
Unique Signatures and Verifiable Random
Functions from the DH-DDH Separation

Anna Lysyanskaya

MIT LCS
200 Technology Square

Cambridge, MA 02139 USA
anna@theory.lcs.mit.edu

Abstract. A unique signature scheme has the property that a signa-
ture σPK(m) is a (hard-to-compute) function of the public key PK and
message m, for all, even adversarially chosen, PK. Unique signatures, in-
troduced by Goldwasser and Ostrovsky, have been shown to be a building
block for constructing verifiable random functions. Another useful prop-
erty of unique signatures is that they are stateless: the signer does not
need to update his secret key after an invocation.
The only previously known construction of a unique signature in the
plain model was based on the RSA assumption. The only other previ-
ously known provably secure constructions of stateless signatures were
based on the Strong RSA assumption. Here, we give a construction of a
unique signature scheme based on a generalization of the Diffie-Hellman
assumption in groups where decisional Diffie-Hellman is easy. Several
recent results suggest plausibility of such groups.
We also give a few related constructions of verifiable random functions
(VRFs). VRFs, introduced by Micali, Rabin, and Vadhan, are objects
that combine the properties of pseudorandom functions (i.e. indistin-
guishability from random even after querying) with the verifiability prop-
erty. Prior to our work, VRFs were only known to exist under the RSA
assumption.

Keywords: Unique signatures, verifiable random functions, application
of groups with DH-DDH separation.

1 Introduction

Signature schemes are one of the most important cryptographic objects. There
were invented, together with the entire field of public-key cryptography, by Diffie
and Hellman, and Rivest, Shamir and Adleman followed up with the first candi-
date construction. Goldwasser, Micali and Rivest [GMR88] gave the first signa-
ture scheme that is secure even if the adversary is allowed to obtain signatures
on messages of its choice. This notion of security for signature schemes is also
due to Goldwasser, Micali, and Rivest (GMR).

Since the GMR seminal work, it has become clear that the first requirement
from a signature scheme is that it should satisfy the GMR definition of security.

M. Yung (Ed.): CRYPTO 2002, LNCS 2442, pp. 597–612, 2002.
c© Springer-Verlag Berlin Heidelberg 2002

598 Anna Lysyanskaya

However, to be most useful, two additional properties of signature schemes are
desirable: (1) that the scheme be secure in the plain model, i.e., without a random
oracle or common parameters; and (2) that the scheme be stateless, i.e., not
require the signer to update the secret key after each invocation.

The only signature schemes satisfying both of these additional properties are
the Strong-RSA-based schemes of Gennaro et al. [GHR99] and of Cramer and
Shoup [CS99], and the scheme implied by the verifiable random function due to
Micali et al. [MRV99], based on RSA. An open question was to come up with
a signature scheme satisfying the two additional properties, such that it would
be secure under a different type of assumption. Here, we give such a signature
scheme, based on a generalization of the Diffie-Hellman assumption for groups
where decisional Diffie-Hellman is easy.
Unique signatures. The signature scheme we propose is a unique signature
scheme. Unique signature schemes are GMR-secure signature schemes where the
signature is a hard-to-compute function of the public key and the message. They
were introduced by Goldwasser and Ostrovsky [GO92]1.

Intuitively, unique signatures are the “right” notion of signatures. This is
because if one has verified a signature on a message once, then why should it be
necessary to verify the signature on the same message again? Yet, even if indeed
the given message has been accepted before, it is a bad idea to just accept it
again – what if this time it came from an unauthorized party? Hence, one must
verify the signature again, if it happens to be a different signature. If a signature
scheme allows the signer to easily (that is to say, more efficiently than the cost of
verifying a signature) generate many signatures on the same message, this leads
to a simple denial-of-service attack on a verifier who is forced to verify many
signatures on the same message. Although this is not a cryptographic attack, it
still illustrates that intuitively unique signatures are more desirable.

In the random-oracle model, a realization of unique signatures is well-known.
For example, some RSA signatures are unique: σn,e,H(m) = (H(m))1/e mod
n is a function of (n, e, H, m) so long as e is a prime number greater than
n (this is because for a prime e, e > n implies that e is relatively prime to
φ(n)). Goldwasser and Ostrovsky give a solution in the common-random-string
model. However, in the standard model, the only known construction of unique
signatures was the one due to Micali, Rabin, Vadhan [MRV99].

On the negative side, Goldwasser and Ostrovsky have also shown that even
in the common random string model, unique signatures require assumptions
of the same strength as needed for non-interactive zero knowledge proofs with
polynomial-time provers. The weakest assumption known that is required for
non-interactive zero knowledge proofs with polynomial-time provers, is existence
of trapdoor permutations [FLS99,BY96]. However, we do not know whether
this is a necessary assumption; neither do we know whether this assumption is
sufficient for constructing unique signatures in the plain model.
Verifiable random functions. Another reason why unique signatures are valu-
able is that they are closely related to verifiable random functions. Verifiable ran-
1 They call it an invariant signature

Unique Signatures and Verifiable Random Functions 599

dom functions (VRFs) were introduced by Micali, Rabin, and Vadhan [MRV99].
They are similar to pseudorandom functions [GGM86], except that they are also
verifiable. That is to say, associated with a secret seed SK, there is a public key
PK and a function FPK(·) : {0, 1}k �→ {0, 1}u such that (1) y = FPK(x) is
efficiently computable given the corresponding SK; (2) a proof πPK(x) that this
value y corresponds to the public key PK is also efficiently computable given
SK; (3) based purely on PK and oracle calls to FPK(·) and the corresponding
proof oracle, no adversary can distinguish the value FPK(x) from a random value
without explicitly querying for the value x.

