SiBIR:
Signer-Base Intrusion-Resilient Signatures

Gene Itkis and Leonid Reyzin

Boston University Computer Science Dept.
111 Cummington St.
Boston, MA 02215, USA
{itkis,reyzin}@bu.edu

Abstract. We propose a new notion of signer-base intrusion-resilient
(SiBIR) signatures, which generalizes and improves upon both forward-
secure [And97IJBM99] and key-insulated [DKXY02] signature schemes.
Specifically, as in the prior notions, time is divided into predefined time
periods (e.g., days); each signature includes the number of the time pe-
riod in which it was generated; while the public key remains the same,
the secret keys evolve with time. Also, as in key-insulated schemes, the
user has two modules, signer and home base: the signer generates signa-
tures on hisﬂ own, and the base is needed only to help update the signer’s
key from one period to the next.

The main strength of intrusion-resilient schemes, as opposed to prior no-
tions, is that they remain secure even after arbitrarily many compromises
of both modules, as long as the compromises are not simultaneous. More-
over, even if the intruder does compromise both modules simultaneously,
she will still be unable to generate any signatures for the previous time
periods.

We provide an efficient intrusion-resilient signature scheme, provably se-
cure in the random oracle model based on the strong RSA assumption.
We also discuss how such schemes can eliminate the need for certificate
revocation in the case of on-line authentication.

1 Introduction

Key exposures appear to be unavoidable. Thus, limiting their impact is extremely
important and is the focus of active research. While this issue applies to a wide
range of security protocols, here we focus on digital signatures.

1.1 Previous Work

FORWARD SECURITY. Forward-secure signature schemes [And97/BM99] pre-
serve the security of past signatures even after the secret signing key has been
exposed: time is divided into predefined time periods, with the signer updating
his secret at the end of each time period; the adversary is unable to forge sig-
natures for past periods even if she learns the key for the current one. In this

! We use masculine pronouns for signer, feminine for adversary, and neuter for base.

M. Yung (Ed.): CRYPTO 2002, LNCS 2442, pp. 499 2002.
© Springer-Verlag Berlin Heidelberg 2002

500 Gene Itkis and Leonid Reyzin

model, nothing can be done about the future periods: once the adversary exposes
the current secret, she has the same information as the signer.

THRESHOLD AND PROACTIVE SECURITY. An alternative approach explores
the multi-party computation paradigm [Yao82/GMWS&T]: in threshold schemes
[DERY], the signing key is somehow shared among a number of signers, and sig-
nature generation requires a distributed computation involving some subset of
them. The adversary, however, cannot generate valid signatures as long as the
number of compromised signers is less than some predetermined security param-
eter (smaller than the number of signers needed to generate a valid signature).
Proactive schemes [OY91/HJJ T 97] improve upon this model by allowing multiple
corruptions of all signers, limiting only the number of simultaneous corruptions.
Proactive forward-secure signatures considered in [AMNOI] combine this with
the advantages of forward-security.

KEY-INSULATED SECURITY. The recently proposed model of Dodis, Katz, Xu
and Yung [DKXY(2] addresses the limitation of forward security: the adversary
cannot generate signatures for the future (as well as past) time periods even
after learning the current signing keyﬁ. This is accomplished via the use of two
modules: a (possibly mobile) signer, and a (generally stationary) home basdd.
The signer has the secret signing key, and can generate signatures on its own. At
the end of each time period, the signing key expires and the signer needs to up-
date his keys by communicating with the home base and performing some local
computations (the communication with the base is, in fact, limited to a single
message from the base to the signer). Thus, although the signer’s keys are vul-
nerable (because they are frequently accessed, and, moreover, because the signer
may be mobile), key exposure is less valuable to the adversary, as it reveals only
short-term keys. Perhaps the most compelling application of such a model is the
example of a frequently traveling user, whose laptop (or handheld) is the signer,
and office computer is the home base. (Alternative approaches with such appli-
cations in mind were proposed by [Mic96/RivI8/GPRISILROOMROIBIMRO14].)
This model enables security that is not possible in ordinary or even forward-
secure schemes: even if the signing key is compromised (for up to k time periods,
for predetermined security parameter k), the adversary will be unable to forge
signatures for any other time periods. (Notice that in forward-secure schemes
model, signatures for any time period following a compromise are necessarily
forgeable.)

1.2 Our Results: Intrusion-Resilient Security

Model. We define intrusion-resilient signature schemes to combine benefits of
the above three approaches. Namely, while maintaining the efficiency of non-
interactive computation of signatures (not provided by threshold and proactive

2 [DKXY02] primarily addresses encryption schemes. Signature schemes are addressed
in [DKXY].

3 The terms user and secure device are used in [DKXY02]; we find “signer” and “home
base” to be more descriptive.

SiBIR: Signer-Base Intrusion-Resilient Signatures 501

schemes), intrusion-resilient schemes preserve security of past and future time
periods when both signer and base are compromised, though not simultaneously
(not preserved by key-insulated and forward-secure schemes), and security of
past time periods in the case of simultaneous compromise (not preserved by
key—insulate and most proactive schemes).

