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Abstract. We present a novel approach to nonrigid registration of volu-
metric multimodal medical data. We propose a new regularized template
matching scheme, where arbitrary similarity measures can be embedded
and the regularization imposes spatial coherence taking into account the
quality of the matching according to an estimation of the local structure.
We propose to use an efficient variation of weighted least squares termed
normalized convolution as a mathematically coherent framework for the
whole approach. Results show that our method is fast as accurate.

1 Introduction

Nonrigid registration is a crucial operation for image guided medicine. Image reg-
istration consists of putting into correspondence two or more datasets, possibly
obtained with different imaging modalities. Its applications range from pathol-
ogy follow-up, through a series of clinical studies, to image guided surgery, by
registering pre-operative images onto intra-operative ones [1]. Moreover, nonrigid
registration is also necessary in order to embed a priori anatomic knowledge into
medical image processing algorithms and, specially, into segmentation schemes.
In this case, a canonical atlas is usually registered onto patient specific informa-
tion to help classifiers know what the possible classes are for every voxel [2].

Datasets to be registered can therefore correspond to the same or to differ-
ent patients (or even to an atlas) and can also be from the same or from dif-
ferent imaging modalities. Putting into correspondence two anatomies that can
be topologically different (for example, in the case of pathology) and where the
voxel intensities measure different physical magnitudes (multimodality) poses a
serious challenge that has sparked intensive research over the last years [3].

A review of alternatives is beyond the scope of this paper, and a good one
can be found elsewhere [3] with a complete taxonomy of registration methods.
Just to focus this work, we will mention that voxel-based registration methods,
i.e. those using directly the full content of the image and not simplifying it to a
set of features to steer the registration, usually correspond to one of two impor-
tant families: template matching and variational. The former was popular years
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ago due to its conceptual simplicity [4]. Nevertheless, in its conventional for-
mulation, it is not powerful enough to address the challenging needs of medical
image registration. Variational methods rely on the minimization of a functional
(energy) that is usually formulated as the addition of two terms: data coupling
and regularization, the former forcing the similarity between both datasets (tar-
get, and source deformed with the estimated field) to be high while the later
forcing the estimated field to fulfill some constraint (usually enforcing spatial
coherence-smoothness). As opposed to variational methods, template matching
do not impose any constraint on the resulting fields which, moreover, due to the
discrete movement of the template are discrete fields. These facts have led to
an increasing popularity of variational methods for registration while template
matching has been loosing its place in this arena.

In this paper we present a novel registration approach using template match-
ing, where its major drawbacks have been explicitly addressed. The resulting
method is reliable and fast and it can be a feasible alternative to computation-
ally expensive variational approaches. First any similarity measure can be easily
incorporated into the neighborhoods comparison. Then spatial regularization is
imposed after template matching, by locally projecting the estimated field onto
a vector space. Moreover, the quality of the matching is considered when do-
ing the projection by means of the estimation of local structure. A very efficient
variation of weighted least squares termed normalized convolution [5,6], provides
a natural framework to our regularized matching approach.

The structure of the paper is as follows: Section 2 presents the local struc-
ture estimation procedure. Section 3 describes the proposed nonrigid registration
algorithm. Results are shown in Section 4 and conclusions in Section 5.

2 Local Structure

Our approach to nonrigid registration relies on template matching. Local struc-
ture measures the quantity of discriminant spatial information on every point
of an image and it is crucial for template matching performance: the higher
the local structure, the better the result obtained on that region with template
matching.

In order to quantify local structure, a structure tensor is defined as T(x) =
(∇I(x) ·∇I(x)t)σ, where the subscript σ indicates a local smoothing. The struc-
ture tensor consists of a symmetric positive-semidefinite 3 × 3 matrix that can
be associated to ellipsoids, i.e., eigenvectors and eigenvalues correspond to the
ellipsoids axes directions and lengths respectively. A scalar measure of the local
structure can be obtained as [7,8,9,10]

structure(x) =
detT(x)

trace T(x)
. (1)

Figure 1 shows an MRI T1-weighted axial slice of the brain and the estimated
structure tensors overlaid as ellipsoids. Small eigenvalues indicate lack of gradient
variation along the associated principal direction and, therefore, high structure
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Fig. 1. MRI T1-weighted axial slice of human brain and its structure tensors. The
brighter the gray level of the ellipsoids the higher the structure.