VRFs [MRV99] are useful for protocol design. They can be viewed as a com-
mitment to an exponential number of random-looking bits, which can be of
use in protocols. For example, using verifiable random functions, one can re-
duce the number of rounds for resettable zero knowledge proofs to 3 in the bare
model [MR01]. Another example application, due to Micali and Rivest [MR02],
is a non-interactive lottery system used in micropayments. Here, the lottery
organizer holds a public key PK of a VRF. A participant creates his lottery
ticket t himself and sends it to the organizer. The organizer computes the value
y = FPK(t) on the lottery ticket, and the corresponding proof π = πPK(t). The
value y determines whether the user wins, while the proof π guarantees that the
organizer cannot cheat. Since a VRF is hard to predict, the user has no idea how
to bias the lottery in his favor.

These objects are not well-studied; in fact, only one construction, based on
the RSA assumption, was previously known [MRV99]. Micali, Rabin and Vadhan
showed that, for the purposes of constructing a VRF, it is sufficient to construct
a unique signature scheme. More precisely, from a unique signature scheme with
small (but super-polynomial) message space and security against adversaries that
run in super-polynomial time, they constructed a VRF with an arbitrary input
size that tolerates a polynomial-time adversary2 They then gave an RSA-based
unique signature scheme for a small message space.

Constructing VRFs from pseudorandom functions (PRFs) is a good problem
that we don’t know how to solve in the standard model. This is because by
its definition, the output of a PRF should be indistinguishable from random.
However, if we extend the model to allow interaction, it is possible to commit
to the secret seed of a PRF and let that serve as a public key, and then prove
that a given output corresponds to the committed seed using a zero-knowledge
proof. This solution is unattractive because of the expense of communication
rounds. In the so-called common random string model where non-interactive
zero-knowledge proofs are possible, a construction is possible using commit-
ments and non-interactive zero knowledge [BFM88,BDMP91,FLS99]. However,
this is unattractive as well because this model is unusual and non-interactive
ZK is expensive. Thus, construction of verifiable random functions from general
assumptions remains an interesting open problem.

2 Intuitively, it would seem that the connection ought to be tighter: a unique signature
secure against polynomial-time adversaries should imply a secure verifiable random
function. This is an interesting open problem, posed by Micali et al.

600 Anna Lysyanskaya

DH–DDH separation. Recently, Joux and Nguyen [JN01] demonstrated that
one can encounter groups in which decisional Diffie-Hellman is easy, and yet
computational Diffie-Hellman seems hard. This is an elegant result that, among
other things, sheds light on how reasonable it is to assume decisional Diffie-
Hellman.

Joux [Jou00] proposed using the DH-DDH separation to a good end, by ex-
hibiting a one-round key exchange protocol for three parties. Subsequently, in-
sight into such groups has proved relevant for the recent construction of identity-
based encryption due to Boneh and Franklin [BF01] which resolved a long stand-
ing open problem [Sha85]. Other interesting consequences of the study of these
groups are a construction of a short signature scheme in the random-oracle
model [BLS01] and of a simple credential system [Ver01].

Our results. We give a simple construction of a unique signature scheme based
on groups where DH is conjectured hard and DDH is easy. Ours is a tree-like
construction. The message space consists of codewords of an error-correcting
code that can correct a constant fraction of errors. For n-bit codewords, the
depth of the tree is n. The root of the tree is labelled with g, a generator of a
group where DH is hard and DDH is easy. The 2n leaves of the tree correspond
all the possible n-bit strings. The 2i nodes of depth i, 1 ≤ i < n correspond to
all the possible i-bit prefixes of an n-bit string.

A pair of group elements (Ai,0 = gai,0 , Ai,1 = gai,1) is associated with each
depth of the tree as part of the public key. The label of a node of depth i is
derived from the label of its parent by raising the parent’s label to the exponent
ai,0 if this node is its parent’s left child, or ai,1 if it is the parent’s right child.

Computing the signature on each codeword m amounts to computing the
labels of the nodes on the path from the root of the tree all the way down to the
leaf corresponding to m.

At first glance, this may seem very similar to the Naor-Reingold [NR97] pseu-
dorandom function. However the proof is not immediate. The major difference
from the cited result is that here we must give a proof that the function was
evaluated correctly. That makes it harder to prove security. For example, proof
by a hybrid argument, as done by Naor and Reingold [NR97] is ruled out im-
mediately: there is no way we can answer some of the adversary’s queries with
truly random bits, since for such bits there will be no proof.

Our proof of security for the unique signature relies on a generalization of
the Diffie-Hellman assumption. We call it the “Many-DH” assumption. However,
for directly converting this simple US to VRF, we need to make a very strong
assumption; however the resulting VRF is very simple. We also suggest a more
involved but also more secure construction of a VRF based on the Many-DH
assumption. This last construction is closely related to that due to Micali et
al. [MRV99].

Outline of the rest of the paper. In Section 2 we introduce our notation.
In Section 3 we give definitions of verifiable random functions and unique signa-
tures. In Section 4 we state our complexity assumptions for the unique signatures.
In Section 5 we give our unique signature and prove it secure in Section 6. We

Unique Signatures and Verifiable Random Functions 601

then provide a simple construction for a VRF under a somewhat stronger as-
sumption, in Section 7. We conclude in Section 8 with a construction of a VRF
based on the weaker assumption alone, but whose complexity (both in terms of
computation and in terms of conceptual simplicity) is the same as that of Micali
et al. [MRV99].