These points deserve some elaboration. To address potential compromise of
the base key, [DKXY02] introduce a stronger version of key-insulated security,
which requires that the base cannot generate signatures on its own. However,
no security is guaranteed in [DKXY02] if the adversary manages to compromise
both the base and the signer, even during different time periods. (In fact, the
encryption scheme becomes completely insecure in such a case.) This is a serious
limitation. If the user’s key is compromised even just once, then the prudent
thing to do would be to revoke the entire public key and erase the secrets of the
home base. Otherwise, a single compromise of the home base would expose not
only the future, but also all the past, messages.

In contrast, the salient feature of our new model is the guarantee that a
compromise of the home base is entirely inconsequential as long as the signer’s
secret is not exposed at the same time. It thus has the benefits of proactive
security. Moreover, our model retains the benefits of forward security even when
all the secrets are compromised simultaneously.

Indeed, our intrusion-resilient model appears to provide the maximum pos-
sible security in the face of corruptions that occur.

Construction. In Section Bl we provide an efficient SiBIR signature scheme we
call SiBIR1. Its signing and verifying are as efficient as in the Guillou-Quisquater
(ordinary) signatures [GQS88|, requiring just two modular exponentiations with
short (typically, 128-160 bits) exponents for both signing and verifying. This is
as or more efficient than many of the ordinary signatures used in practice today.
The construction is based on our forward-secure signature scheme [IR01].

As for that underlying scheme [IR01], our SiBIR1 security proof relies on the
strong RSA assumption (see Section[4]) and is in the random oracle model.

1.3 Towards Obsoletion of Certificate Revocation

On-line authentication is a common application of signatures. For example, a
user establishing an authenticated connection to a web site (e.g., over SSL),
must verify the web site’s signature on a protocol message, as well as the web
site’s certificate that attests to the authenticity of the web site’s public key. If
the web site’s secret key is compromised, the certificate needs to be revoked.
Certificate revocation, however, is a complex logistical problem that results
in some of the most cumbersome aspects of public key infrastructures. The most

4 Because the focus of [DKXY02] is on encryption schemes, and no non-trivial

forward-secure encryption schemes had been known until very recently [Kat02], it
was, in a sense, by necessity that key-insulated notion of [DKXY02] did not provide
forward security when all the secrets are compromised.

502 Gene Itkis and Leonid Reyzin

common, though perhaps not the most efficient, mechanism is to consult a cer-
tificate revocation list (CRL), which would most likely be stored at a remote
location (certificates usually include a pointer to the corresponding CRL site).

However, if the web site uses our signature scheme, then an exposed secret
key would compromise the authenticity of the web site only for a limited time
(which could be made less than the time required for the certificate revocation
process, which is typically one day). Then the users need not check whether the
site’s certificate is revoked or not: by the time the revocation information could
be updated, the web site would be authentic again, anyway.

Note that forward-secure signatures do not help address this problem: the
web site’s certificate would still have to be revoked in case of compromise. In
contrast, if the web site uses intrusion-resilient signatures, the certificate would
have to be revoked only in the unlikely case that the web site and its (presum-
ably, separately protected) home base are compromised simultaneously. (We note
that short-lived certificates [Mic96/GGMO0], key-insulated signatures [DKXY02]
and proactive signature [OY91/H.LIT97| can also be used to address certificate
revocation; our solution, however, seems to provide the most security if one is in-
terested in abandoning certificate revocation /reissuing entirely and having truly
off-line certification authorities.)

2 Intrusion-Resilient Security Model

Our definitions are based on the definitions of key-insulated security [DKXY02],
which, in turn, are based on the definitions of forward secure [BM99] and or-
dinary [GMRS8S| signatures schemes. Before describing our model formally, we
explain its differences from that of [DKXY02].

First, in our model the home base updates its internal state at the end of
each time period (in addition to sending the update information to the signer).
Second, we also provide for a special refresh procedure (akin to proactivization):
if a refresh is run after a compromise of one of the modules but before the
compromise of the other, the information the adversary learned during the com-
promise becomes essentially useless, and the system remains secure (except, in
the case of signer compromise, for the current time period). Moreover, because
our refresh involves just one message from the home base to the signer, it can
be combined with update and thus run at least every time period.

The adversary in our model is allowed the usual adaptive-chosen-message-
and-time-period attack, and, additionally, can obtain the secrets from the home
base and the signer for time periods of her choice. Furthermore, the adversary
can intercept update and refresh messages of her choice between the base and the
signer. Like in [DKXY02], if the adversary only compromises the base (in fact,
even if the base is continuously monitored by the adversary from the start), she
still cannot forge signatures. Also like in [DKXY02], if the adversary compromises
the signer, then she can forge signatures only for the periods for which the
secrets were obtained (either directly via signer compromise, or by combination
of signer compromise and interception of some update and refresh messages).

SiBIR: Signer-Base Intrusion-Resilient Signatures 503

In contrast to [DKXY02], however, our model tolerates multiple compromises of
both base and signer (in arbitrary order), as long as there is a refresh between
any compromise of the different modules. Moreover, the scheme still remains
forward-secure, even if there is no such refresh between some compromises of
the two modules.

We treat all compromises in one definition, as opposed to separately defin-
ing security against different kinds of compromises. This allows us to precisely
specify the security requirements when different types of compromises (base,
signer, update messages) are combined. This is in contrast to the key-insulated
definitions of [DKXY02], where compromises of the base key are considered in
isolation, and compromises of key update messages are reduced to compromises
of pairs of consecutive time periods.

The definitions below are given in the standard model, but can easily incor-
porate random oracles (used in our proofs).

