etc), interface/data specifications
– Registry (WSIL, UDDI), Directories/lookup

The extended markup language (XML) [2] describes data. The Simple Object
Access Protocol (SOAP) [3] is a mechanism for framing data for remote proce-
dure calls. The Web Service Description Language (WSDL) [4] defines type infor-
mation for data and interfaces. The Web Service Inspection Language (WSIL) [5]
and Universal Description, Discovery and Integration (UDDI) [6] offer registry
and lookup services.

A business can become a service provider by encapsulating application func-
tionality as a Web service and then offering that service over its Intranet or the
Internet. Another application can reuse that functionality by binding with and
then exploiting an instance of the service. In a world of Web services, applica-
tions will be an integration of locally managed and outsourced services. This is
referred to as service composition. Grid computing has a natural relationship to
the concept of Web services in that it provides resources as a service.

3 Grids and Grid Service Architectures

Today’s grids largely support the needs of the technical computing community.
However there are efforts underway to further develop the notion of grids to
the level of Grid Service Architectures (GSA) that support both technical and
commercial applications. The Global Grid Forum [7] is an organization that pro-
motes grid technologies and architectures. As examples of Grids and GSAs, this
section describes Globus [8] and the Globus Open Grid Service Architecture [9].

3.1 Globus

Globus is U.S. government sponsored organization formed to develop Grid so-
lutions for high performance scientific computing applications. The goals are
essentially those listed for technical applications in Section 2.1. The initial Grid
vision for the Globus Grid development was to enable computational grids:

Service Centric Computing – Next Generation Internet Computing 467

A computational grid is a hardware and software infrastructure that
provides dependable, consistent, pervasive, and inexpensive access to
high-end computing capabilities.
Ian Foster and Carl Kesselman [10]

Figure 2 illustrates the resource management architecture for the Globus
grid infrastructure. The purpose of the infrastructure is to bind applications
with resource schedulers. Additional Grid services provide support for large file
transfer and access control.

From the figure, applications describe their resource requirements using a Re-
source Specification Language (RSL). They submit the RSL to Brokers. Brokers
interact with Information Services to learn about resource availability. An infor-
mation service receives resource availability information from resource scheduler
systems. Brokers may transform RSL iteratively to find a match between the
supply and demand for specific resource types. An application may then use
co-allocators to reserve access to the resources managed by resource schedulers
via an open Globus Resource Allocation Manager (GRAM) interface.

Application Info Service

Co−allocator

GRAM GRAM GRAM

RSL

RSL

RSL

CondorLSF

Queries/Info

Broker

RSL
Specialization

RSL

RSL
RSL

Resource Schedulers

.

Other

Fig. 2. Globus Resource Management Architecture

There are many examples of resource schedulers including LSF [12], Con-
dor [13] and Legion [14]. A review of scheduling in Grid environments is given
in reference [11].

468 J. Rolia, R. Friedrich, and C. Patel

Grids help to enable a utility computing paradigm by providing the mecha-
nisms to match demands for resources with the supply of resources.

3.2 Grid Service Architectures

Recently the notion of integrating the Globus Grid with Web services has devel-
oped. The vision for the Grid has evolved to support both e-business and high
performance computing applications:

The Grid integrates services across distributed, heterogeneous, dynamic
virtual organizations formed from the disparate resources within a single
enterprise and/or from external resource sharing and service provider
relationships in both e-business and e-science
Foster, Kesselman, Nick, Tuecke [9]

The integration of Globus and Web services leads to a specification for an Open
Grid Services Architecture (OGSA) [9] that treats both applications and re-
sources uniformly as services. This uniform approach is expected to simplify the
development of more advanced Grid environments.

Within an OGSA Grid, persistent services accept requests for the creation of
service instances. These created instances are referred to as transient services.
An OGSA governs the creation of and interactions between service instances. A
newly defined Grid service interface provides a mechanism for service instance
creation, registration and discovery, the management of state information, noti-
fications, and management.