2 Notation

The notation in this paper is based on the Cryptography class taught by Silvio
Micali at MIT [Mic].

Let A(·) be an algorithm. y ← A(x) denotes that y was obtained by running
A on input x. In case A is deterministic, then this y is unique; if A is probabilistic,
then y is a random variable.

Let b be a boolean function. The notation (y ← A(x) : b(y)) denotes the
event that b(y) is true after y was generated by running A on input x.

Finally, the statement such as Pr[y ← A(x); z ← B(y) : b(z)] = α means
that the probability that b(z) is TRUE after the value z was obtained by first
obtaining y by running algorithm A on input x, and then running algorithm B
on input y.

By AO(·)(·), we denote a Turing machine that makes oracle queries to machine
O. I.e., this machine will have an additional (read/write-once) query tape, on
which it will write its queries in binary; once it is done writing a query, it inserts
a special symbol “#”. By external means, once the symbol “#” appears on
the query tape, an oracle O is invoked on the value just written down, and
the oracle’s answer appears on the query tape adjacent to the “#” symbol. By
Q = Q(AO(·)(x)) ← AO(·)(x) we denote the contents of the query tape once
A terminates, with oracle O and input x. By (q, a) ∈ Q we denote the event
that q was a query issued by A, and a was the answer received from oracle O.
Sometimes, we will write, for example, AO(x,·), to denote the fact that the first
input to O is fixed, and A’s query supplies only the second input to O.

We say that ν(k) is a negligible function, if for all polynomials p(k), for all
sufficiently large k, ν(k) < 1/p(k).

3 Definitions

3.1 Unique Signatures

Unique signatures are simply secure signatures where the signature is a function
as opposed to a distribution.

Definition 1. A function family σ(·)(·) : {0, 1}k �→ {0, 1}�(k) is a unique
signature scheme (US) if there exists probabilistic algorithm G, efficient deter-
ministic algorithm Sign, and probabilistic algorithm Verify such that G(1k)
generates the key pair PK,SK, Sign(SK, x) computes the value σ = σPK(x)
and Verify(PK, x, σ) verifies that σ = σPK(x). More formally (but assuming,

602 Anna Lysyanskaya

for simplicity, that Verify is a deterministic algorithm; in case it is not, the
adjustment to the definition is straightforward):

1. (Uniqueness of σPK(m)) There do not exist values (PK, m, σ1, σ2) such that
σ1 �= σ2 and Verify(PK, m, σ1) = Verify(PK, m, σ2) = 1.

2. (Security) For all families of probabilistic polynomial-time oracle Turing ma-
chines {A(·)

k }, there exists a negligible function ν(k) such that

Pr[(PK,SK)← G(1k);

(Q, x, σ)← A
Sign(SK,·)
k (1k); : Verify(PK, x, σ) = 1 ∧ (x, σ) /∈ Q] ≤ ν(k)

On a relaxed definition. Goldwasser and Ostrovsky [GO92] give a relaxed defi-
nition. In their definition, even though the signature is unique, the verification
procedure may require, as an additional input, a proof that the signature is
correct. This proof is output by the signing algorithm together with the signa-
ture, and it might not be unique. Here we give the stronger definition because
we can satisfy it (Goldwasser and Ostrovsky do not, even though they work in
the common random string model). However, note that the relaxed definition is
sufficient for constructing VRFs [MRV99].

Unique signatures are stateless. Since a unique signature is a function of the
public key and the message, a signature on a given message will be the same
whether this was the first message signed by the signer, or the n’th message. As
a result, it is easy to see that the signer does not need to remember anything
about past transactions, i.e., a unique signature must be stateless.

3.2 Verifiable Random Functions

The definition below is due to Micali et al. [MRV99]. We use somewhat different
and more compact notation, however.

The intuition of this definition is that a function is a verifiable random func-
tion if it is like a pseudorandom function with a public key and proofs.

Definition 2. A function family F(·)(·) : {0, 1}k �→ {0, 1}�(k) is a verifi-
able random function (VRF) if there exist probabilistic algorithm G, and de-
terministic algorithms Eval, and Prove, and algorithm Verify such that: G(1k)
generates the key pair PK,SK; Eval(SK, x) computes the value y = FPK(x);
Prove(SK, x) computes the proof π that y = FPK(x); and Verify(PK, x, y, π)
verifies that y = FPK(x) using the proof π. More formally (but assuming, for
simplicity, that Verify is a deterministic algorithm; in case it is not, the adjust-
ment to the definition is straightforward):

1. (Uniqueness of FPK(x)) There do not exist values (PK,SK, x, y1, y2, π1, π2)
such that y1 �= y2 and Verify(PK, x, y1, π1) = Verify(PK, x, y2, π2) = 1.

2. (Computability of FPK(x)) FPK(x) = Eval(SK, x).

Unique Signatures and Verifiable Random Functions 603

3. (Provability of FPK(x)) If (y, π) = Prove(SK, x), then

Verify(PK, x, y, π) = 1.