2.1 Functional Definition

We first define the functionality of the various components of the system; the
security definition is given in the subsequent section. Recall that the system’s
secret keys may be modified in two different ways, called update and refresh.
Updates change the secrets from one time period to the next (e.g. from one day
to the next), changing also the period number in the signatures. In contrast,
refreshes affect only the internal secrets and messages of the system, and are
transparent to the verifier.

Thus we use notation SK;, for secret key SK, where ¢ is the time period
(the number of times the key has been updated) and r is the “refresh number”
(the number of times the key has been refreshed since the last update). We say
t.r =t .’ when t =t and r = r/. Similarly, we say t.r < t'.r’ when either ¢ < ¢’
or t =t and r < r’. We follow the convention of [BM99], which requires key
update immediately after key generation in order to obtain the keys for ¢t =1
(this is done merely for notational convenience, in order to make the number of
time periods T equal to the number of updates, and need not affect the efficiency
of an actual implementation). We also require key refresh immediately after key
update in order to obtain keys for » =1 (this is also done for convenience, and
need not affect efficiency of an actual implementation; in particular, the update

> With respect to key update information, [DKXY02] define a scheme as having “se-
cure key updates” if key update information sent for time period i can be computed
from the signer’s keys for time period i and ¢ — 1. We find this requirement to be both
too strong and too weak. It is too strong because it is quite possible that, while key
update information cannot be computed from the signer’s keys, it is no more useful
than the two consecutive signer’s keys. It is too weak, because it does not rule out
the possibility for the adversary to forge signatures for two consecutive time periods
if key update information is compromised. In fact, in [DKXY02], if the number of
signer compromises that the scheme resists is limited to ¢, then number of update
information exposures is limited to only ¢/2.

504 Gene Itkis and Leonid Reyzin

and refresh information that the base sends to the signer can be combined into
a single message).

Definition 1. A (signer-base) key-evolving signature scheme is a septuple of
probabilistic polynomial-time algorithms (Gen, Sign, Ver; US,UB; RB, RSE:

1. Gen, the key generation algom'thnﬁ.
In: security parameter(s) (in unary), the total number T of time periods
Out: initial signer key SKSq.o, initial home base key SKByg, and the
public key PK.
2. Sign, the signing algorithm.
In: current signer key SKS; .., message m
Out: signature (t, sig) on m for time period t
8. Ver, the verifying algorithm
In: message m, signature (t, sig) and public key PK
Out: “valid” or “invalid” (as usual, signatures generated by Sign must
verify as “valid”)
4. UB, the base key update algorithm
In: current base key SKB;
Out: new base key SKB(;141).0 and the key update message SKU,
5. US, the signer update algorithm
In: current signer secret key SKS;, and the key update message SKU}
Out: new signer secret key SKS 1.0
6. RB, the base key refresh algorithm
In: current base key SKB;
Out: new base key SKB; (1) and the corresponding key refresh message
SKR;
7. RS, the signer refresh algorithm
In: current signer key SKS;., and the key refresh message SKRy
Out: new signer key SKS; (r41) (corresponding to the base key SKBy (r41))

Note that this definition implies that messages are processed by the signer in
the same order in which they are generated by the base.

DIFFERENCES FROM PRIOR NOTIONS. If only Gen, Sign, Ver are used, then ¢.r
and SKB can be ignored in these algorithms, and the above functional definition
becomes that of an ordinary signature scheme.

S Intuitively (and quite roughly), the first three correspond to the ordinary signatures;
the first four correspond to forward-secure ones, the first five (with some restrictions)
correspond to key-insulated ones; and all seven are needed to provide the full power
of the intrusion-resilient signatures.

As opposed to the other algorithms below, which are meant to be run by a single
module (signer, verifier or base), it may be useful to implement the key generation
algorithm as distributed between the signer and the home base modules, in such
a way that corruption even during key generation does not fully compromise the
scheme. Alternatively, key generation may be run by a trusted third party. For
simplicity, we postpone this discussion until Section B, where we propose a practical
intermediate solution.

SiBIR: Signer-Base Intrusion-Resilient Signatures 505

Relaxing the above restrictions to also allow the use of S (while setting
SKU,; =1 for all), extends the definition to that of forward-secure signatures
(or a “key-evolving” scheme [BM99], to be more precise).

Functional definition of a “key-insulated” signature scheme [DKXY02] is ob-
tained by further relaxing the restrictions to allow the use of UB as well (and
thus removing SKU; = 1 restriction), but restricting SKB; = (SKB,t) for some
secret SKB and for every period ¢ (i.e. the base secret does not change).

Finally, our model is obtained by removing the remaining restrictions: allow-
ing the base secret to vary and using RB, RS.

2.2 Security Definition

In order to formalize security, we need a notation for the number of refreshes in
each period: Let RN (t) denote the number of times the keys are refreshed in the
period t: i.e., there will be RN (¢)+1 instances of signer and base keys. Recall
that each update is immediately followed by a refresh; thus, keys with refresh
index 0 are never actually used. RN is used only for notational convenience:
it need not be known; security is defined below in terms of RN (among other
parameters).

Now, consider all the keys generated during the entire run of the signature
scheme. They can be generated by the following “thought experiment” (we do
not need to actually run it — it is used just for definitions).