A Grid architecture based on Grid services helps to support advanced Grid
environments in the following ways. For example, service instances associated
with resources may exploit the Grid service interface to implement patterns for
joining and departing from resource pools managed by resource schedulers and
for propagating resource event information to a resource scheduler. Similarly an
application may use the Grid service interface to implement a pattern for asking
a resource scheduler for notification of events that pertain to a specific resource.

4 Resource Utilities

In a world of service centric computing, applications may rely on resource utilities
for some or all of their resource needs. Today’s grid environments offer resources
in an infrastructure transparent manner. Yet some styles of applications place
explicit requirements on infrastructure topology and qualities of service. In this
section we describe programmable data centers as resource utilities that can
offer infrastructure on demand. Technologies that contribute to infrastructure
on demand are described along with several examples of research in this area.

4.1 Programmable Data Centers

A programmable data center (PDC) is composed of compute, networking, and
storage resources that are physically wired once but with relationships that can

Service Centric Computing – Next Generation Internet Computing 469

be virtually wired programatically. Virtual wiring exploits the existing virtual-
ization features of resources. Examples of these features are described in the next
subsection.

To support automation and ease of introducing applications into the data
center we introduce the notion of virtual application environments (VAE) [15].
A VAE presents an environment to an application that is consistent with the
application’s configuration requirements. For example, every application has cer-
tain requirements regarding server capacity, network connectivity, appliances,
and storage services. It can have explicit layers of servers and many local area
networks. Network and storage fabrics are configured to make a portion of the
data center’s resources and back end servers appear to an application as a ded-
icated environment. Data center management services create these VAEs by
programming resource virtualization features. This is done in a manner that iso-
lates VAEs from one another. Later, applications can request changes to their
VAEs, for example to add or remove servers in response to changing workload
conditions. A PDC is illustrated in Figure 3.

Internet

Specification
Infrastructure Virtual

.

elements
VAE1

VAE n

wiring

Processing on Demand
Infrastructure

Programmable
network fabrics

elements
Storage

Fig. 3. Programmable Data Center

A PDC accepts a markup language description of the infrastructure required
by a VAE. It must perform an admission control test to report whether it has
sufficient resources to host the application with its desired qualities of service.

Applications may express requirements for many qualities of service that
include: Internet bandwidth, internal communication and storage bandwidths,
packet latencies and loss rates, server, storage, and network fabric reliability.
They are also likely to require some assurance that it will be possible to acquire
resources when they are needed.

470 J. Rolia, R. Friedrich, and C. Patel

Security and reliability are essential features of PDCs. As programmable
entities strict controls must be in place to ensure that only valid changes are made
to infrastructure and so that VAEs are isolated from one another. Additionally,
many applications may rely on shared resources such as PDC network links so
the consequences of single failures are larger than in environments without such
sharing. For these reasons PDCs must have security and reliability built into
their architectures.

Planetary scale computing relies on notions of PDCs and programmable net-
works. With planetary scale computing PDCs are joined by metro and wide area
networking infrastructures providing network capacity on demand. Applications
may be deployed across multiple PDCs with resources allocated near to their
end-users or where capacity is least expensive. As an application’s compute and
storage requirements change corresponding changes must be made to network
capacities between the PDCs.

4.2 Programmable Infrastructure

This section gives examples of virtualization technologies that can contribute
to planetary scale computing. Subsets of these technologies can be combined to
provide infrastructure as a service with specific qualities of service.

