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Abstract. The development of Diffusion Tensor MRI has raised hopes in the
neuro-science community for in vivo methods to track fiber paths in the white
matter. A number of approaches have been presented, but there are still several
essential problems that need to be solved. In this paper a novel fiber propagation
model is proposed, based on stochastics and regularization, allowing paths origi-
nating in one point to branch and return a probability distribution of possible paths.
The proposed method utilizes the principles of a statistical Monte Carlo method
called Sequential Importance Sampling and Resampling (SISR).

1 Introduction

The development of Magnetic Resonance Imaging (MRI) has led to the design of nu-
merous imaging techniques. One of these is Diffusion Tensor MRI (DT-MRI), which
measures the motion of hydrogen atoms within water in all three dimensions. In tissue
containing a large number of fibers, like skeletal muscle or white brain matter, wa-
ter tends to diffuse only along the direction of the fibers. The DT-MRI technique has
raised hopes in the neuro-science community for a better understanding of the fiber tract
anatomy of the human brain. Various methods have been proposed to use DT-MRI data
to track nerve fibers and derive connectivity between different parts of the brain in vivo
[1,2,11,12,13,15,16].

A simple and effective method for tracking nerve fibers using DT-MRI is to follow
the direction of the maximum diffusion in each voxel, equivalent to the direction of the
main eigenvector in each tensor. This method is usually referred to as tracking using the
Principal Diffusion Direction (PDD). Although this method is widely spread and used
in various ways [4,5], it suffers from some major disadvantages. The connectivity is
restricted to a one-to-one mapping between points, not allowing the branching that real
fiber tracts may undergo. The PDD tracking also gives the impression of being precise,
not taking uncertainty of fiber paths into account in the tracking procedure. Further,
the direction of the eigenvector corresponding to the largest eigenvalue is very unstable
when in proximity to the generic cases of planar and spherical diffusion [14,16].

While there are strong indications that DT-MRI reveals information of the fiber
pathways in the brain, it is important to stress the fact that the explicit quantity measured
is water diffusion and not fibers. As DT-MRI is a fairly new field of research, many
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studies are yet to be made to compare the measured diffusion tensors to detailed tissue
properties important for fiber path inference. However, in contrast to approaches such
as solving the diffusion equation [6], it might be important to separate the physical
phenomenon of water diffusion from the solution of the tracking problem through the
use of a fiber model. In this way a priori knowledge about nerve fibers such as fiber
stiffness could be taken into account [12].

In this paper we propose a fiber propagation method that is based on stochastics and
regularization, allowing paths originating in one point to branch and return a probability
distribution of possible paths. The proposed method utilizes the principles of Sequential
Importance Sampling and Resampling (SISR) that belongs to the class of Monte Carlo
methods.

2 Fiber Models

Inspired by the nomenclature used by Liu et al. [10], single fiber paths will be represented
by a sequence X = (x0,x1, . . . ,xN ), where xi usually refers to positions in space.
Fiber path probability distributions are denoted π(X) and the tracking of a fiber path
originating from a point x0 give raise to the conditional fiber path distribution π(X|x0).
The distribution π(X|x0) assigns a probability to all possible fiber paths originating
in x0, which in theory can depend on both the shape of the path, its alignment to the
measured diffusion tensor field D and other prior knowledge. The distribution πt(Xt)
will be used to describe the fiber path distribution after t steps of tracking and πt(Xt−1)
will denote the probability of the first part of a path Xt−1, after t steps of tracking. The
tracking is assumed to be finished after N steps and the final distribution is denoted
πN (X).

The build-up of fiber paths will be sequential, and the direction from the current
point, xt, to the next point in the fiber path, xt+1, will be denoted ẋt. The actual distance
to the next point on the path will depend on the size of the step, ∆t.

xt+1 = xt + ẋt∆t (1)

3 Sequential Importance Sampling and Resampling

A Monte Carlo method called Sequential Importance Sampling and Resampling (SISR),
can be used to calculate an approximation of a probability distribution.

3.1 Properly Weighted Sample

In order to work with a distribution π(X), it should be represented in some convenient
way. One choice of representation is by a set of properly weighted samples [10]. A
set of weighted random samples {(X(j), w(j))}m

j=1 is called proper with respect to the
distribution π(X) if for any square integrable function h(·),

E[h(w(j)X(j))] = cEπ[h(X)], for j = 1, . . . , m, (2)
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Fig. 1. Left: An unweighted sample representing p(x). Note how the density of samples reflects
the distribution. Right: A weighted sample representing p(x). Note how fewer samples can be
used to represent the distribution.

where c is a normalizing constant common to all them samples [10]. Using this definition,
it is straight forward to confirm that the expectation θ = Eπ[h(X)] can be estimated as

θ̂ =
1
W

m∑

j=1

w(j)h(X(j)), (3)

where W is a normalizing factor. Drawing for example X(j) directly from π(X) with
w(j) = 1 gives a proper set of samples [10].