Experiment Generate-Keys(k,T, RN)
t<0;r<0
(SKS;.r, SKB;.., PK) <+ Gen(1*,T)
fort=1to T
(SKBt.0,SKU; 1) < UB(SKB(;_1).r)
SKSio US(SKS(t,l),T, SKUt_l)
forr=1to RN(t)
(SKBM«, SKRt.(T_l)) — RB(SKBt_(T_l))
SKSi., < RS(SKSy.(r—1), SKRy (1))

Let SKS*, SKB*, SKU* and SKR* be the sets consisting of, respectively,
signer and base keys and update and refresh messages, generated during the
above experiment. We want these sets to contain all the secrets that can be
directly stolen (as opposed to computed) by the adversary. Thus, we omit from
these sets the keys SKS; o, SKB; for 0 <t < T, SKUq and SKR ¢, which are
never actually stored or sent (because key generation is immediately followed by
update, and each update is immediately followed by refresh). Note that SKR; o
for ¢ > 1 is used (it is sent together with SKU;_; to the signer), and thus is
included into SKR".

To define security, let F', the adversary (or “forger”), be a probabilistic
polynomial-time oracle Turing machine with the following oracles:

— Osig, the signing oracle (constructed using SKS*), which on input (m,t,r)
(1<t<T,1<r<RN(t) outputs Sign(SKS¢..,m)

506 Gene Itkis and Leonid Reyzin

— Osec, the key exposure oracle (based on the sets SKS*, SKB*, SKU* and
SKR*), which
1. on input (“s”,t.r) for 1 <t <T,1 <r < RN(t) outputs SKS;.;
2. on input (“b”,t.r) for 1 <t <T,1 <r < RN(t) outputs SKB; ;
3. on input (“u”,t) for 1 <t < T — 1 outputs SKU; and SKR;;.0; and
4. on input (“t”,t.r) for 1 <t <T,1 <r < RN(t), outputs SKR; .

Queries to Osec oracle correspond to intrusions, resulting in the corresponding
secrets exposures. Exposure of an update key SKU,;_; automatically exposes the
subsequent refresh key SKR; o, because they are sent together in one message.

Adversary’s queries to Osig and Osec must have the t.r values within the
appropriate bounds. It may be reasonable to require the adversary to “respect
erasures” and prohibit a value that should have been erased from being queried
(or used for signature computation). However, this restriction is optional, and
in fact we do not require it here. Note, that respecting erasures is local to signer
and base and is different from requiring any kind of global synchronization.
For any set of valid key exposure queries), time period ¢t > 1 and refresh number
r, 1 <r < RN(t), we say that key SKS;, is Q-exposed:

[directly] if (“s”,t.r) € Q; or
[via refresh] if r > 1, (“t7,t.(r—1)) € Q, and SKS; (,_1) is Q-exposed; or
[via update] if r =1, (“u”,t—1) € Q, and SKS;_1).pn(t—1) is Q-exposed.

Replacing SKS with SKB throughout the above definition yields the defini-
tion of base key exposure (or more precisely, of SKB; , being Q-exposed). Both
definitions are recursive, with direct exposure as the base case.

Clearly, exposure of a signer key SKS; ., for the given ¢t and any r enables the
adversary to generate legal signatures for this period ¢. Similarly, simultaneous
exposure of both base and signer keys (SKB¢ ., SKS.,, for some ¢,) allows the
adversary to run the algorithms of definition [l to generate valid signatures for
any messages for all later periods t' > ¢.

Thus, we say that the scheme is (¢, Q)-compromised, if either

— SKS;., is Q-exposed for some r, 1 <r < RN(t); or
— SKS ., and SKBy ., are both Q-exposed for some t' < t.

In other words, a particular time period has been rendered insecure if either
the signer was broken into during that time period, or, during a previous time
period, the signer and the base were compromised without a refresh in between.
Note that update and refresh messages by themselves do not help the adversary
in our model — they only help when combined, in unbroken chains, with signer
or base keysﬁ. If the scheme is (j, @)-compromised, then clearly adversary, pos-

8 Interestingly, and perhaps counter-intuitively, a secret that has not been exposed
might still be deduced by adversary. For example, it may be possible in some im-
plementations to compute SKBy.» from SKB¢.r41 and SKR:.» (similarly for update
and for the signer). The only case we cannot allow — in order to stay consistent with
our definition — is that of adversary computing SKS:, without Q-exposing some
SKS; .. So, it may be possible to compute SKS; ., from SKS; ,+1 and SKR;.., but
not from SKS¢11.0 and SKUy.,» (even if r = RN (t)).

SiBIR: Signer-Base Intrusion-Resilient Signatures 507

sessing the secrets returned by Osec in response to queries in (), can generate
signatures for the period t.

The following experiment captures adversary’s functionality. Intuitively, ad-
versary succeeds if she generates a valid signature without “cheating”: not ob-
taining this signature from Osig, asking only legal queries (e.g. no out of bounds
queries), and not compromising the scheme for the given time period. We call this
adversary “adaptive” because she is allowed to decide which keys and signatures
to query based on previous answers she receives.

Experiment Run-Adaptive-Adversary(F,k,T, RN)

Generate-Keys(k,T, RN)

(m, j, sig) + FO%9:0¢c(1k T PK RN)

Let @ be the set of key exposure queries F' made to Osec;

if Ver(m,j, sig) =“invalid” or (m, j) was queried by F' to Osig or there

was an illegal query or the scheme is (j, Q)-compromised

then return 0
else return 1

We now define security for the intrusion resilient signature schemes.

