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Abstract. In the context of neuroimaging probabilistic atlases, we propose a sta-
tistical framework to model the inter-individual variability of pairs of sulci with
respect to their relative position and orientation. The approach extends previous
work [3], and relies on the statistical analysis of a training set. We first define an
appropriate data representation, through an observation vector, in order to build a
consistent training population, on which we then apply a normed principal com-
ponents analysis (normed-PCA). Experiments have been performed on pairs of
major sulci extracted from 18 MR images.

Keywords: Neuroimaging, probabilistic atlases, cortical sulci, statistical model-
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1 Introduction

This paper comes within the context of digital cerebral probabilistic atlases. We are
particularly interested in the study of inter-individual variability of cortical structures
(sulci/gyri) which are of major interest both from an anatomical as well as a functional
point of view. This paper pursues previous work [3] where we proposed a statistical
modeling of cortical sulci shapes and of their variations, as well as a consistent way to
use it for functional data inter-individual registration purpose. We aim now at modeling
relationships between major sulci in terms of their position and orientation. Thus, the
final model will present a hierarchical aspect by discrimination of different types of
variations, with on the one hand shape variations, and on the other hand, position and
orientation variations.

To grasp the high inter-individual variability implied by the studied data, we use
a deformable model [10] of “active shape models” type [2], [4]. Thus, we learn the
variability of the considered class of objects on a training population, and can then
deduce occurrence probabilities of the studied structures. Some authors have also used
point distribution models (PDMs) to model sets of cortical sulci (e.g. [1] and [9]). Our
approach differs first by its matching scheme which is a very simple one. It consists in
positioning oneself in a local scope in which instances to learn are naturally matched.
Then, we rely on a parametric representation of the sulci which describes not only their
external traces but also their buried part. This leads to a more complete model of the
inter-individual cortical variability, all the more so as the buried part represents, at least,
two thirds of the cortex. In this sense, our approach relates to [7], but still differs since
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Fig. 1. Relation graph between major sulci for one hemisphere. Six major sulci are considered:
superior frontal sulcus (SF), precentral sulcus (PreC), central sulcus (C), postcentral sulcus (PostC),
lateral sulcus or sylvian fissure (L) and superior temporal sulcus (ST).

the authors perform a prior global registration towards stereotactic system and do not
analyze sulci interactions. At last, our approach is based on a graph structure describing
the involved sulci as nodes, and their relationships as arcs (see Fig. 1). This aspect can
be related to works [6] and [8] where authors build a graph devoted to automatic (or
semi-automatic) labeling of cortical sulci.

As work is still in progress, we present here the statistical modeling of a reduced
graph, and consider presently a pair of sulci and its variations in terms of position and
orientation. After a brief remind of some necessary preprocessing stages in Sect. 2,
we present the statistical modeling of a pair of sulci in Sect. 3. First, we define the
observations (or individuals) constituent of the training population , i.e. we define
an appropriate data representation to build the training set. Second, we analyze these
observations by the mean of a statistical analysis, the normed principal components
analysis (normed-PCA). In Sect. 4, we present experiments and discuss them as well as
the approach in Sect. 5, before concluding in Sect. 6.

2 Preprocessing

The representation of sulci used in this paper, as well as the representation of the position
and orientation within a brain of one sulcus, result from previous work, [5], [3], which
we briefly recall here. Sulci are defined as their median surface and extracted from MRI
volumes by a method now known as the “active ribbon” method [5]. It leads to a para-
metric representation of the sulci by cubic B-spline surfaces. The spline, parameterized
byu and v, is described bynbc = nbc u∗nbc v control points wherenbc u (resp.nbc v)
is the number of control points in the direction associated with parameter u (resp. v).
The parametric direction u represents the length of the sulcus and the direction v its
depth. The position and orientation within a brain of one sulcus is then represented by
a coordinate system, local to this sulcus [3]. The origin of this local coordinate system,
specifying the position of the sulcus, is defined as the center of mass of the sulcal sur-
face. The three axes, specifying the orientation of the sulcus are defined as its axes of
inertia. The first axis follows the length of the sulcus and is oriented from foot to head.
The second one follows the depth of the sulcus and is oriented toward the outside of the
brain. The third axis, orthogonal to the two first ones, is then the normal to the regression
plane of the sulcus, and follows the antero-posterior direction in case of left sulci (see
Fig. 2), and postero-anterior direction in case of right sulci.