Fig. 2. Top: MRI T1-weight cross-sections; Bottom: Local structure measure. Arrows
point at higher structure regions.

is indicated by big (large eigenvalues), round (no eigenvalue is small) ellipsoids.
The gray level coding represents the scalar structure measure, with brighter gray
levels indicating higher structure.

Figure 2 shows cross-sections of a T1-weighted MRI dataset of a human
brain (top row) and the scalar measure of local structure obtained from them,
represented with a logarithmic histogram correction (bottom row). Note how
anatomical landmarks have the highest measure of local structure, corresponding
to the points indicated by the arrows on the top row. Curves are detected with
lower intensity than points and surfaces have even lower intensity. Homogeneous
areas have almost no structure.
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3 The Registration Algorithm

3.1 Algorithm and Multiresolution Pyramid

The algorithm works similar to Kovačič and Bajcsy elastic warping [11], in which
images are decomposed on Gaussian multiresolution pyramids. On the highest
level, the deformation field is estimated by regularized template matching steered
by local structure (details in sections below). On the next level, the source dataset
is deformed with a deformation field obtained by spatial interpolation of the one
obtained on the first level. The deformed source and the target datasets on the
current level are then registered to obtain the deformation field corresponding
to the current level of resolution. This process is iterated on every level. The
algorithm implementation is summarized in figure 3.

3.2 Template Matching

Template matching finds the displacement for every voxel in a source image by
minimizing a local cost measure, obtained from a small neighborhood of the
source image and a set of potential correspondent neighborhoods in a target
image. The main disadvantage of template matching is that it estimates the dis-
placement field independently in every voxel and no spatial coherence is imposed
to the solution. Another disadvantage of template matching is that it needs to
test several discrete displacements to find a minimum.

There exists some optimization-based template matching solutions that pro-
vide a real solution for every voxel, though they are slow [12]. Therefore, most
template matching approaches render discrete displacement fields. Another prob-
lem associated to template matching is commonly denoted as the aperture prob-
lem in the computer vision literature [13]. This essentially consists of the inability
of making a good match when no discriminant structure is available, such as in
homogeneous regions, surfaces and edges. When this fact is not taken into ac-
count the matching process is steered by noise and not by the local structure,
since it is not available.

Our approach to nonrigid registration keeps the simplicity of template match-
ing while it addresses its drawbacks. Indeed the algorithm presented here consists
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of a weighted regularization of the template matching solution, where weights
are obtained from the local structure, in order to render spatially coherent real
deformation fields. Thanks to the multiscale nature of our approach only dis-
placements of one voxel are necessary when matching the local neighborhoods.

3.3 Spatial Regularization

The objective in image registration is to find a one-to-one spatial mapping be-
tween points of two images. Template matching provides a discrete deformation
field where no spatial coherence constraints have been imposed. In this subsec-
tion this field is regularized so as to obtain a mathematically consistent contin-
uous mapping. We will consider the deformation field to be a diffeomorphism,
i.e. an invertible continuously differentiable mapping. In order to be invertible,
the jacobian of the deformation field must be positive. On every scale level, the
displacement is small enough to guarantee such condition. For every level of the
pyramid the mapping is obtained by composing the transformation on the higher
level with the one on the current level, so that the positive jacobian condition is
preserved.

Spatial regularization is achieved by locally projecting the deformation field
provided by template matching on an appropriate signal subspace, and simulta-
neously taking into account the quality of the matching as indicated by the scalar
measure of local structure. We propose here to use Normalized Convolution [6,5],
a popular refinement of weighted-least squares that explicitly deals with the so-
called signal/certainty philosophy. Essentially the scalar measure of structure is
incorporated as a weighting function in a least squares fashion. The field ob-
tained from template matching is then projected onto a vector space described
by a non-orthogonal basis, i.e., the dot products between the field and every
element of the basis provide covariant components that must be converted into
contravariant by an appropriate metric tensor. Normalized convolution provides
a simple implementation of this operation. Moreover, an applicability function
is enforced on the basis elements in order to guarantee a proper localization and
avoid high frequency artifacts. This essentially corresponds to weight each basis
element with a Gaussian window.

