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Abstract. N -body codes are routinely used for simulation studies of
physical systems, e.g. in the fields of computational astrophysics and
molecular dynamics. Typically, they require only a moderate amount of
run-time memory, but are very demanding in computational power. A
detailed analysis of an N -body code performance, in terms of the rela-
tive weight of each task of the code, and how this weight is influenced by
software or hardware optimisations, is essential in improving such codes.
The approach of developing a dedicated device, GRAPE [9], able to pro-
vide a very high performance for the most expensive computational task
of this code, has resulted in a dramatic performance leap. We explore
on the performance of different versions of parallel N -body codes, where
both software and hardware improvements are introduced. The use of
GRAPE as a ’force computation accelerator’ in a parallel computer ar-
chitecture, can be seen as an example of a Hybrid Architecture, where
Special Purpose Device boards help a general purpose (multi)computer
to reach a very high performance1.

1 Introduction

N -body codes are a widely used tool in various fields of computational science,
from astrophysics to molecular dynamics. One important application is the sim-
ulation of the dynamics of astrophysical systems, such as globular clusters, and
galactic clusters [10]. The core of an N -body code is the computation of the
(gravitational) interactions between all pairs of particles that constitute the sys-
tem. Many algorithms have been developed to compute (approximate) gravity
interactions between a given particle i and the rest of the system. Our research
is concerned with the simplest and most rigorous method [1], which computes
the exact value of the gravity force that every other particle exerts on i. Unlike
the well-known hierarchical methods [3,4], this method retains full accuracy, but
it implies a computational load that grows as N2, where N is the total number
of particles. Consequently, the computational cost becomes excessive even for a
few thousand particles, making parallelisation attractive [15,16].

1 Parts of this work will be reported in the FGCS journal issue on HPCN 2000 [13].
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The huge computational requirements of N -body codes also make the design
and implementation of special hardware worthwhile. The goal of our research
is the study of an emergent approach in this field: the use of Hybrid Computer
Architectures. A hybrid architecture is a parallel general purpose computer,
connected to a number of Special Purpose Devices (SPDs), that accelerate a
given class of computations. An example of this model is presented in [11]. We
have evaluated the performance of such a system: two GRAPE boards attached
to our local cluster of a distributed multiprocessor system [2]. The GRAPE SPD
[9] is specialised in the computation of the inverse square force law, governing
both gravitational and electrostatic interactions:

Fi = G
mjmi

|rj − ri|3 (rj − ri) (1)

(where mi and mj are star masses in the gravity force case, and charge values,
in the Coulomb force case). The performance of a single GRAPE board can
reach 30 GigaFlop/s. Though some fundamental differences, like electrostatic
shielding, exist, this similarity in the force expression allows us in principle to
use GRAPE for both classes of problems. Simulated gravothermal oscillations of
globular clusters cores, and other remarkable results obtained by using GRAPE,
are reported in [9].

Our research aims at understanding how hybrid architectures interact with
a given application. For this purpose, we have used NBODY1 [1] as a reference
code. It is a widely used code in the field of Computational Astrophysics. It
includes all the relevant functionalities of a generic N -body code, without be-
coming overly complex. We have determined the scaling properties of various
parallel versions of the code, with and without use of GRAPE boards. The data
obtained are used for the realisation of a performance simulation model that
will be applied to study a more general class of hybrid architectures and their
interaction with various types of N -body codes [12].

2 Architecture Description

The GRAPE-4 SPD is an extremely powerful tool for the computation of in-
teractions that are a function of r−2. Given a force law like (1), the main task
of a GRAPE board is to evaluate the force that a given set of particles, the
j-particles, exerts on the so called i-particles. This is done in a fully hardwired
way, using an array of pipelines (up to 96 per board). Each pipeline performs, for
each clock-cycle, the computation of the interaction between a pair of particles.

A GRAPE-4 system consisting of 36 boards was the first computer to reach
the TeraFlop/s peak-speed [9]. GRAPE-4 is suitable for systems of up to 104−105

particles, when running an N -body code whose computational complexity scales
as N2 (2). More sophisticated algorithms, such as the Barnes and Hut tree-code,
2 Besides the O(N2) complexity due to force computation, another term due to the

relaxation time of the system must be accounted for. This makes the total time
complexity of a simulation run ∼ O(N8/3) for homogeneous systems.
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reduce the computing cost to O(N · log N), at the price of a decreased accu-
racy, and an increased code complexity [3,16]. The latter codes change the work
distribution between the GRAPE and the host, since many more computations
not related to mere particle-particle force interactions must be done by the host.
This can make the host become the system’s bottleneck. This problem may be
solved by using a high performance parallel machine as the host, leading to
hybrid architectures.