4. (Pseudorandomness of FPK(x)) For all families of probabilistic polynomial-
time Turing machines {A(·)

k , Bk}, there exists a negligible function ν(k) such
that

Pr[(PK,SK)← G(1k);

(QA, x, state)← A
Prove(SK,·)
k (1k);

y0 = Eval(SK, x);
y1 ← {0, 1}�(k);

b← {0, 1};
(QB , b′)← B

Prove(SK,·)
k (state, yb) : b = b′ ∧ (x, Prove(SK, x)) /∈ QA ∪QB]

≤ 1/2 + ν(k)

(The purpose of the state random variable is so that Ak can save some
useful information that Bk will then need.)
In other words, the only way that an adversary could tell FPK(x) from a
random value, for x of its own choice, is by querying it directly.

It is easy to see [MRV99] that given a VRF F(·) : {0, 1}�(k) �→ {0, 1}, one can

construct a VRF F ′
(·) : {0, 1}�′(k) �→ {0, 1}m(k), where �′(k) = �(k)−	log m(k)
,

as follows: F ′
S(x1 ◦ . . .◦x�′(k)) = FS(x1 ◦ . . .◦x�′(k) ◦u0)◦FS(x1 ◦ . . .◦x�′(k) ◦u1)◦

. . .◦FS(x1◦. . .◦x�′(k)◦um(k)) where ui denotes the 	log m(k)
-bit representation
of the integer i, and “◦” denotes concatenation.

Thus in the sequel we will focus on constructing VRFs with binary outputs.

Unique signatures vs. VRFs. Micali et al. showed how to construct VRFs from
unique signatures. The converse, namely construction of a unique signature from
a VRF, holds immediately if the proofs in the VRFs are unique. If the proofs
are not unique, then no construction satisfying our strong definition of unique
signatures in known. However, constructing relaxed unique signatures in the
sense of Goldwasser and Ostrovsky (see the end of Section 3.1) is immediate.

4 Assumptions

Let S be the algorithm that, on input 1k, generates a group G = (∗, q, g) with
efficiently computable group operation ∗, of prime order q, with generator g.
We require that g is written down in binary using O(log q) bits, and that every
element of the group has a unique binary representation.

We require that the decisional Diffie-Hellman problem be easy in G. More
precisely, we require that there is an efficient algorithm D for deciding the fol-
lowing language LDDH(G):

LDDH(G) = {(∗, q, g, X, Y, Z) | ∃x, y ∈ Zq such that X = gx, Y = gy, Z = gxy}

604 Anna Lysyanskaya

One the other hand, we will need to make the following assumption which
is somewhat stronger than computational Diffie-Hellman. It is essentially like
computational Diffie-Hellman, except that instead of taking two inputs, gx and
gy, and the challenge is computing gxy, we have a logarithmic number of bases
gy1 , . . . , gy� , as well as all the products g

∏
j∈J yj for all proper subsets J of the

naturals up to and including �, and the challenge is to come up with the value
g

∏�
j=1 yj .

Assumption 1 (Many-DH Assumption) For all � = O(log k), for all prob-
abilistic polynomial-time families of Turing machines {Ak},

Pr[(∗, q, g)← S(1k); {yi ← Zq : 1 ≤ i ≤ �};
{zJ =

∏

j∈J

yj ; ZJ = gzJ : J ⊂ [�]};

Z ← Ak(∗, q, g, {ZJ : J ⊂ [�]}) : Z = g
∏

yi] ≤ ν(k)

For an exposition of groups of this flavor, where the decisional Diffie-Hellman
problem is easy, and yet generalizations of the computational Diffie-Hellman
problem are conjectured hard, we refer the reader, for example, to the recent pa-
pers by Joux and Nguyen [JN01], Joux [Jou00] and Boneh and Franklin [BF01].
In the sequel, we will not address the number-theoretic aspects of the subject.

5 Construction of a Unique Signature

Suppose the algorithms S, D, as in Section 4, are given. Let k be the secu-
rity parameter. Let the message space consist of strings of length n0. Our only
assumption on the size of the message space is that n0 = ω(log k).

Let C : {0, 1}n0 �→ {0, 1}n be an error-correcting code of distance cn, where
c > 0 is a constant. In other words, C is a function such that if M �= M ′ are
strings of length n0, then C(M) differs from C(M ′) in at least cn places. For an
overview of error-correcting codes, see the lecture notes of Madhu Sudan [Sud].
Here, we note that since we will not need the decoding operation, only the
encoding operation, we can easily achieve n = O(n0).

We need to construct algorithms G, Sign, Verify as specified in Definition 1.

Algorithm G Run S(1k) to obtainG = (∗, q, g). Choose n pairs of random
elements in Zq: (a1,0, a1,1), . . . , (an,0, an,1). Let Ai,b = gai,b , for 1 ≤ i ≤ k,
b ∈ {0, 1}. Output the following key pair:

SK =

a1,0 a2,0 . . . an,0

a1,1 a2,1 . . . an,1
PK =

A1,0 A2,0 . . . An,0

A1,1 A2,1 . . . An,1

Unique Signatures and Verifiable Random Functions 605

Algorithm Sign On input a message M of length n0, compute the encoding of
M using code C: m = C(M). To sign the n-bit codeword m = m1 ◦ . . .◦mn,
output σPK(m) = (s1, . . . , sn), where s0 = g and si = (si−1)ai,mi for 1 ≤
i ≤ n.

Algorithm Verify Let sm,0 = 1. Verify that, for all 1 ≤ i ≤ n,

D(∗, q, g, sm,i−1, Ai,mi , sm,i) = ACCEPT

Graphically, we view the message space as the leaves of a balanced binary
tree of depth n. Each internal node of the tree is assigned a label, as follows:
the label of the root is g. The label of a child, denoted lc is obtained from the
label of its parent, denoted lp, as follows: if the depth of the child is i, and it is
the left child, then its label is lc = l

ai,0
p , while if it is the right child, its label

will be lc = l
ai,1
p . The signature on an n-bit message consists of all the labels on

the path from the leaf corresponding to this message all the way to the root. To
verify correctness of a signature, one uses the algorithm D that solves the DDH
for the group over which this is done.