Programmable Networks. Research on programmable networks has provided
a wide range of virtualization technologies. These include:

– Virtual Private Networks (VPN)
• A tunneling mechanism that frames encrypted source packets for trans-
mission to a destination appliance over an insecure network. The en-
crypted packets are treated as data by the appliance, decrypted, and
dropped onto a secure network for delivery to the packet’s true destina-
tion.
• Properties: Security isolation

– Virtual LANs (VLAN)
• Ethernet packets are augmented with a VLAN tag header. Ports on
appropriate Ethernet switches can be programmed to only accept and
forward frames (at line speed) with specific VLAN tags.
• Properties: Security isolation, classes of service

– Multiple Protocl Label Switching (MPLS)
• Similar to VLAN tags. However these tags can be used by
switches/routers to identify specific tunnels of data. Resource reserva-
tion, class of service differentiation, and other protocols provide support
for fast recovery in the event of network failures and capacity on demand
for these tunnels.
• Properties: Isolation, reliability, capacity on demand

– Resilient Packet Rings (RPR)

Service Centric Computing – Next Generation Internet Computing 471

• These rings are being used to replace SONET infrastructure in metro
and wide area networks. They provide a new frame specification that
can carry Ethernet and other traffic, offer security isolation and have
special support for fast recovery and capacity on demand.
• Properties: Security isolation, reliability, capacity on demand

– Optical wavelength switching
• Optical switches can support switching at the abstraction of wavelengths.
In an earlier section we described virtual wiring. Wavelength switching is
best described as virtual wire. With appropriate use of lasers wavelengths
can each support tens of Gbps of bandwidth and fibers can support hun-
dreds of wavelengths. Lightpaths are end-to-end circuits of wavelengths
that provide true performance isolation across optical switching fabrics.
• Properties: Security and performance isolation, reliability, capacity on
demand

Programmable Servers. Since the time of early IBM mainframes server vir-
tualization has been an important feature for resource management. With server
virtualization each job or application is isolated within its own logically inde-
pendent system partition. The fraction of system resources associated with each
partition can be dynamically altered, permitting the vertical scaling of resources
associated with an application. Server virtualization is a convenient mechanism
to achieve server consolidation. Examples of systems that support server virtu-
alization include:

– HP: Superdome and mid-range HP-UX servers [16]
– Sun: Sun Fire [17]
– IBM Mainframes [18]
– Intel [20] processor based servers with VMWare [19]

Server virtualization offers: performance isolation for partitions – when the re-
source consumption of each partition can bounded; capacity on demand – when
the fractions of resources associated with partitions can be changed dynamically;
security isolation – depending on the implementation; and can be used to sup-
port high availability solutions with redundant, but idle, application components
residing in partitions on alternative servers.

Programmable Storage. Today’s storage systems are utilities in and of them-
selves. They can contain thousands of physical disks and have sophisticated
management services for backup, self-tuning, and maintenance. Storage virtual-
ization offers the notion of virtual disks (logical units). These virtual disks are
striped across a storage system’s physical disks in a manner that supports the
service level requirements and workload characteristics of application loads.

All major storage vendors support storage virtualization for storage systems
accessed via storage area networks. Storage virtualization mechanisms support
the management of performance, capacity, availability, reliability, and security.

472 J. Rolia, R. Friedrich, and C. Patel

Programmable Cooling Systems. Data centers contain thousands of single
board systems deployed in racks in close proximity which results in very high heat
density. Thermal management aims to extract heat dissipated by these systems
while maintaining reliable operating temperatures. Air conditioning resources
account for 30% of the energy costs of such installations [32].

Today’s data centers rely on fixed cooling infrastructures. The PDCs of to-
morrow will exploit programmable cooling controls that include:

– Variable capacity air movers
– Variable capacity compressors in air conditioners
– Variable capacity vents and air distribution systems

These features can be used to dynamically allocate cooling resources based on
heat load while operating at the highest possible energy efficiency. This type of
on-demand cooling is expected to reduce cooling costs by 25% over conventional
designs [32].

Programmable Data centers. Programmable data centers provide infrastruc-
ture on demand for complex application infrastructures. They exploit the virtu-
alization features of other resources to render multi-tier virtual infrastructure.
This permits applications to automate the acquisition and removal of resources
in proportion to their time varying workloads.