We connected two GRAPE boards to two nodes of our local DAS (Distributed
ASCI Supercomputer [2], unrelated to, and predating the American ‘ASCI’ ma-
chines) cluster. The DAS is a wide-area computer resource. It consists of four
clusters in various locations across the Netherlands (one cluster is in Delft, one
in Leiden, and two in Amsterdam). The entire system includes 200 computing
nodes. A 6 Mbit/s ATM link connects remote clusters. The main technical char-
acteristics of our DAS-GRAPE architecture are summarised in the table below:

local network host GRAPE channel

Myrinet PentiumPro 200 MHz 300 MFlop/s/pipe peak PCI9080

150 MB/s peak-perf. 64 MB RAM 62, resp. 94 pipes per board 33 MHz clock

40 µs latency 2.5 GB disk
on-board memory for
44 000 j-particles

133 MB/s

3 Code Description

We chose NBODY1 as the application code for our performance analysis work
because it is a rather simple code, but includes all the main tasks which GRAPE
has been designed to service. This allows us to evaluate the performance of our
system. A number of modifications have been made to the code, in order to
parallelise it, and to let it make full use of GRAPE’s functionalities. We have
built and tested the following versions of the code:

– BLK - a basic parallel version of NBODY1, enhanced by adding a block
time-step scheme. This code does not make use of GRAPE.

– GRP - like BLK, but now using the GRAPE for the force calculations.

The codes were parallelised using MPI. They are described in more detail below.
The basic program flow for an N -body code is given in fig. 1.

3.1 BLK: The BLOCK Code

The original version of NBODY1 uses individual time-steps. Each particle is
assigned a different time at which force will be computed. The time-step value
∆t depends on the particle’s dynamics [1]. Smaller ∆t values are assigned to
particles having faster dynamics (i.e. those particles which have large values
in the higher order time derivatives of their acceleration). At each iteration,
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the code selects the particle that has the smallest t + ∆t value, and integrates
only the orbit of that particle. This reduces the computational complexity, with
respect to a code where a unique global time step is used. The individual time
step approach reduces the overall time complexity to O(N7/3), from the O(N8/3)
for global time step approach [7]. (3). An effect of individual times is that, for
each particle, values stored in memory refer to a different moment in time, i.e.
the moment of its last orbit integration. This means that an extrapolation of the
other particles’ positions to time ti is needed, before the force on i is computed.

Since their introduction, N -body
t = 0
while (t < t end)

find new i-particles
t = ti + ∆ti
extrapolate particle positions
compute forces
integrate i-particle orbits

Fig. 1. Pseudocode sketching the basic
NBODY1 tasks.

codes have evolved to newer ver-
sions, that include several re-
finements and improvements (cf.
[15]). In the version of NBODY1
used in our study we imple-
mented the so called hierarchi-
cal block time step scheme [8].
In this case, after computing the
new ∆ti, the value actually used
is the value of the largest power
of 2 smaller than ∆ti. This allows
more than one particle to have

the same ∆t, which makes it possible to have many i-particles per time step,
instead of only one. Using this approach, force contributions on a (large) number
of i-particles can be computed in parallel using the same extrapolated positions
for the force-exerting particles, hereafter called j-particles. Moreover, when a
GRAPE device is available, it is possible to make full use of the multiple pipelines
provided by the hardware, since each pipeline can compute the force on a differ-
ent particle concurrently.

Parallelisation. We let every PE have a local copy of all particle data (see fig. 2
for a pseudocode sketch). Each PE computes force contributions only from its
own subset of j-particles, assigned to it during initialisation. A global reduction
operation adds up partial forces, and distributes the result to all PEs. Then each
PE integrates the orbits of all i-particles, and stores results in its own memory.
To select the i-particles, each PE searches among only its j-particles, to deter-
mine a set of i-particle candidates. A global reduction operation is performed
on the union of these sets in order to determine the real i-particles, i.e. those
having the smallest time. The resulting set is scattered to all PEs for the force
computation. Since every PE owns a local copy of all particle data, only a set of
labels identifying the i-particles is scattered, reducing the communication time.