Statistical Modeling of Pairs of Sulci 657

3 Statistical Modeling of Pairs of Sulci

3.1 Training and Data Representation

Learning the variability of a class of objects over a set of observations requires first of
all to define what is an observation vector for this class of objects. Since the orientation
and position of one sulcus within the brain is represented by its local coordinate system,
we encode the relative position and orientation of two sulci by the pair of coordinate
systems local to these sulci. However, the local system is dependent of the coordinate
system in which the sulcus is initially expressed; and this coordinate system differs
from one subject to another one. To not be limited by this dependence and, by this way,
be able to match the observations as requires by the statistical analysis, we define a
coordinate system, local to a pair of sulci that we call “local median coordinate system”,
with respect to which we define the observation vector. Thus, by positioning oneself in
a local scope, the observations are consistent over the training population to achieve the
statistical analysis.

Local Median Coordinate System. We consider the pair of sulci (A, B).
Let RA(Oa,xa,ya, za), resp. RB(Ob,xb,yb, zb), be the local coordinate system to the
sulcus A, resp. B. Let RM (Om,xm,ym, zm) be the local median system. First, the
origin Om is defined as the middle of [OaOb]. Next, axis zm is defined as:

zm =
za + zb

‖za + zb‖
and is then the normal of a plane π. Then xm and ym are deduced from the projections,
xp and yp, of (xa + xb) and (ya + yb) on π. Let α be the angle between xp and yp in
the plane π oriented by zm, and let β = (π − α)/2. Then:{

xm = R/zm,−β (xp)
ym = R/zm,β

(yp)

where R/zm ,β is the matrix of the rotation defined by the axis zm and the angle β. Such
a rotation matrix is easily obtained thanks to the Rodrigues formula. Thus, for a given
axis, n, and a given angle, ω:

R/n,ω = I + sin(ω)Γ(n) + (1 − cos(ω))Γ2(n) (1)

where I is the identity matrix and Γ(n) is the vector product matrix, i.e.:

Γ(n) =


 0 −nz ny

nz 0 −nx

−ny nx 0




Definition of the Observation Vector. Rather than directly use the expression of RA

and RB in RM as the observation vector, we have preferred to describe the relative
orientation and position of (A,B) by the parameters of the transformation bringing
(RA,RB) towards RM . It is in fact, more suitable to perform a statistical analysis later
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on. We define then such a transformation, enabling to locate an orthonormal basis with
respect to another one.

Let Bf (xf ,yf , zf ) and B(x,y, z) be two orthonormal bases. Then, considering the
basis Bf as fixed, to apply a composition of three rotations defined by the axis of Bf

and appropriate angles, ψ, φ and θ, transforms B towards Bf :

Bf = R/zf ,θ
R/yf ,φ

R/xf ,ψ
(B) (2)

The angles ψ, φ and θ, which are in fact Euler angles, are defined as following through
their cosines and sines:



cos(ψ) = z.zf
‖z⊥‖ ,

sin(ψ) = (z⊥∧zf ).xf
‖z⊥‖ , where z⊥ = (z.yf )yf + (z.zf )zf

cos(φ) = z1.zf ,
sin(φ) = (z1 ∧ zf ).yf , where z1 = R/xf ,ψ

(z)

cos(θ) = x2.xf ,
sin(θ) = (x2 ∧ xf ).zf , where x2 = R/yf ,φ

R/xf ,ψ
(x)

(3)

where “.” denotes scalar product and “∧” vector product.
Thus computing the six Euler angles ψRA

, φRA
, θRA

and ψRB
, φRB

, θRB
defined such

that: {
(xm,ym, zm) = R/zm,θRA

R/ym,φRA
R/xm,ψRA

(xa,ya, za)
(xm,ym, zm) = R/zm,θRB

R/ym,φRB
R/xm,ψRB

(xb,yb, zb)
(4)

enables to completely define the orientation of sulci A and B with respect to RM . As
the position is concerned, we also use Euler angles to determine it. Let ψ