Definition 2. Let SiBIR[k, T, RN] be a (signer-base) key-evolving scheme with
security parameter k, number of time periods T, and table RN of T refresh
numbers. For adversary F', define adversary success function as

Succ™(F, SiBIR[k, T, RN]) Z Pr[Run-Adaptive-Adversary(F, k,T, RN) = 1].

Let insecurity function InSecIR_adaptive(SiBIR[k7 T, RN, T,qsig) be the maz-
imum of Succ™(F,SiBIR[k, T, RN]) over all adaptive adversaries F that run in

time at most T and ask at most gz Signature queries.
Finally, SIBIR[k, T, RN] is (T, €, gsig)-intrusion-resilient if

InSec't24aPe(SiBIR[k, T, RN], 7, gsig) <€ -

Although the notion of (j, @)-compromise depends only the set @, it is im-
portant how @ is generated by the adversary. Allowing the adversary to decide
her queries based on previous answers gives her potentially more power.

While we do not see an attack on our scheme in Sec. [by a fully adap-
tive adversary, the proof for such a strong adversary seems elusive. Instead, we
consider two types of slightly restricted adversaries. The first type, which we
call partially adaptive, is allowed to adaptively choose queries to Osig, but not
to Osec. To be precise, the experiment Run-Adaptive-Adversary is modified
Run-Partially-Adaptive-Adversary by requiring F' to output the set Q of all
her Osec queries before she makes any of them. The rest of the definitions remain
the same, giving us InSec!®—partially—adaptive 3,404 of InSec!R—adaptive,

The second type of restricted adversary is partially synchronous. She may
select all of her queries adaptively, but is not allowed to go back in time “too
far.” Specifically, upon querying any key in time period t, she is not allowed to

508 Gene Itkis and Leonid Reyzin

query keys in time period ¢ — 2 (note that the choice of 2 is arbitrary and can
be replaced with another constant). This is a reasonable assumption in practice,
essentially saying that the base, the network and the signer can be at most
one time period apart at any given time. In order to formally define security
against such an adversary, we simply expand the definition of “illegal queries”
to encompass the above restriction. The rest of the definitions remain the same,
giViIlg us InSecIR—partially—synchronous instead of InSecIR—adaptivc-

3 Intrusion-Resilient Scheme: Construction

Our scheme, which we call SiBIR1, is based on the [IR01] forward-secure signa-
ture scheme (which will call FSIG'R). In turn, FSIG'R is based on the Guillou-
Quisquater [GQ88| ordinary signature scheme. In fact, the [[R01] forward-secure
scheme can be obtained from our scheme by simply eliminating the base, and
setting all the messages that the signer expects equal to 1.

The scheme utilizes two security parameters, ! and k. Let H : {0,1}* —
{0,1}! be a hash function (modeled in the security proof as a random oracle).
In the interests of conciseness, we do not present the rationale behind FSIG'R
here. We do, however, recall how keys are generated and updated in the FSIG'R
scheme (utilizing our own notation, rather than notation used in [IR01], in the
interests of clarity)

KEys IN FSIG'R. Both the public and the secret keys contain a modulus n=p; pa,
where p; and py are (k/2)-bit safe primes: p; =2¢;+1 such that ¢; are odd primes
(such g;, satisfying 2¢;+1 is prime, are known as Sophie Germain primes). The
public key also contains a value v € Z}. For each time period ¢, there is a
corresponding (!4 1)-bit exponent e; that the signer can easily compute (we
require all the exponents to be relatively prime; then they need not be stored in
the public key, but rather the appropriate e; is included in each signature — see
[[RO1] for further details).

Messages during time period ¢ are signed using the secret value s, such that
st =1/v (mod n).

The factorization of n must be erased after key generation in order to achieve

forward security. Knowledge of secrets S, S¢11, ..., 87, is equivalent (by the so-
called “Shamir’s trick” [Sha83] — see Propositionl in [IR0I]) to knowledge of
the root of 1/v of degree ef 7 e, - ets1 - ... ep. Call this root 5y pp: then
§[et[f7’3f =1/v (mod n).

At key generation we actually select 5}; 7 at random, and compute v as
e, 7]
v 4— 1/8[1 7 mod n.
Subsequently (just before each time period t), 5 7] is updated as follows:
S[t41,1] < §‘fg 7] mod n; and the “current” signing secret is computed as §; <

~E[t4+1,T

S(t.1] "' mod n.

9 See [CS0()] for an excellent discussion on efficient generation of safe primes and short
primes.

SiBIR: Signer-Base Intrusion-Resilient Signatures 509

algorithm SiBIR1.Gen(k,l,T)
Generate a modulus n:
Generate random ([k/2] — 1)-bit primes g¢1, g2 s.t. p; = 2¢; + 1 are both prime
n < p1p2
Generate exponents:
Generate primes e; s.t. 2'(1+ (i — 1)/T) < e; < 2'(1 +4/T) for i = 1,2,...,T
(Some seed £ can be used with H to generate these e, ..., er.
This £ might need to be stored for later regeneration of e, ..., er.)
(1,77 & 7% SKSo + (0,T,n,0,s11,77,0,E) % 0’s will be filled in in US
b & Z%; SKBo + (0,T,n,by 11, E)
v 1/(sp,mbp,m) T mod n; PK « (n,v,T)
return (SKSo, SKBy, PK)

Fig. 1. Key generation. Refresh index on the keys is omitted to simplify notation.