Efficiency. In terms of efficiency, this signature scheme is a factor of O(n) worse
than the Cramer-Shoup scheme, in all parameters such as the key and signature
lengths and the complexity of relevant operations. This means that it is still
rather practical, and yet has two benefits: uniqueness, and security based on a
different assumption. In comparison to the unique signature of Micali et al., our
construction is preferable as far as efficiency is concerned. This is because our
construction is direct, while they first give a unique signature for short messages,
then show how to construct a VRF and a unique signature of arbitrary length
from that.

Reducing the length of signatures. Boneh and Silverberg [BS02] point out that,
if the language L(∗, q, g) = {gy1 , . . . , gyn , g

∏n
i=1 yi} is efficiently decidable, then

the signature does not need to contain the labels of the intermediate nodes.
I.e., to sign a message M , m = C(M), it is sufficient to give s = g

∏n
i=1 ai,mi .

This reduces the length of a signature by a factor of n. However, finding groups
where L(∗, q, g) is efficiently decidable, and yet the Many-DH Assumption is still
reasonable, is an open question [BS02].

6 Proof of Security for the Unique Signature

In this section, we show how to reduce breaking the Many-DH problem to forging
a signature of the construction in Section 5.

First, we show the following lemma:

Lemma 1. Suppose Verify(((∗, q, g), {Ai,b}1≤i≤n,b∈{0,1}), m, (s1, . . . , sn)) = 1.
Then sj = g

∏j
i=1 ai,mi , where ai,mi denotes the unique value Zq such that gai,mi =

Ai,mi .

606 Anna Lysyanskaya

Proof. We show the lemma by induction on j. For j = 1, the verification algo-
rithm will accept only if s1 = A1,mi

.
Let the lemma hold for j − 1. The verification algorithm will accept sj only

if D(∗, q, g, sj−1, Aj,mj , sj) = 1. But by definition of D, this is the case only if
sj = gσaj,mj , where σ is the unique value in Zq such that gσ = sj−1. By the
induction hypothesis, σ =

∏j−1
i=1 ai,mi

. Therefore, sj = gσaj,mj = g
∏j

i=1 ai,mi . ��

6.1 Description of the Reduction

In the following, “we” refers to the reduction, and the forger for the signature
scheme is “our adversary.”

Recall that k is the security parameter, and that n0 = ω(log k), n = O(n0).
Suppose that our adversary’s running time is t(k). Recall that c is the distance

of the error-correcting code we use. Let � = �log t(k)�+2
log(1/(1−.99c)) + 1. (Note that � =

O(log k)). Assume G is as in Section 4.

Input to the reduction: As in Assumption 1, we are given a group G = (∗, q, g)
and � elements Y1, Y2, . . . , Y� of G, where Yu = gyu . We are also given the values
ZI = g

∏
u∈I yu , for I ⊂ [�]. The goal is to break Assumption 1, i.e., compute

g
∏�

u=1 yu .

Key generation: Pick a random �-bit string B = b1 ◦ . . . ◦ b� and a random �-bit
subset J ⊂ [n]. (For simpler notation, assume that the indices are ordered such
that ju < ju+1 for all ju ∈ J .)

Set up the public key as follows: Aju,bu = Yu. To set up Ai,b where i /∈ J or
i = ju ∈ J but b �= bu, choose value ai,b ← Zq and set Ai,b = gai,b . Figure 1
gives an example of what the reduction does in this step.

PK =

ga1,0 ga2,0 ga3,0 Y2 ga5,0 ga6,0 ga7,0 ga8,0 ga9,0 ga10,0

ga1,1 ga2,1 Y1 ga4,1 ga5,1 ga6,1 ga7,1 ga8,1 Y3 ga10,1

Fig. 1. Toy example of a public key produced by the reduction. In this example,
n = 10, � = 3. The reduction randomly picked J = {3, 4, 9}, B = 101.

Responding to signature queries: We will respond to at most 2t signature queries
from the adversary, as follows.

Suppose the adversary’s query is M where C(M) = m = m1 ◦ . . . ◦mn. Let
J(m) denote the string mj1 ◦ . . . ◦mj�

.
Check if J(m) = B. If so, terminate with “Fail.” Otherwise, compute the

signature as follows: Let Z0 = g. Let b′ = b′(J) be an n-bit string such that
bju

= bu for all ju ∈ J . By Iu, we denote the �-bit string which has a 1 in
position u, and 0’s everywhere else.

Unique Signatures and Verifiable Random Functions 607

Compute (s1, . . . , sn) using the following loop:
Initialize c := 0�

For i = 1 to n
(1) If i = ju ∈ J and mi = bu, then c := c⊕ Iu

(2) si = Z

∏
j /∈J,j≤i aj,mj

∏
j∈J,j≤i,mj �=b′

j
aj,mj

c

(3) Increment i
(end of loop)

Processing the forgery: Now suppose that the adversary comes back with a forged
signature on message M ′ for which it has not queried R. Let m′ = C(M ′).
This forgery is σPK(m′) = {sm′,i}. This forgery is good if J(m′) = B. If the
forgery is good, we obtain the value g

∏�
u=1 yu by Lemma 1, by simply computing

(sm′,i)1/
∏

i/∈J a
m′

i
i .