Oa
, φ

Oa
and

θ
Oa

be the Euler angles defining the direction of
−−−−→
OmOa. They are defined such that:

zm = R/zm,θOa
R/ym,φOa

R/xm,ψOa
(

−−−−→
OmOa

‖−−−−→
OmOa‖ )

Note that, in this case, θ
Oa

= 0. Accordingly only ψ
Oa

and φ
Oa

are used to characterize

the direction of vector
−−−−→
OmOa. Let d be the distance between Om and the origins of

the local systems, d = ‖−−−−→
OmOa‖ = ‖−−−−→

OmOb‖. Then knowing d, ψ
Oa

, φ
Oa

enables to
completely define the position of sulcus A with respect to RM . The position of sulcus
B with respect to RM is similarly computed and characterized by d, ψ

Ob
and φ

Ob
.

Eventually, the observation vector, encoding the relative orientation and position
between two neighboring sulci is:

e = (d, ψ
Oa
, φ

Oa
, ψ

Ob
, φ

Ob
, ψRA

, φRA
, θRA

, ψRB
, φRB

, θRB
) (5)

Note that for a given e, the origin and the axis of RA and RB can be completely
recovered since (2) is reversible:

B = R/xf ,−ψ
R/yf ,−φ

R/zf ,−θ
(Bf ) (6)
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3.2 The Normed-PCA

To analyze the variations in orientation and position between two sulci over a population,
and by this mean, model the inter-individual variability at the level of the considered
couple, we use a principal component analysis (PCA). Such an analysis reveals in fact
the main modes of variation relatively to a mean observation. It enables to represent
data in a new basis, also orthogonal, but which supresses the redundancy of information
of the original data in the sense that, variables in the new basis are not correlated.
Since the vector e characterizing the relative position and orientation of two sulci is not
homogeneous (i.e. its first element is a distance, whereas the other ones are angles), we
use a normed-PCA. It is an appropriate analysis technique when variables do not have
same unit.As a matter of fact, the normed-PCA consists in diagonalizing the centered and
normed data covariance matrix, i.e. the correlation data matrix, rather than the original
data covariance matrix like PCA does. Thus, the distance between two individuals does
not depend on the variables units, and balance between variables is restored since they
have then all unit variance.

Analysis. Let P be the training population made up of n observations ei, defined by p
variables. In our case, an observationei is defined by (5) and p = 11. LetE = (eij) be the
n×pmatrix of the observations, and ē be the mean observation vector, ē = 1

n

∑i=n
i=1 ei.

Let D1/σ be the p × p diagonal matrix of the inverse standard deviations σj of the

original variables, σj = 1
n

∑i=n
i=1 (eij − ēj)2. Then, the matrix X of centered-normed

data is:
X = (E − 1ē)D1/σ

where 1 is a n×1 vector having all its elements equal to 1. Diagonalizing the covariance
matrix, C, of the centered-normed data provides the new basis U:

C =
1
n
XtX = UΛUt , where Λ = diag(λ1, . . . , λp) with λ1 ≥ λ2 ≥ . . . ≥ λp

In this new basis, the observations are expressed as:F = XU, what leads to the following
reconstruction formula:

ei = ē + fiUtD−1
1/σ , i = 1, . . . , n (7)

Synthesis. Relation (7) can be used to generate new instances of the studied class of
objects.

First, since the eigenvalue λj represents the variance along the the jth mode, a modal
approximation can be achieved by retaining only the first t,(t ≤ p), eigenvectors of the
modal basis U. The quality of the approximation can be measured by the proportion, τ ,
of the whole variance, λT , explained by the retained modes:

τ =

∑j=t
j=1 λj

λT
where λT =

j=p∑
j=1

λj
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Second, under the assumption that the distribution of centered-normed observations
xi is gaussian, i.e xi ∼ N (0,C), it comes that fi ∼ N (0,Λ) and fij ∼ N (0, λj).
Accordingly, new instances consistent with the learnt observations can be synthesized,
by the variation of fij,j=1,...,t in a suitable range, which is typically such that:

− 3
√
λj ≤ fij ≤ +3

√
λj (8)

In fact, if fij ∼ N (0, λj), thenP (fij ≤ 3
√
λj) = 99.7%, and thus (8) can be considered

as a condition of representativity of the class of objects of interest.