Examples of programmable data centers include:

– HP Utility Data Center with Controller Software [21], provides integrated
computing, networking, and storage infrastructure as a service

– Terraspring [22], provides integrated computing, networking, and storage
infrastructure as a service

– Think Dynamics [23], provides a scripting environment to enable the imple-
mentation of infrastructure on demand

– IBM Research, The Oceano Project [24], an E-business utility for the support
of multi-tier E-commerce applications

These systems help to provide infrastructure on demand. For the commer-
cial PDCs, solutions must be engineered to offer security isolation and specific
internal network qualities of service that are required by their customers.

4.3 Case Studies on Infrastructure on Demand

This subsection offers several examples of research and results on infrastructure
on demand. We consider server consolidation, presenting some otherwise unpub-
lished results that demonstrate opportunities for resource sharing in a commer-
cial data center environment. Next we illustrate the resource savings offered by
a utility environment to two horizontally scalable Web based applications along
with a mechanism to achieve those savings. We note that commercial applica-
tions are unlikely to rely on utilities unless they can receive some assurance that
resources will be available when they need them. We describe some recent work

Service Centric Computing – Next Generation Internet Computing 473

on admission control for PDCs. Next, an example of a self-managing storage
system is given.

Planetary scale computing relies on the co-allocation of resources, for example
wide area networking as well as data center resources. Mechanisms to achieve
co-allocation in Grid environments are described. The concepts of programmable
data centers, programmable networks, and co-allocation help to enable wide area
load balancing. Control issues regarding wide area load balancing are introduced.

Finally, we present results that pertain to the thermal management of data
centers. We describe the importance of thermal management on resource relia-
bility and on overall energy costs.

Server consolidation. Figure 4 presents the results of a server consolidation
exercise for 10 identically configured 6-cpu servers from an enterprise data center.
Consolidation is based on cpu utilizations as measured over 5 minute intervals
for nearly 2 months. An off-line integer programming model is used to map work
from the source servers onto as few consolidated target servers as possible such
that the work of only one source server is allocated to a target server or the total
per-interval mean cpu utilization on the target server does not exceed 50%. The
following factors are considered:

– Number of CPUs per server - The number of cpus per target server: 6, 8,
16, 32

– Fast migration - whether the work of a source server may migrate between
target servers at the end of each interval without penalty.

– On-line server migration - whether the pool of target servers can vary in size.

The figure shows the peak number of cpus required with and without fast mi-
gration and the mean number of servers required with fast migration and on-line
server migration. In the figure, FM represents the case with fast migration while
fm represents no fast migration.

We found that fast application migration enables a more effective consolida-
tion but is sensitive to number of cpus per server. As the number of cpus per
target server increases fast migration offered no benefit for the system under
study. On-line server migration permits us to reclaim unused capacity for other
purposes. It permits us to meaningfully characterize a system based on its av-
erage number of target servers required because we can use these resources for
another purpose. Last, the figure also shows that for the system under study
many small servers can be nearly as effective as fewer large servers.

Horizontal Scalability. Ranjan et. al., characterize the advantages of on-line
server migration for commercial E-commerce and search engine systems using a
trace driven simulation environment [25]. In each case the simulation exploits an
algorithm named Quality of Infrastructure on Demand (QuID) that attempts to
maintain a target cpu utilization for application servers by adding and removing
servers in response to changing workload conditions. The simulation takes into
account the time needed to migrate servers into an application (including server

474 J. Rolia, R. Friedrich, and C. Patel

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

6 8 16 32

F
ra

ct
io

n
of

 C
P

U
s

Number of CPUs per Server

50% fm Peak
50% FM Peak
50% FM Mean

Fig. 4. Fraction of Original Number of CPUs

boot time) and time needed to drain user sessions prior to removing a server. The
results show resource savings, with respect to a static allocation of resources, of
approximately 29%. In both cases the peak to mean ratio for resource demand
was approximately 1.6. A transformed version of the E-commerce trace with
a peak to mean of 5 offered resource savings of 68% with respect to a static
allocation of resources. We note that the resource savings are expected to be
higher in practice since the static cases would have to be further over-provisioned.