6.2 Analysis of the Reduction

Let t = t(k) be the expected running time of the adversary. For the purposes of
the analysis, consider the following algorithms:

– Algorithm 1 runs the signing algorithm and responds to the adversary’s
queries as the true signing oracle would. If the adversary outputs a valid
forgery, this algorithm outputs “Success.”

– Algorithm 2 runs the signing algorithm but only responds to 2t queries. If
the adversary issues more queries, output “Fail.” Otherwise, if the adversary
outputs a valid forgery, this algorithm outputs “Success.”

– Algorithm 3 is the same as Algorithm 2, except in one case. Namely, it
chooses a random J ⊂ [n], |J | = �, J = {j1, . . . , j�}, and outputs “Fail”
if it so happens that J(C(M ′)) = J(C(M)) where M ′ is the adversary’s
forgery, and M is any previously queried message, and notation J(m) denotes
mj1 ◦mj2 ◦ . . . ◦mj�

.
– Algorithm 4 is just like Algorithm 3 except in one case Namely, it chooses a

random �-bit string B and outputs “Fail” whenever the forged message M ′

is such that C(M ′) = m′ where J(m′) �= B.
– Algorithm 5 is just like Algorithm 4 except in one case. Namely, it outputs

“Fail” whenever the queried message M is such that C(M) = m where
J(m) = B.

– Algorithm 6 runs our reduction. It outputs “Success” whenever the reduction
succeeds in computing its goal.

By pi, let us denote the success probability of algorithm i.

Lemma 2. The success probability of Algorithm 1 is the same as the success
probability of the forger.

Proof. By construction, this algorithm outputs “Success” iff the forger succeeds.
��

608 Anna Lysyanskaya

Lemma 3. p2 ≥ p1/2.

Proof. Suppose a successful forgery requires t queries on the average. Then by
the Markov inequality, 2t queries are sufficient at least half the time. ��

Lemma 4. p3 ≥ p2/2.

Proof. Recall that m′ = C(M ′) is a codeword of an error-correcting code of
distance cn. That implies that for all M , m′ differs from m = C(M) on at
least cn locations. So, if we picked � locations at random with replacement,
PrJ [J(m) = J(m′)] ≤ (1 − c)−�. Since we are picking without replacement,
PrJ [J(m) = J(m′)] ≤∏�

i=1(n− cn− i)/n ≤ (1− c + ε)� for any constant ε > 0.
Let ε = .01c for simplicity. Let Q denote the set of messages queried by the
adversary. By the union bound

Pr
J

[∃M ∈ Q such that J(C(M)) = J(m′)] ≤ 2t(1− c + ε)� < 1/2

if 4t < (1/(1 − c + ε))�. Taking the logarithm on both sides of the equation,
we get the condition log t + 2 < � log(1/(1 − .99c)), and so since we have set
� > log t+2

log(1/(1−.99c)) , this is satisfied. ��

Lemma 5. p4 ≥ p3/2�.

Proof. Note that Algorithm 3 and Algorithm 4 can be run with the same ad-
versary, but Algorithm 4 may output “Fail” while Algorithm 3 outputs “Suc-
cess.” Consider the case when both of them output “Success.” In this case, (1)
J(C(M ′)) �= J(C(M)) for all previously queried M , and (2) J(C(M)) = B.
Note that, given that (1) is true, the probability of (2) is exactly 2−�. ��

Lemma 6. p5 = p4.

Proof. Note that the only difference between the two algorithms is that Algo-
rithm 5 will sometimes output “Fail” sooner. Algorithm 4 will continue answering
queries, but, if Algorithm 5 has output “Fail,” then J(C(M ′)) �= J(C(M)) = B,
and so Algorithm 4 will output “Fail” as well. ��

Lemma 7. p6 = p5.

Proof. First, note that whether we are running Algorithm 5 or Algorithm 6,
the view of the adversary is the same. Namely: (1) the public key is identically
distributed; (2) both algorithms respond to at most 2t signature queries; (3)
both algorithms pick J and B uniformly at random and refuse to respond to a
signature query M if J(C(M)) = B. Therefore, the probability that the adver-
sary comes up with a forgery in the two cases is the same. Now, note that the
probability that the forgery is good is also the same: in both cases, the forgery
is good if J(C(M ′)) = B. ��

Putting these together, we have:

Unique Signatures and Verifiable Random Functions 609

Lemma 8. If the forger’s success probability is p, and expected running time is
t, then the success probability of the reduction is p/2�+2 = p/O(t).

In turn, this implies the following theorem:

Theorem 1. Under Assumption 1, the construction presented in Section 5 is a
unique signature.

7 A Simple Construction of a VRF

Consider the following, rather strong, complexity assumption:

Assumption 2 (Very-Many-DH-Very-Hard Assumption) There exists a
constant ε > 0 such that for all probabilistic polynomial-time families of Turing
machines {Ak} with running time O(2kε

),

Pr[(∗, q, g)← S(1k); {yi ← Zq : 1 ≤ i ≤ kε};
Z ← A

O[∗,q,g,{yi}](·)
k (∗, q, g, {gyi : 1 ≤ i ≤ kε}) : Z = g

∏
yi] ≤ poly(k) ∗ 2−2kε

where O[∗, q, g, {yi}](·), on input an kε-bit string I, outputs g
∏kε

i=1 y
Ii
i iff I is not

an all-1 string.