The ability to estimate expectations is an important quality for the approximation of
a distribution. In fact, every probability distribution, no matter how complicated it is,
can be represented to an acceptable degree of accuracy by a set of properly weighted
samples from it [10]. However, it might be difficult to perform the actual sampling. One
frequently used method to draw random samples from complicated distributions is the
Metropolis-Hastings algorithm [7].

By the use of weighted samples the representation can be made more efficient. Fig-
ure 1 gives an intuitive understanding of the difference between weighted and unweighted
sets of samples. In general, a set of weighted samples can represent a distribution with
higher accuracy than a set of equally many non-weighted samples.

3.2 Importance Sampling

An often effective way to draw a properly weighted sample {(X(j), w(j))} from a dis-
tribution π(X), is to use so called importance sampling. A sample is drawn from a trial
distribution q(X) and then assigned a weight w(j) = π(X)/q(X) to make it proper [10].

3.3 Sequential Build-Up

In Sequential Importance Sampling a set of properly weighted samples of π(X) is built
up sequentially, through a series of sample sets of increasing dimension,

π0(X0), π1(X1), . . . , πN (XN ),

smoothly approaching the final distribution so that πN (XN) = π(X) [10]. Suppose
now that we have a set of properly weighted samples {(X(j)

t−1, w
(j)
t−1)} representing



438 M. Björnemo et al.

πt−1(Xt−1) and we use a qt(xt|Xt−1) close or equal to the true πt(xt|Xt−1) to draw
a new set of samples {(X(j)

t , w
(j)
t )}. The weights should then be adjusted according to

wt = wt−1
πt(Xt)

πt−1(Xt−1)qt(xt|Xt−1)
= wt−1

πt(Xt−1)
πt−1(Xt−1)

πt(xt|Xt−1)
qt(xt|Xt−1)

(4)

to represent πt(Xt) [10].

3.4 Resampling and Reallocating

Sometimes a representation of a distribution becomes inefficient by having many small
weights compared to other dominating large weights. In those cases a more efficient
representation can be obtained by pruning away samples with small weights and du-
plicating samples with large weights by doing a resampling of the distribution. One
way of doing this is to generate a new set of properly weighted samples by resampling
with replacement from the set, using the weight as a probability for a sample being
resampled [10].

3.5 Related Methods

Sequential Importance Sampling and Resampling is a method that belongs to the class
of population Monte Carlo algorithms [8]. Similar methods are found in for instance
control theory and are then often called particle filters. The name has been chosen because
samples can be seen as particles in a state space, and the sampling from qt(xt|Xt−1) can
be seen as making the particles walk stochastically along a path in state space. Population
Monte Carlo algorithms have also proved to be useful tools in a number of other scientific
fields such as statistical physics, quantum mechanics and polymer science [8].

4 Tracking Using SISR

Tracking of nerve fibers can benefit from a statistical framework [3]. We will present a
model for fiber propagation and relate it to the SISR framework.

4.1 A Rough Model for Fiber Propagation

In an attempt to build a more realistic model for fiber propagation, it is assumed that
fibers 1) are aligned according to the tensors, 2) do not change direction abruptly in case
of spherical and planar tensors, and 3) the uncertainty of fiber propagation increases in
planar and spherical tensors.

In the following section, D will refer to the current tensor D(xt). Also, as the size
of the tensor will not matter, the tensor is normed according to its largest eigenvalue, λ1.

D̂ =
D
λ1

(5)
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The first condition listed above is already accounted for in the PDD tracking method,
where the tracking always proceed in the direction of the main eigenvector, ê1, of the
current tensor:

ẋt,PDD = ê1(D). (6)

To fulfill the second condition, regularization is added to the tracking model. A simple
way of doing this is to add a small bias towards the previous tracking direction.

Dreg = (D̂ + αẋt−1ẋT
t−1) (7)

ẋt = ê1(Dreg) (8)

By varying α, the bias towards the previous direction can be controlled. This will help
stabilize the fiber propagation in case of a spherical tensor, where the main eigenvector
might point in any direction before regularization. A larger value of α will smooth the
proposed fiber paths to a greater extent.