Admission control for PDCs. Commercial applications that exploit infras-
tructure on demand will expect some assurance that resources will be available
when they need them. An admission control approach is presented in [26]. The
approach characterizes demand profiles for applications based on factors such as
time of day. An aggregate of the demand profiles along with application demand
correlation information are used to estimate the number of resources needed to
satisfy requests for resources with a specific probability θ. Simulations suggest
that the technique is relatively insensitive to correlations in application demands
as long as they are taken into account when estimating the number of resources
required.

Automated storage management. Reference [27] describes tools for auto-
mated storage management. Methods are used to automate an initial storage
design – the layout of virtual disks over physical disks. Iterative techniques then

Service Centric Computing – Next Generation Internet Computing 475

exploit online measurements to improve the design while the system operates.
Experiments showed performance results within 15% of that achieved by expert
administrators.

Co-allocation. A resource co-allocation technique is described in reference [29].
The method extends the Globus resource management architecture with a com-
ponent for acquiring groups of resources from multiple resource schedulers. A
two phase commit protocol can be used to ensure that either all or none of the
required resources are reserved.

Such a co-allocation mechanism is particularly important in the context of
service centric computing as it may be necessary to acquire resources from mul-
tiple resource utilities that include network providers and programmable data
centers.

Wide area load balancing. A wide area load balancing system is described
in reference [30]. A goal of the work is to balance application demands over
servers within and across utilities using distributed, collaborative, self-control
mechanisms.

Thermal management for PDCs. Programmable cooling is a smart cooling
proposition achieved through modeling, metrology and controls - by charting
real-time temperature distribution through a distributed sensor network and
modulating the cooling. The cooling resources are dynamically provisioned based
on distributed sensing (power, air flow and temperature) in the data center and
numerical modeling [31][32][33]. The capacity of compressors, condensers, and
air moving devices are varied commensurate with the heat loads present in the
data center. An example is an instance when high heat loads prompt an increase
in the opening of “smart” cool air inlet vents and a change in speed of air movers
and compressors in air conditioners to address a specific area in the data center.

In addition to this dynamic variation in cooling, distributed measurements
and thermal resource allocation policies may guide the provisioning of workload
within the data center. As an example we may choose to provision a resource that
results in the most efficient utilization of cooling resources. In yet another exam-
ple, workload allocation policies programmatically move workload and shut some
systems down in response to the failure of certain air conditioning infrastructure
thereby maintaining the reliability of the overall data center. Furthermore, in
the context of Grid computing, workload may be provisioned in a global net-
work of data centers based on the most cost effective energy available e.g. on
diurnal basis based on the climate - e.g. Bangalore, India at night to provide
a more energy efficient condensing temperature for the air conditioning vapor
compression cycle. Additionally, the economics of energy production around the
globe may be used to drive the choices for global load distribution.

476 J. Rolia, R. Friedrich, and C. Patel

5 Research Challenges

This section offers several performance related research challenges for service
centric computing. They address issues of data center design and resource man-
agement, resource management for planetary scale computing (federations of
infrastructure providers), and general control and validation for these large scale
systems. We use the term resource broadly to include information technology
and energy.
What is the most efficient, economical data center design?

– What high density, low power, high performance computing architectures
most economically support infrastructure as a service?

– What are the simple building blocks of processing, communications and stor-
age that support dynamic allocation at a data center level of granularity?

– What are the implications of commodity components on multi-system de-
signs?

What are the most effective performance management techniques for utility com-
puting?

– What measurement techniques/metrics are appropriate for large scale dis-
tributed environments?

– What automated techniques are appropriate for creating models of applica-
tions and infrastructure?

– How are models validated for this very dynamic world?

What are the most efficient dynamic resource management techniques?

– What techniques are appropriate for ensuring qualities of service within lay-
ers of shared infrastructures?

– What to do about federations of providers (co-allocation)?
– What techniques are appropriate for making good use of resources?