Definition 3 (VUF [MRV99]). A verifiable unpredictable function (VUF)
(G, Eval, Prove, Verify) with input length a(k), output length b(k), and security
s(k) is defined as a VRF except that requirement 4 of Definition 2 is replaced
with the following: Let T (·, ·) be any oracle algorithm that runs in time s(k) when
its first input is 1k. Then:

Pr[(PK,SK)← G(1k);
(Q, x, y)← T Prove(SK,·)(1k) : y = Eval(SK, x) ∧

(x, Prove(SK, x)) /∈ Q] ≤ 1/s(k)

Lemma 9. The unique signature in Section 5 is a VUF with security 2kε

under
Assumption 2.

Proof. (Sketch) Following the proof in Section 6, let � = kε. Then, by Lemma 8,
using an adversary that succeeds in breaking the unique signature in 2kε

steps
with probability 2−kε

corresponds to computing g
∏

yi in time 2kε

with proba-
bility Ω(2−2kε), which contradicts the assumption. ��
The following proposition completes the picture:

Proposition 1 ([MRV99]). If there is a VUF (G, Eval, Prove, Verify) with
input length a(k), output length b(k), and security s(k), then, for any a′(k) ≤
a(k), there is a VRF (G′, Eval′, Prove′, Verify′) with input length a′(k), output
length b′(k) = 1, and security s′(k) = s(k)1/3/(poly(k) · 2a′(k)). Namely, the
following is a VRF with security s′(k):

610 Anna Lysyanskaya

– G′(1k) = (G(1k), r), where r is a b(k)-bit string chosen at random.
– Eval′(SK, x) = Eval(SK, x).r, where “.” denotes the inner product.
– Verify′(SK, x) = (Eval(SK, x), Verify(SK, x)).

Corollary 1. We have obtained a VRF with input length k, output length 1,
and security poly(k).

A natural open problem is to give better security guarantee to a VRF ob-
tained from a unique signature in this fashion, or to show evidence of impossi-
bility.

8 Complicated but More Secure VRF

Here, we construct a VRF and a unique signature based on the weaker assump-
tion alone. This is the same as the Micali et al. [MRV99] construction, except
that the underlying verifiable unpredictable function is different.

Proposition 2 ([MRV99]). If there is a VRF with input length a(k), output
length 1, and security s(k), then there is a VRF with unrestricted input length,
output length 1, and security at least min(s(k)1/5, 2a(k)/5).

The proof of the proposition gives the VRF construction, which we omit here.
Now let us restate Assumption 1 to make explicit use of security:

Assumption 3 (s(k)-Many-DH assumption) For some s(k) > poly(k), for
all {Ak}, if {Ak} is a family of probabilistic Turing machines with running time
t(k) = O(s(k)), then for all � > log t(k),

Pr[(∗, q, g)← S(1k); {yi ← Zq : 1 ≤ i ≤ �};
{zJ =

∏

j∈J

yj ; ZJ = gzJ : J ⊂ [�]};

Z ← A(∗, q, g, {ZJ : J ⊂ [�]}) : Z = g
∏

yi] < 1/s2(k)

We will construct a VUF with input length Ω(log s′(k)), and security s′(k) =
2ω(log k) based on this assumption. By Propositions 1 and 2, this implies a VRF
with unrestricted input length and security min(s′(k)1/5, 2a(k)/5) = 2ω(log k).

This is the same as our unique signature construction, only here the public
key and the depth of the tree are smaller. The proof works in exactly the same
way as in the previous construction.

Theorem 2. The following construction is a VUF: set ai,b at random from Zq,
for 1 ≤ i ≤ �, � > log s(k), b ∈ {0, 1}. Let PK = {gai,b : 1 ≤ i ≤ �, b ∈ {0, 1}},
SK = {ai,b}. If J is a binary string of length �, then let FPK(g

∏�
i=1 ai,Ji). The

verification is as in the construction described in Section 5. Its security is at
least s(k) under Assumption 3.

Unique Signatures and Verifiable Random Functions 611

Proof. (Sketch) This proof is essentially the same as in Section 6, with n =
� = log s(k); except this case is simpler as there is no code. Here, too, we hope
that the adversary’s forgery will be good, and by Lemma 8, if s(k) is the size of
the message space, then 1/s(k) of the forgeries will be good. By contrapositive,
in O(s(k)) running time, the probability of a forgery is 1/s(k). Therefore, the
probability of a good forgery is 1/s2(k). This contradicts Assumption 3. ��

Combining the above, we get a VRF with unrestricted input length, out-
put length 1, and security min(s′(k)1/5, 2a(k)/5) = min(s(k)1/10, 2log(s(k))/5) =
Θ(s(k)1/10) = 2ω(log k).

Acknowledgements

I am grateful to Dan Boneh for pointing out an error in a previous version of this
paper. I thank Ron Rivest, Silvio Micali, Yevgeniy Dodis, and Leo Reyzin for
helpful discussions. This research was supported by an NSF graduate research
fellowship, Lucent Technologies GRPW, and NTT grant #6762700.

References

BDMP91. Manuel Blum, Alfredo De Santis, Silvio Micali, and Guiseppe Persiano.
Non-interactive zero-knowledge. SIAM Journal of Computing, 20(6):1084–
1118, 1991.

BF01. Dan Boneh and Matthew Franklin. Identity-based encryption from the Weil
pairing. In Joe Kilian, editor, Advances in Cryptology – CRYPTO 2001,
volume 2139 of Lecture Notes in Computer Science, pages 213–229. Springer
Verlag, 2001.