The desired transformation y(x) is related to the deformation field d(x) by
the simple relation

y(x) = d(x) + x (2)

where x and y denotes coordinates in every dataset.
Since the transformation is differentiable, we can write the function in dif-

ferent orders of approximation.

y(x) � y(x0), (3)
y(x) � y(x0) + J(x0) · [x − x0]. (4)

Equations 3 and 4 consist of linear decompositions of bases of size 3 and 12
basis elements, respectively. We have not found relevant experimental improve-
ment of the registration algorithm by using the linear approximation instead of
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Fig. 4. Left: certainty; Center: discrete matching deformation; Right: weight filtered
deformation.

the zero-order one, probably due to the local nature of the algorithm. The basis
set used is then:

b1




y1(x) = 1
y2(x) = 0
y3(x) = 0

b2




y1(x) = 0
y2(x) = 1
y3(x) = 0

b3




y1(x) = 0
y2(x) = 0
y3(x) = 1

(5)

Figure 4 shows a 2-d discrete deformation field that has been regularized
using the certainty on the left side and a 2-d Gaussian applicability function
with σ = 0.8.

3.4 Implementation

The algorithm has been written in Matlab interfacing some external C libraries.
In order to run faster the matching process, the whole dataset has been split
and has been parallelized using Parallel Matlab [14].

4 Results

In order to illustrate quantitatively the performance of our registration approach,
a T1-weighted MRI, size 160 × 192 × 160 with 12 bits depth and with isotropic
voxel size of 1 mm, has been deformed using a set of synthetic deformation
fields with a spatial bandwidth of 1 cm−1 and variable amplitudes. The original
and the deformed datasets have been registered with the SSD similarity measure
(Sum of Squared Differences) and a Gaussian applicability function with σ = 1.5.
The Root Mean Square (RMS) errors before and after registration is shown in
figure 5 in 18 experiments with different maximum displacements. Notice how the
difference (RMS error) between both datasets is decreased after registration. The
gain is obviously lower when the maximum displacement is bigger. Figure 6 shows
from left to right the same sagittal slice of the original, synthetically deformed
(maximum amplitude of 15 mm) and the original after the deformation field has
been estimated an applied. The registration was done in 7 minutes (volumetric
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Fig. 5. RMS before and after registration of a 12 bits per voxel T1-weighted MRI
160 × 192 × 160 dataset with a synthetic deformation field of variable amplitude.

Fig. 6. Left: T1W MRI sagittal cross-section; Center: T1W MRI sagittal cross-section
of the same dataset deformed with a synthetic field of 1 cm−1 of spatial bandwidth
and 15 mm of maximum displacement; Right: T1W MRI sagittal cross-section of the
registered dataset.

datasets) on a cluster of eight workstations (hybrid Pentium III and UltraSPARC
II).

In order to illustrate qualitatively the performance of our approach for mul-
timodal registration, two volumetric datasets of identical sizes to the previous
ones, corresponding to a T1-weighted simulated brain image [15] and a T2-
weighted patient image, have been registered using the correlation coefficient as
similarity measure, and a Gaussian applicability function with σ = 1.5. Both
datasets were rigidly registered prior to the application of our algorithm. Fig-
ure 7 shows, from left to right, T1-weighted, T2-weighted and the T1-weighted
dataset deformed onto the T2-weighted one after the field was estimated. Notice,
for example, how well the corpus callosum is deformed.

5 Conclusions and Future Work

We have presented a novel nonrigid registration scheme based on template
matching, where arbitrary similarity measures can be considered and a defor-
mation field regularization is also carried out. According to our experiments
our approach can be a feasible alternative to computationally more expensive
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Fig. 7. Left: T1W MRI sagittal cross-section from brainweb; Center: T2W MRI sagit-
tal cross-section of a clinical patient; Right: T1W MRI sagittal cross-section of the
registered dataset.

variational methods, yet rendering high accuracy in the registration even in mul-
timodal cases. Our current implementation makes full registrations of volumetric
MRI data in seven minutes using a cluster of eight conventional workstations.

Nevertheless yet some improvement can be obtained by doing a full C imple-
mentation (currently we are using Matlab and some external libraries). Moreover,
other structure detectors as the Harris corner detector [9] and quadrature filter
based structure tensors [16] should also be tested.
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