What control system techniques can be applied effectively to this scale and
dynamism?

– What automated reasoning techniques can eliminate the complexity of con-
trolling large scale systems?

– What control theoretic techniques are applicable to reactive and predictive
events?

– What time scales are appropriate for control?
– How are control measures and decisions coordinated across federated sys-

tems?

What is the science of large scale computing that provides probabilistic assurance
of large scale behavior based on small scale experiments?

– What is the equivalent to the aeronautical engineer’s wind tunnel?
– What behaviors scale linearly?

Service Centric Computing – Next Generation Internet Computing 477

6 Summary and Remarks

This paper motivates and explains the concept of service centric computing as
an approach for next generation Internet computing. With service centric com-
puting: applications, resources, and infrastructure are offered as services. This is
essential for the support of commercial and ubiquitous computing applications
as it enables the reuse of application functions, server consolidation, and large
scale deployment.

As an architecture, service centric computing relies on middleware such as
Web services and Grid service architectures as open mechanisms for service
creation, interactions, discovery, and binding. Resource utilities offer access to
resources and infrastructure. Today’s resource utilities in Grid environments
typically offer resources in an infrastructure transparent manner. Commercial
applications can have explicit dependencies on networking topologies and their
relationship with servers, storage, and appliances. These require resource utilities
that offer infrastructure on demand.

We believe that there are many opportunities for research in this area. When
realized service centric computing will enable new kinds of applications and
reduce barriers to market entry for small and medium sized organizations.

7 Trademarks

Sun and Sun Fire are trademarks of the Sun Microsystems Inc., IBM is a trade-
mark of International Business Machines Corporation, Intel is a trademark of
Intel Corporation, VMware is a trademark of VMware Inc., HP Utility Data
Center with Controller Software is a trademark of Hewlett Packard Company,
Terraspring is a trademark of Terraspring, and Think Dynamics is a trademark
of Think Dynamics.

Acknowledgements. Thanks to Xiaoyun Zhu, Sharad Singhal, Jim Pruyne,
and Martin Arlitt of HP Labs for their helpful comments regarding this tutorial
paper.

References

1. www.webservices.org.
2. www.w3.org/XML.
3. www.w3.org/TR/SOAP.
4. www.w3.org/TR/wsdl.
5. www-106.ibm.com/developerworks/webservices/library/ws-wsilspec.html.
6. www.uddi.org.
7. www.globalgridforum.org.
8. Czajkowski K., Foster I., Karonis N., Kesselman C., Martin S., Smith W., and

Tuecke S.: A Resource Management Architecture for Metacomputing Systems.
JSSPP, 1988, 62-82.

478 J. Rolia, R. Friedrich, and C. Patel

9. Foster I., Kesselman C., Nick J., and Tuecke S.: The Physiology of the
Grid: An Open Grid Services Architecture for Distributed Systems Integration.
www.globus.org, January, 2002.

10. The Grid: Blueprint for a New Computing Infrastructure, Edited by Ian Foster
and Carl Kesselman, July 1998, ISBN 1-55860-475-8.

11. Krauter K., Buyya R., and Maheswaran M.: A taxonomy and survey of grid re-
source management systems for distributed computing. Software-Practice and Ex-
perience, vol. 32, no. 2, 2002, 135-164.

12. Zhou S.: LSF: Load sharing in large-scale heterogeneous distributed systems, Work-
shop on Cluster Computing, 1992.

13. Litzkow M., Livny M. and Mutka M.: Condor - A Hunter of Idle Workstations. Pro-
ceedings of the 8th International Conference on Distributed Computing Systems,
June, 1998, 104-111.

14. Natrajan A., Humphrey M., and Grimshaw A.: Grids: Harnessing Geographically-
Separated Resources in a Multi-Organisational Context. Proceedings of High Per-
formance Computing Systems, June, 2001.