4 Experiments

Our database is made up of 18 subjects (35 + /− 10 years old healthy males, all right-
handed) who have underwent a T1-MR SPGR 3D study. Six major sulci have been
extracted for each hemisphere. They are superior frontal sulcus (SF), precentral sulcus
(PreC), central sulcus (C), postcentral sulcus (PostC), lateral sulcus or sylvian fissure
(L) and superior temporal sulcus (ST). For each of them, local coordinate systems have
been computed (see Fig. 2). Statistical modeling experiments have been performed on
pairs (C, PreC), (C, PostC) and (L, ST) of the left hemisphere.

We can on see on Fig. 2 the 3 local median coordinate systems corresponding to these
pairs of sulci. In Table 1, we exhibit the percentage of cumulative variance explained
along the modes of variations. The variations due to the first, as well as those due to the
third mode mode are illustrated on Fig. 3 for the three considered pairs of sulci.

Fig. 2. For both figures, the 6 sulci are extracted from one subject and are, from left to right and then
top to bottom: SF, PreC, C, PostC, L, ST, of the left hemisphere. Left: a view of the 6 considered
major sulci with their local systems of coordinate superimposed. Right: a view of the 6 considered
major sulci with the local median system of each pair superimposed.

5 Discussion

First, we remark on Table 1 that for each experimented pair, the whole variance is
explained by 7 modes whereas original data are expressed by 11 variables. As a matter



Statistical Modeling of Pairs of Sulci 661

Table 1. Percentage, p, of cumulative variance according to the number of modes retained, t, for

pairs (C, PreC), (C, PostC) and (L, ST); p =

∑j=t

j=1
λj

λT
× 100.

(C, PreC) (C, PostC) (L, ST)

1 48.844 42.5621 36.7084
2 79.105 68.697 61.9032
3 90.5307 87.5777 84.3016
4 97.1499 95.1251 94.5972
5 99.0582 98.3103 98.3764
6 99.9343 99.6695 99.9023
7 100 100 100

a b c

d e f

Fig. 3. Top row: variations of the first mode around the mean observation: −2
√
λ1 ≤ f1 ≤

+2
√
λ1. Bottom row: variations of the third mode around the mean observation: −2

√
λ3 ≤ f3 ≤

+2
√
λ3. For all figures: white: local median system, dark gray: synthesized local coordinates

systems of sulcus A around its mean coordinate system, light gray: synthesized local coordinates
systems of sulcus B around its mean coordinate system.
a, d: pair (preC, C); b, e: pair (C, postC); c, f: pair (L, ST).

of fact, the observation vector e contains some redundant information since 4 angles
out of the 10 ones used in this vector can be expressed, by construction, as a linear
combination of the other ones (i.e. ψRB = −ψRA , φRB = −φRA , ψOb = ψOa − π and
φOb = −φOa ). Second, modeling the variability of the pairs of sulci we considered
in the experiments is relevant by itself since these quasi-parallel sulci define gyri. For
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example, the central and postcentral sulci bound the postcentral gyrus, and modeling their
interaction is a way of modeling the gyrus variability. As the other arcs are concerned,
since they represent some “plis de passage”, their modeling will rather find its interest
in the study of the whole graph.

6 Conclusion

We have proposed a statistical framework to model the inter-individual variability of
pairs of sulci with respect to their relative position and orientation. The modeling is
performed by a modal analysis (normed-PCA) on a consistent training population. Work
in progress aims first at extending the inter-individual fusion scheme proposed in [3].
This one consists in registering functional activitions under the constraint of anatomical
landmarks: the sulci. Until now, the constraint was limited to one sulcus, whereas the
functional are located in one gyrus, and in this sense are under the influence of the
two sulci bounding this gyrus. So we will use the statistical modeling presented here
to introduce a constraint extended to a pair of sulci. Second, we intend to extend the
proposed modeling framework to the whole graph.
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