To incorporate uncertainty in the fiber model, a stochastic part is added perpen-
dicular to the regularized fiber propagation direction. The distribution of the stochastic
part is derived from Gaussian noise and transformed using the current tensor to reflect
assumption 3), listed before. Thus a linear tensor will result in a small spread.

e ∈ N(µ,C), µ = (0 0 0)T , C = I (9)

r = Drege − (Drege · ẋt)ẋ (10)

Finally the stochastic part is added to form the complete fiber propagation model.

ẋt = ê1(Dreg) + rprojβ = (11)

ê1(D̂ + αẋt−1ẋT
t−1) + rprojβ (12)

In short, a stabilized propagation direction is calculated and a stochastic part is added. By
using different values of α and β both the regularization of direction and the stochastic
contribution can be varied.

Simulations on synthetic data are shown in figure 2 below. The tensors used in this
tracking experiment were disturbed by noise and the overlayed grid is schematic. These
simulations show the effect of choosing different values on alpha and beta. For realistic
tracking, suitable values on alpha and beta should be estimated and validated.

4.2 Connections to SISR

The rough model presented above can be interpreted in the SISR framework, giving it
meaning and further guide the search for a good fiber path model. The propagation step
of the rough model is viewed as the sequential build-up presented in 3.3.

• The propagation step of the rough model can be interpreted as sampling from
a trial distribution qt(xt|Xt−1) = π(xt|Xt−1) and assuming that πt(Xt−1) =
πt−1(Xt−1). In this way, the rough model fully describes fiber propagation and no
further weighting is needed.
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Fig. 2. Left: Normal eigentracking used as a reference (from multiple starting points). Middle:
Tracking using a higher value of α, resulting in more regularized fiber paths. This supports prop-
agation through spherical tensors. Right: Tractography using a higher value of β, achieving an
increased stochastic spread and a representation of tracking uncertainty in fiber crossings.

• The rough model can be extended by assigning weights to paths by assuming
πt(Xt−1) �= πt−1(Xt−1). Still the conditional path propagation is considered to be
fully described by the rough model propagation step as described above, but some
compensation is done to for instance to punish some paths. One example is setting
the weight to zero or close to zero for a fiber path entering or touching a forbidden
area of the brain such as the ventricles.

• To make full use of the SISR framework the propagation step of the rough model
should only be considered as the conditional trial distribution close to the real fiber
path distribution. This is true importance sampling of the paths and the weight
should be adjusted according to equation 4, compensating for the slightly incorrect
conditional trial distribution qt(xt|Xt−1).This is the most general approach, giving a
large freedom to choose a realistic fiber model by selecting the weight appropriately.

5 Results

The methods mentioned can be simulated using a sequential build-up or sequential
sampling algorithm. To ensure a satisfying representation, as many as 100 000 samples
(particles) were used.

A white matter mask was used to determine when the particles had reached the border
between the white and the gray matter, i.e. when to stop the tracking. The mask was
created using the EM-MFA segmentation method presented by Kapur et al. [9].

In figure 3 below, the paths of only 200 particles are shown. Notice that the visualized
paths should be interpreted as a representation of the probability distribution for ’true’
paths, and not as individual ’true’ paths themselves.

6 Discussion

The method of Sequential Importance Sampling and Resampling has the ability of sim-
ulating rich fiber path models. It can take advantage of the full tensor data as opposed to
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Fig. 3. Top left: Axial and coronal slices indicating the area of the brain where the white matter
tractography was performed. Top right: Regularized stochastic tractography, showing one single
starting point (at the center of corpus callosum) resulting in multiple end points. Bottom left:
Tractography using a higher value of β, achieving an increased stochastic spread. Bottom right:
Tracking using a higher value of α, resulting in more regularized fiber paths.

methods based solely on the principal diffusion direction. Though our proposed model
depends heavily on the tensor as such, the SISR method is not dependent of the tensor
representation. The SISR framework should be easy to adapt to more accurate diffusion
measures in the future, a property it is expected to share with other Monte Carlo methods
as well. A rich set of fiber models can be used and the theoretical framework provide
means for approximately solving a well defined problem up to a chosen level of accuracy.

Despite using a simple model, it has been demonstrated how uncertainty can be taken
into account during the tracking procedure. Using a Monte Carlo approach, the tracking
paradigm has been extended from a one-to-one mapping to a one-to-many mapping,
connecting one starting point to multiple end points in the brain. This could give a
different and possibly better view of connectivity in the brain, taking branching of nerve
fibers into account.
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