KEY GENERATION AND UPDATE IN SiBIR1. We use essentially the same keys
in SiBIR1. However, in order to achieve intrusion-resilience, s, 7 is never stored
explicitly. Rather, it is shared multiplicatively between the signer and the base.
The signer stores sj; 7 and the base stores by,), such that 5y, 71 = s, 710y, 77
This multiplication is never explicitly performed: instead, the signer computes
5p = s[et[:';:]l’ﬂ, the base computes b; = bft[f;]l’”, and the two values are multiplied
together to obtain s;.

Following the conventions that key generation is immediately followed by
key update, the first signer secret key contains blanks for 55 and ey. We note
that, in actual implementation, it will be more efficient to combine the first key
generation and update.

Also, following the convention that the only “storage” available to the base
and the signer is the secret key, we store some values in the secret key that need
not really be secret, such as the current time period and the information needed
to regenerate the e; values. The only values that the signer needs to keep secret
are sy 7 and Sy; the only values that the base needs to keep secret are by .

Finally, note that key generation and update algorithms do not affect the
refresh index, so we omit it in Figures[Il and Blin order to simplify notation.

DisTRIBUTING KEY GENERATION. Most of the key generation algorithm can be
easily split between the signer and the base. Namely, once the shared modulus n
is generated and given to both parties (without factoring), the base can generate
bp1,7) on its own, and the signer can generate sj; 7 on its own, as well. Both
9 be[l,T] and Se[l.T]

[1,7] [1,7]
compute the public key. The shares themselves can be made public without
adversely affecting security. Thus, the amount of cooperation required during
key generation is minimal.

The same modulus n can be used by multiple signature schemes. In particu-
lar, our signature scheme can be made identity-based if a third party is trusted
to take roots modulo n of the identity v.

parties can then generate “shares that can be combined to

510 Gene Itkis and Leonid Reyzin

algorithm SiBIR1.UB(SKB:)
Let SKB: = (t <T,T,n,by41,17,E)
Regenerate e;41,...,er using €
bii1 < b[ettl-i'%]"eT mod n; bpta,7] b[etti'll,T] mod n
return (SKBH_l = (t +1,T,n, b[tJrQyT], 5), SKU: = bt+1)

algorithm SiBIR1.US(SKS:, SKU+)
Let SKS: = (t <TT, n7§t7 S[t+1,T]; €t, 5), SKU; = bt+1
Regenerate e;41,...,er using €
St+1 S[Etjlz,;]“ET
,S\t+1 < St+1bt+1 mod n
return SKSiy1 = (¢ +1,T,n, 5t41, Sje42,7), €641, E)

. ett1
mod n; Spyo,71] Sipr1,m) mod n

Fig. 2. Update algorithms. Refresh index on the keys is omitted to simplify notation.

algorithm SiBIR1.RB(SKB:.»)
Let SKB:.,r = (t,T,n, b[t+1,T],£)
R, 4 Z;
bies1,1) < bregr,17/ R
return (SKBy.,r41 = (t,T,n,byy1,17),E), SKRe.r = Re.r)

algorithm SiBIR1.RS(SKS¢.r, SKR:.,)
Let SKSt,r = (t,T, n7§t7s[t+17T],et,5); SKRLT = Rt.r
St4+1,T) < S[e+1,T] * Rtr
return SKS¢.r41 = (¢, T, n,§t7s[t+1,T]7et78)

Fig. 3. Key refresh algorithms.

REFRESH. Because the signer and the base share a single value multiplica-
tively, the refresh algorithm presented in Figure Blis quite simple: the base di-
vides its share by a random value, and signer multiplies its share by the same
value. Recall that each update is immediately followed by refresh (and, in fact,
update and refresh information can be sent by the base to the signer in one
message).

SIGNING AND VERIFYING. Figure M describes our signature and verification
algorithms. They are exactly the same as in the forward-secure signature scheme
of [IR01]. Again, we omit the refresh index on the signer’s key for ease of notation.

VARIATIONS. Our scheme can be easily modified (with no or minimum increase
in storage requirement!) to “re-charge” the signer for more than one time period
at a time. To enable the signer to compute Sy, , 8¢, 11, - - - St,, the base simply needs

to send the signer by, 4,) = b[et[?;:]l’ﬂ. In fact, it is easy to extend this method to

SiBIR: Signer-Base Intrusion-Resilient Signatures 511

algorithm SiBIR1.Sign(M, SK.) %same as IR.Sign in [IROI)]
Let SK; = (t, 717 n,gt, S[t+1,T]» €t 5)
R *
T~ 7,
y < z° mod n
g < H(taetayaM)
z < x5y mod n
return (z,0,t,)

algorithm SiBIR1.Ver(M, PK,(z,0,t,e)) %same as IR. Ver in [IR01]
Let PK = (n,v,T)
if e> 21(1 +1t/T) or e < 2! or e is even then return 0
if z=0 (mod n) then return 0
y <+ z°v” mod n
if o= H(t,e,y’, M) then return 1 else return 0

Fig. 4. Signing and verifying algorithms. Refresh index on the keys is omitted to sim-
plify notation.

non-contiguous time periods. This feature may have interesting applications for
delegation (including self-delegation).