15. Rolia J., Singhal S. and Friedrich R.: Adaptive Internet Data Centers. Proceedings
of the European Computer and eBusiness Conference (SSGRR), L’Aquila, Italy,
July 2000, Italy, http://www.ssgrr.it/en/ssgrr2000/papers/053.pdf.

16. www.hp.com.
17. www.sun.com.
18. www.ibm.com.
19. www.vmware.com.
20. www.intel.com.
21. HP Utility Data Center Architecture, http://www.hp.com/solutions1/

infrastructure/solutions /utilitydata/architecture/index.html.
22. www.terraspring.com.
23. www.thinkdynamics.com.
24. Appleby K., Fakhouri S., Fong L., Goldszmidt G. and Kalantar M.: Oceano –

SLA Based Management of a Computing Utility. Proceedings of the IFIP/IEEE
International Symposium on Integrated Network Management, May 2001.

25. Ranjan S., Rolia J., Zu H., and Knightly E.: QoS-Driven Server Migration for
Internet Data Centers. Proceedings of IWQoS 2002, May 2002, 3-12.

26. Rolia J., Zhu X., Arlitt M., and Andrzejak A.: Statistical Service Assurances for
Applications in Utility Grid Environments. HPL Technical Report, HPL-2002-155.

27. Anderson E., Hobbs M., Keeton K., Spence S., Uysal M., and Veitch A.: Hip-
podrome: running circles around storage administration. Conference on File and
Storage Technologies (FAST3902), 17545188 - 284530 January 2002, Monterey,
CA. (USENIX, Berkeley, CA.).

28. Borowsky E., Golding R., Jacobson P., Merchant A., Schreier L., Spasojevic M.,
and Wilkes J.: Capacity planning with phased workloads, WOSP, 1998, 199-207.

29. Foster I., Kesselman C., Lee C., Lindell R., Nahrstedt K., and Roy A.: A Dis-
tributed Resource Management Architecture that Supports Advance Reservations
and Co-Allocation. Proceedings of the International Workshop on Quality of Ser-
vice, 1999.

30. Andrzejak, A., Graupner, S., Kotov, V., and Trinks, H.: Self-Organizing Control
in Planetary-Scale Computing. IEEE International Symposium on Cluster Com-
puting and the Grid (CCGrid), 2nd Workshop on Agent-based Cluster and Grid
Computing (ACGC), May 21-24, 2002, Berlin.

Service Centric Computing – Next Generation Internet Computing 479

31. Patel C., Bash C., Belady C., Stahl L., and Sullivan D.: Computational Fluid
Dynamics Modeling of High Compute Density Data Centers to Assure System Inlet
Air Specifications. Proceedings of IPACK’01 The Pacific Rim/ASME International
Electronic Packaging Technical Conference and Exhibition July 8-13, 2001, Kauai,
Hawaii, USA.

32. Patel, C.D., Sharma, R.K, Bash, C.E., Beitelmal, A: Thermal Considerations in
Cooling Large Scale High Compute Density Data Centers, ITherm 2002 - Eighth
Intersociety Conference on Thermal and Thermomechanical Phenomena in Elec-
tronic Systems. May 2002, San Diego, California.

33. Sharma, R.K, Bash. C.E., Patel, C.D.: Dimensionless Parameters for Evaluation of
Thermal Design and Performance of Large Scale Data Centers. Proceedings of the
8th ASME/AIAA Joint Thermophysics and Heat Transfer Conf., St. Louis, MO,
June 2002.

	Service Centric Computing – Next Generation Internet Computing
	Introduction
	Applications and Web Services
	Applications
	Web Services

	Grids and Grid Service Architectures
	Globus
	Grid Service Architectures

	Resource Utilities
	Programmable Data Centers
	Programmable Infrastructure
	Case Studies on Infrastructure on Demand
	Server consolidation.
	Horizontal Scalability.
	Admission control for PDCs.
	Automated storage management.
	Co-allocation.
	Wide area load balancing.
	Thermal management for PDCs.

	Research Challenges
	Summary and Remarks
	Trademarks
	Acknowledgements.
	References