BFM88. Manuel Blum, Paul Feldman, and Silvio Micali. Non-interactive zero-
knowledge and its applications (extended abstract). In Proceedings of the
Twentieth Annual ACM Symposium on Theory of Computing, pages 103–
112, Chicago, Illinois, 2–4 May 1988.

BLS01. Dan Boneh, Ben Lynn, and Hovav Shacham. Short signatures from the
Weil pairing. In Colin Boyd, editor, Advances in Cryptology – ASIACRYPT
2001, volume 2248 of Lecture Notes in Computer Science, pages 514–532.
Springer Verlag, 2001.

BM84. Manuel Blum and Silvio Micali. How to generate cryptographically strong
sequences of pseudo-random bits. SIAM Journal on Computing, 13(4):850–
863, November 1984.

BS02. Dan Boneh and Alice Silverberg. Applications of multilinear forms to cryp-
tography. Manuscript obtained by personal communication, 2002.

BY96. Mihir Bellare and Moti Yung. Certifying permutations: Non-interactive
zero-knowledge based on any trapdoor permutation. Journal of Cryptology,
9(1):149–166, 1996.

CS99. Ronald Cramer and Victor Shoup. Signature schemes based on the strong
RSA assumption. In Proc. 6th ACM Conference on Computer and Com-
munications Security, pages 46–52. ACM press, nov 1999.

612 Anna Lysyanskaya

FLS99. Uriel Feige, Dror Lapidot, and Adi Shamir. Multiple noninteractive zero
knowledge proofs under general assumptions. SIAM Journal on Computing,
29(1):1–28, 1999.

GGM86. Oded Goldreich, Shafi Goldwasser, and Silvio Micali. How to construct
random functions. Journal of the ACM, 33(4):792–807, October 1986.

GHR99. Rosario Gennaro, Shai Halevi, and Tal Rabin. Secure hash-and-sign sig-
natures without the random oracle. In Jacques Stern, editor, Advances in
Cryptology – EUROCRYPT ’99, volume 1592 of Lecture Notes in Computer
Science, pages 123–139. Springer Verlag, 1999.

GMR88. Shafi Goldwasser, Silvio Micali, and Ronald Rivest. A digital signature
scheme secure against adaptive chosen-message attacks. SIAM Journal on
Computing, 17(2):281–308, April 1988.

GO92. Shafi Goldwasser and Rafail Ostrovsky. Invariant signatures and non-
interactive zero-knowledge proofs are equivalent. In Ernest F. Brickell,
editor, Advances in Cryptology – CRYPTO ’92, pages 228–244. Springer-
Verlag, 1992. Lecture Notes in Computer Science No. 740.

JN01. Antoine Joux and Kim Nguyen. Separating decision Diffie-Hellman
from Diffie-Hellman in cryptographic groups. Manuscript. Available from
http://eprint.iacr.org, 2001.

Jou00. Antoine Joux. A one-round protocol for tripartite Diffie-Hellman. In Pro-
ceedings of the ANTS-IV conference, volume 1838 of Lecture Notes in Com-
puter Science, pages 385–394. Springer-Verlag, 2000.

Mic. Silvio Micali. 6.875: Introduction to cryptography. MIT course taught in
Fall 1997.

MR01. Silvio Micali and Leonid Reyzin. Soundness in the public-key model. In
Joe Kilian, editor, Advances in Cryptology – CRYPTO 2001, volume 2139 of
Lecture Notes in Computer Science, pages 542–565. Springer Verlag, 2001.

MR02. Silvio Micali and Ronald L. Rivest. Micropayments revisited. In Bart
Preneel, editor, Proceedings of the Cryptographer’s Track at the RSA Con-
ference, volume 2271 of Lecture Notes in Computer Science, pages 149–163.
Springer Verlag, 2002.

MRV99. Silvio Micali, Michael Rabin, and Salil Vadhan. Verifiable random func-
tions. In Proc. 40th IEEE Symposium on Foundations of Computer Science
(FOCS), pages 120–130. IEEE Computer Society Press, 1999.

NR97. Moni Naor and Omer Reingold. Number-theoretic constructions of efficient
pseudo-random functions. In Proc. 38th IEEE Symposium on Foundations
of Computer Science (FOCS), 1997.

Sha85. Adi Shamir. Identity-based cryptosystems and signature schemes. In
George Robert Blakley and David Chaum, editors, Advances in Cryptol-
ogy – CRYPTO ’84, volume 196 of Lecture Notes in Computer Science,
pages 47–53. Springer Verlag, 1985.

Sud. Madhu Sudan. Algorithmic introduction to coding theory.
MIT course taught in Fall 2001. Lecture notes available from
http://theory.lcs.mit.edu/˜madhu/FT01/.

Ver01. Eric Verheul. Self-blindable credential certificates from the weil pairing. In
Colin Boyd, editor, Advances in Cryptology – ASIACRYPT 2001, volume
2248 of Lecture Notes in Computer Science, pages 533–551. Springer Verlag,
2001.

http://theory.lcs.mit.edu/~madhu/FT01/

	1 Introduction
	2 Notation
	3 Definitions
	3.1 Unique Signatures
	3.2 Verifiable Random Functions

	4 Assumptions
	5 Construction of a Unique Signature
	6 Proof of Security for the Unique Signature
	6.1 Description of the Reduction
	6.2 Analysis of the Reduction

	7 A Simple Construction of a VRF
	8 Complicated but More Secure VRF
	References