Another simple modification of our scheme can yield forward-secure thresh-
old and proactive scheme (similar to, but more efficient than, the scheme of
[AMNOI1]). Efficiency for the verifier and for each of the modules participating
in the signing will be essentially the same as for the regular Guillou-Quisquater
scheme.

4 Security

4.1 Complexity Assumption

We use a variant of the strong RSA assumption (introduced in [BP97] and
[FO97], our variant is identical to the one in [IRO0T]), which postulates that it
is hard to compute any root of a fixed value modulo a composite integer. More
precisely, the strong RSA assumption states that it is intractable, given n that
is a product of two primes and a value o in Z, to find § € Z* and r > 1 such
that A" = a.

In our version, we restrict ourselves to the moduli that are products of so-
called “safe” primes (a safe prime is one of the form 2q + 1, where ¢ itself is a
prime). Note that, assuming safe primes are frequent, this restriction does not
strengthen the assumption. Second, we upperbound the permissible values or r
by 2!*+1, where [is a security parameter for our scheme (in an implementation,
{ will be significantly shorter than the length & of the modulus n).

More formally, let A be an algorithm. Consider the following experiment.

512 Gene Itkis and Leonid Reyzin

Experiment Break-Strong-RSA(k, 1, A)
Randomly choose two primes ¢; and g2 of length [k/2] — 1 each
such that 2g; + 1 and 2¢s + 1 are both prime.
P14 21 + 15 p2 < 2q2 + 1; 04— pip2
Randomly choose oo € Z7;.
(B,7r) + A(n,a)
If 1 <r<2"!'and 8" =a (mod n) then return 1 else return 0

Let Succ®™4 (A, k, 1) = Pr[Break-Strong-RSA(k, 1, A) = 1]. Let the “insecurity
function” InSec™™* (k,1,7) be the maximum of Succ®™5* (A, k,1) over all the
adversaries A who run in expected time at most 7. Our assumption is that
InSecSRSA(k,l,T)7 for 7 polynomial in k, is negligible in k. The smaller the
value of [, of course, the weaker the assumption.

In fact, for a sufficiently small [, our assumption follows from a variant of the
fixed-exponent RSA assumption. Namely, assume that there exists a constant e
such that, for every r, the probability of computing, in expected time 7, an r-th

root of a random integer modulo a k-bit product of two safe primes, is at most
27k Then, InSec®* (k,1,7) < 2!+1-%° which is negligible if I = o(k*).

4.2 Security Proof

Our security proof is more complex that the one of [IR01], although the two
proofs are quite similar. Both are based on the forking lemma of [PS96].

Theorem 1. For any 7, gsig, and Ghash,

InSec!tpartially—adaptive (GiBIR1 [k [T RNT;t, Gsig, Ghash) <

T\/(Qhash + I)InseCSRSA(ka L 7-/) + 27[+1T(Qhash + 1) + 227k(]sig(q}1ash + 1) s
where 7' = 41 + O(IT(I*°T? + k?)).

A similar theorem also holds for partially synchronous adversary. The proofs
of these theorems will be given in the full version of the paper.

4.3 Active Attacks

Because information flows only from the base to the signer, the adversary’s only
possible active attack is to send a bad SKR or SKU value to the signer. An
active attacker can thus always prevent signatures from being issued. While
our definition does not consider active attacks for the sake of simplicity, in our
implementation in Section B] the active adversary cannot do anything worse
that merely sabotage the system. It is easy to show that, in terms of forging
new signatures, its powers are no greater than those of a passive attacker who
merely obtains SKR and SKU values.

SiBIR: Signer-Base Intrusion-Resilient Signatures 513

Acknowledgements

We thank Nenad Dedic, Scott Russell, Yael Tauman and the anonymous referees
for helpful comments.

References

AMNOL1.

And97.

BM99.

BP97.

CS00.

DF89.

DKXY.

DKXYO02.

FO97.

GGMO0.

GMRSS.

GMWS8r.

Michel Abdalla, Sara Miner, and Chanathip Namprempre. Forward-secure
threshold signature schemes. In David Naccache, editor, Progress in Cryp-
tology — CT-RSA 2001, Lecture Notes in Computer Science 2020, 2001.
Ross Anderson. Invited lecture. Fourth Annual Conference on Computer
and Communications Security, ACM, 1997.

Mihir Bellare and Sara Miner. A forward-secure digital signature scheme.
In Michael Wiener, editor, Advances in Cryptology — CRYPTO ’99,
volume 1666 of Lecture Notes in Computer Science, pages 431-448.
Springer-Verlag, 15-19 August 1999. Revised version is available from
http://www.cs.ucsd.edu/"mihir/.

Niko Bari¢ and Birgit Pfitzmann. Collision-free accumulators and fail-
stop signature schemes without trees. In Walter Fumy, editor, Advances in
Cryptology - EUROCRYPT 97, volume 1233 of Lecture Notes in Computer
Science, pages 480-494. Springer-Verlag, 11-15 May 1997.

Ronald Cramer and Victor Shoup. Signature schemes based on the strong
RSA assumption. ACM Transactions on Information and System Security,
3(3):161-185, 2000.

Yvo Desmedt and Yair Frankel. Threshold cryptosystems. In G. Brassard,
editor, Advances in Cryptology — CRYPTO ’89, volume 435 of Lecture
Notes in Computer Science, pages 307-315. Springer-Verlag, 1990.
Yevgeniy Dodis, Jonathan Katz, Shouhuai Xu, and Moti Yung. Strong
key-insulated signature schemes. Unpublished Manuscript.