3 These figures for the time complexity are valid for a uniformly distributed config-
uration. More realistic distributions show a more complicated dependence on N ,
although quantitatively only slightly different.
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t = 0
while (t < t end)

find i-particle candidates among my j-particles
global reduction to determine actual i-particles
global communication to scatter i-particles
t = ti + ∆ti
extrapolate particle positions
compute partial forces from my j-particles
global sum of partial force values
integrate i-particle orbits

Fig. 2. Pseudocode sketching the tasks of a process of the parallel NBODY1 code.

3.2 GRP: The GRAPE Code

The API for the GRAPE hardware consists of a number of function calls, the
most relevant for performance analysis being those which involve communica-
tions of particles data to and from the GRAPE. These communication operations
include: sending j-particle data to GRAPE, sending i-particle data to GRAPE,
receiving results from GRAPE.

Parallelisation. The presence of the GRAPE boards introduces a certain de-
gree of complexity in view of code parallelisation. The GRAPE-hosts obviously
play a special role within the PE set. This asymmetry somehow breaks the SPMD
paradigm that parallel MPI programs are expected to comply with. Besides the
asymmetry in the code structure, also the data distribution among PEs is no
longer symmetric. The force computation by exploiting GRAPE boards is done,
similarly to the non-GRAPE code, by assigning an equal number of j-particles to
each GRAPE, which will compute the partial force on the i-particle set, exerted
by its own j-particles. After that, a global sum on the partial results, done by
the parallel host machine will finally give the total force. The GRAPE does not
automatically update the j-particles’ values, when they change according to the
system evolution. The GRAPE-host must take care of this task. Each GRAPE-
host holds an ‘image’ of the j-particles set of the GRAPE board linked to it, in
order to keep track of such update. Since all force computations and j-particles
positions extrapolations are done on the GRAPE, the only relevant work to do
in parallel by the PE set, is the search for i-particles candidates, which is accom-
plished exactly as in the code described in the previous sub-section, the position
extrapolation of the iparticles, and the orbit integration.

4 Results

Measurements for the evaluation of performance of the codes described in the
previous section were carried out. They were intended to explore the scaling
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Fig. 3. a: Global timings for the parallel block time-step code. b: Parallel efficiency of
the code.

behaviour of parallel N -body codes. Sample runs were made scaling both N ,
and the number of PEs nPE ; the former from 1024 to 16384, the latter from
1 to 24. NBODY1 does not need much run-time memory, just about 200 bytes
per particle, but is heavily compute-bound [5]. Our timings were carried out in
order to show the relative computational relevance of the various code tasks as
a function of N and nPE .

Our runs were started using a Plummer model distribution as initial con-
dition (density of particles decreasing outward as a power of the distance from
the cluster centre). The gravity force is modified by introducing a softening pa-
rameter, which is a constant term, having the dimension of a length, inserted
in the denominator in eq. (1). It reduces the strength of the force in case of
close encounters and thus prevents the formation of tightly-bound binaries. In
this way very short time-steps and correspondingly long integration times are
avoided. The use of a softening parameter is common practice in N -body codes.
In our runs, this parameter was set equal to 0.004. As a reference, the mean
inter-particle distance in the central core of the cluster, when N = 16384, is
approximately equal to 0.037.

4.1 Block Time-Step Code

The essential tasks of this version of the code are depicted in figure 1. As already
sayed, the number of i-particles per iteration can be greater than one. This
optimises the force computation procedure, also in view of the use of GRAPE,
but, on the other hand, increases the communication traffic, since information
about many more particles must be exchanged each time step. Fig. 3 shows total
timings and performance of this code, performance being defined as:

Pn =
t1

nPE · tn
,

with tn the execution time when using nPE PEs. Timings refer to 300 iterations
of the code. The execution time grows as a function of N2 because the number of
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Fig. 4. Evolution of execution time shares for the BLK code. a: runs with 1024 par-
ticles; b: runs with 16384 particles.

i-particles, i.e. the number of force computations, grows approximately linearly
with N (4). Since the computational cost for the force on each particle also
grows linearly with N , the resulting total cost per time-step is O(N2). Fig. 3b
shows a good performance gain for this code, affected anyway by a relevant
communication overhead. This large overhead can be seen in Fig. 4, which also
shows how the execution time shares evolve as a function of nPE . These figures
show that for the BLK code, almost all of the computational time is spent
in the force computation task; the j-particle extrapolation, that takes roughly
25 ∼ 30% of the total time in the original code [13], is now reduced to a fraction
of one percent.