Yevgeniy Dodis, Jonathan Katz, Shouhuai Xu, and Moti Yung. Key-
insulated public key cryptosystems. In Lars Knudsen, editor, Advances
in Cryptology — EUROCRYPT 2002, Lecture Notes in Computer Science.
Springer-Verlag, 28 April-2 May 2002.

Eiichiro Fujisaki and Tatsuaki Okamoto. Statistical zero knowledge pro-
tocols to prove modular polynomial relations. In Burton S. Kaliski Jr.,
editor, Advances in Cryptology — CRYPTO ’97, volume 1294 of Lecture
Notes in Computer Science, pages 16-30. Springer-Verlag, 17-21 August
1997.

Irene Gassko, Peter Gemmell, and Philip MacKenzie. Efficient and fresh
certication, 2000.

Shafi Goldwasser, Silvio Micali, and Ronald L. Rivest. A digital signature
scheme secure against adaptive chosen-message attacks. SIAM Journal on
Computing, 17(2):281-308, April 1988.

Oded Goldreich, Silvio Micali, and Avi Wigderson. How to play any men-
tal game or a completeness theorem for protocols with honest majority.
In Proceedings of the Nineteenth Annual ACM Symposium on Theory of
Computing, pages 218-229, New York City, 2527 May 1987.

514 Gene Itkis and Leonid Reyzin

GPR9S.

GQ8s.

HJJt97.

IRO1.

Kat02.
LRO0O.

Mic96.

MRO1a.

MRO1b.

O0Y91.

PS96.

Riv98.

Sha83.

Yao82.

Oded Goldreich, Birgit Pfitzmann, and Ronald L. Rivest. Self-delegation
with controlled propagation — or — what if you lose your laptop. In Hugo
Krawczyk, editor, Advances in Cryptology — CRYPTO ’98, volume 1462
of Lecture Notes in Computer Science, pages 153—-168. Springer-Verlag,
23-27 August 1998.

Louis Claude Guillou and Jean-Jacques Quisquater. A “paradoxical”
indentity-based signature scheme resulting from zero-knowledge. In Shafi
Goldwasser, editor, Advances in Cryptology — CRYPTO ’88, volume 403 of
Lecture Notes in Computer Science, pages 216—231. Springer-Verlag, 1990.
Amir Herzberg, Markus Jakobsson, Stanistaw Jarecki, Hugo Krawczyk,
and Moti Yung. Proactive public key and signature systems. In Fourth
ACM Conference on Computer and Communication Security, pages 100—
110. ACM, April 1-4 1997.

Gene Itkis and Leonid Reyzin. Forward-secure signatures with optimal
signing and verifying. In Joe Kilian, editor, Advances in Cryptology —
CRYPTO 2001, volume 2139 of Lecture Notes in Computer Science, pages
332-354. Springer-Verlag, 19-23 August 2001.

Jonathan Katz. A forward-secure public-key encryption scheme. Cryptol-
ogy ePrint Archive, Report 2002/60, 2002. http://eprint.iacr.org/.
Anna Lysyanskaya and Ron Rivest. Bepper-based signatures. Presented
by Rivest at the CIS seminar at MIT, 27 October 2000.

Silvio Micali. Efficient certificate revocation. Technical Report
MIT/LCS/TM-542b, Massachusetts Institute of Technology, Cambridge,
MA, March 1996.

Philip D. MacKenzie and Michael K. Reiter. Delegation of cryptographic
servers for capture-resilient devices. In Eighth ACM Conference on Com-
puter and Communication Security, pages 10-19. ACM, November 5-8
2001.

Philip D. MacKenzie and Michael K. Reiter. Networked cryptographic
devices resilient to capture. In IEEE Symposium on Security and Privacy,
pages 12-25, 2001.

Rafail Ostrovsky and Moti Yung. How to withstand mobile virus attacks.
In 10-th Annual ACM Symp. on Principles of Distributed Computing, 1991.
David Pointcheval and Jacques Stern. Security proofs for signature
schemes. In Ueli Maurer, editor, Advances in Cryptology — EURO-
CRYPT 96, volume 1070 of Lecture Notes in Computer Science, pages
387-398. Springer-Verlag, 12-16 May 1996.

Ronald L. Rivest. Can we eliminate certificate revocation lists? In Rafael
Hirschfeld, editor, Financial Cryptography, volume 1465 of Lecture Notes
in Computer Science. Springer-Verlag, 1998.

Adi Shamir. On the generation of cryptographically strong pseudorandom
sequences. ACM Transactions on Computer Systems, 1(1):38—44, 1983.
A.C. Yao. Protocols for secure computations. In 23rd Annual Symposium
on Foundations of Computer Science, pages 160-164, Chicago, Illinois, 3-5
November 1982. IEEE.

http://eprint.iacr.org/

	1 Introduction
	1.1 Previous Work
	1.2 Our Results: Intrusion-Resilient Security
	1.3 Towards Obsoletion of Certificate Revocation

	2 Intrusion-Resilient Security Model
	2.1 Functional Definition
	2.2 Security Definition

	3 Intrusion-Resilient Scheme: Construction
	4 Security
	4.1 Complexity Assumption
	4.2 Security Proof
	4.3 Active Attacks

	References