4.2 GRAPE Code

The code-flow sketched in fig. 1 represents the actual working of GRP too.
The only difference with BLK is now that forces are computed on the GRAPE,
instead that on the host. We analysed the relative importance of the time spent in
GRAPE computation, host computation, and mutual communication. For the
parallel version, network communications overheads also have been analysed.
The parallel code runs have been done by using only the DAS nodes connected
to the GRAPE boards at our disposal, thus the maximum number of PEs in
this case is two. We observed that the parallel performance of the GRP code is
very poor. The large communication overhead that dominates the GRP code, as
can be seen in fig. 5, can explain this. This figure shows, apart from the large
communication overhead, that the time share spent in GRAPE computations
(i.e. force computations) is quite low, resulting in a low efficiency of this code,
in terms of GRAPE exploitation. One reason for that is of course the very high
speed of the GRAPE. The GRAPE performs its task much faster than its host
and the communication link between them. The figure clearly shows that for our

4 In our runs we found that on average 2.5% ∼ 3% of the particles are updated in
every time-step for all values of N . This fraction may change as the system evolves.



890 P.M.A. Sloot, P.F. Spinnato, and G.D. van Albada

0

0.2

0.4

0.6

0.8

1

2000 4000 6000 8000 10000 12000 14000 16000

fr
ac

tio
n 

of
 to

ta
l t

im
e

N

GRAPE computationsi-part. search

orbit integr.

other tasks
commun. with GRAPE

network commun.

Fig. 5. Scaling of execution time shares for the parallel GRP code.

hardware configuration the capabilities of the GRAPE will only be fully utilised
for problems of over 40 000 particles (for single GRAPEs) and approximately
double than that for the parallel system. This number is, however, limited by
the on-board memory for j-particles of GRAPE.

Measurements [14] show that most of the time spent in communication is
due to software overhead in copy operations and format conversions; analogous
measurements [6], performed on a faster host, showed a higher communication
speed, linearly dependent on the host processor clock speed. Nevertheless, even
though GRAPE boards are not exploited optimally, the execution times for the
GRP code are much shorter than those for the BLK code. The heaviest run on
two GRAPEs is about one order of magnitude faster than the analogous run of
the BLK code on 24 PEs. A global comparison of the throughput of all codes
studied in this work is given in the next subsection.

4.3 Code Comparison

In order to evaluate the relative performance of the two versions of the N -body
code studied in this paper, runs were made, where a 8192 particle system, and
a 32768 particle system were simulated for 7200 seconds. Initial conditions and
values of numerical parameters were identical to the ones previously specified.
The fastest hardware configuration was used in each case, i.e. 24 PEs for the
BLK code runs, and 2 PEs (and 2 GRAPEs) for the GRP run. Figs. 6a,b show
the evolution of the simulated time, as a function of the execution time. The
performance of each code is measured as the time it takes before a simulation
reaches a certain simulated time. The figures show that the GRP code outper-
forms the other code by a factor 8, for 8192 particles, and by a factor 20, for
32768 particles.
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Fig. 6. Performance comparison for the two versions of the N -body code. a: runs with
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These figures clearly show the large performance gain obtained with GRAPE.
Using only two PEs, an order of magnitude better performance was attained com-
pared to the BLK code on 24 PEs. Due to the reduction in the time needed for
the force calculation, the communication overhead for the GRP code accounts
for approximately 50% of the total execution time. Hence an even larger relative
gain may be expected for larger problems, as the relative weight of the commu-
nication overhead will become less. The difference in performance between the
two cases shown in fig. 6 clearly illustrates this effect.

5 Discussion

The main conclusions from our work are, apart from the very good parallel per-
formance of the BLK code, that the GRP code shows a dramatic performance
gain, even at a low efficiency in terms of GRAPE boards utilisation. This low
efficiency is mainly due to a very high communication overhead, even for the
largest problem studied. This overhead can be strongly reduced with the use
of a faster host, and by the development of an interface requiring fewer format
conversions. The GRAPE hosts in the system that we studied have a 200 MHz
clock speed. Nowadays standard clock speeds are 3 to 4 times faster; the use
of a state-of-the-art processor would reduce the host and communication times
significantly. An extremely powerful machine as GRAPE, in any case, can be ex-
ploited efficiently only when the problem size is large, thus attaining the highest
SPD utilisation.

The measurements described in this paper have been used to validate and
calibrate a performance simulation model for N -body codes on hybrid comput-
ers. The model will be used to study the effects of various software and hardware
approaches to the N -body problem.
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