
A Modular Design
for a Parallel Multifrontal Mesh Generator

Jean-Paul Boufflet1, Piotr Breitkopf2, Alain Rassineux2, and Pierre Villon2

1 UMR 6599 HeuDiaSyc, Université de Technologie de Compiègne,
60205 Compiègne Cedex, France,
{Jean-Paul.Boufflet}@utc.fr

2 UMR 6066 Roberval, Université de Technologie de Compiègne,
60205 Compiègne Cedex, France,

{Alain.Rassineux,Pierre.Villon,Piotr.Breitkopf}@utc.fr

Abstract. The proposed approach consists in extending an existing se-
quential mesh generator in order to design a parallel mesh generator. A
sequential three-dimensional mesh generator builds the internal mesh by
applying advancing front techniques from a surface mesh defining the
volume of the initial domain. We geometrically decompose the domain
by recursively splitting it into subdomains using cutting planes. We run
a sequential mesh generator code on different processors, each of them
working on a single subdomain. The interface mesh compatibility on
the two sides of two subdomains makes it possible to merge the results.
We present in this paper our modular approach, an example of a inter-
face mesh generation, and we specify the cutting plane decomposition
method.

1 Introduction

The goal of this paper is to present a parallel algorithm of volume mesh genera-
tion in 3D. The data is the surface triangular mesh. Two strategies are possible
for the generation of internal tetrahedral:

1. parallelize a mesh generation code;
2. decompose the data.

The first stategy is subject to current investigation [1]. In the current work we
develop an original technique for the second strategy – the domain decompo-
sition of the surface mesh prior to the volume mesh generation. The obvious
benefit of this approach is the re-use of an existing sequential volume mesh gen-
erator [5] in parallel over the subdomains. Several issues have however to be
addressed. The most important is that splitting of a closed envelope gives open
subdomains. We have therefore to generate an interface surface mesh in order
to close the subdomains. The second issue is the quality of the resulting volume
mesh obtained after merging the subdomains. The special load balancing criteria
have also to be defined. The chosen approach may be resumed as follows:

B. Monien and R. Feldmann (Eds.): Euro-Par 2002, LNCS 2400, pp. 715–723.
c© Springer-Verlag Berlin Heidelberg 2002



716 J.-P. Boufflet et al.

1. we define a “cutting plane” for partitioning the initial surface;
2. we generate the interface surface mesh;
3. we run the sequential volume mesh generator over the subdomains;
4. we merge the subdomain meshes in order to obtain the global volume mesh;
5. we apply the mesh optimization techniques in order to meet the mesh quality

criteria in vicinity of the interface.

The actual approach should not be confused with the established mesh partition-
ing techniques [7,8,9] developed for the computational meshes. In the primary
stage of our algorithm the volume mesh does not yet exist and the only informa-
tion is the triangulation of the envelope. We could obviously use the standard
domain decomposition code in order to split the initial data. Two problems
would however arise:

– the interface surface mesh has to be generated anyway;
– we have no guarantee that the interface could be easily meshes with surface

elements.

Therefore, we propose to simplify the interface geometry by using an explicit
dividing surface - in the actual work, a cutting plane. The benefit of this strategy
is the possibility of re-use of a standard surface (plane) mesh generator [6] for
the interface. The drawback is the impact of the cutting plane on the form
of neighbouring volume elements. This issue is treated by usual techniques of
tetrahedral mesh optimization [6].

The current work may be related to the technique of Recursive Inertial Bi-
section (RIB) [2,3]. The fundammental differences between the two techniques
is in the definition of the cutting plane by the Moving Least Square (MLS) ap-
proximation [10] and in the strategy of updating the cutting plane position and
direction. The MLS approximation permits to get a smooth evolution of the cut-
ting plane based on the local information. In fact, only the points “close enough”
to the current cutting plane are taken into account and their influence decreases
with the distance. This approach permits to treat more complex and multiply
connected geometries corresponding to industrial parts. Rather than the domain
decomposition, this paper concerns the envelope splitting and interface gener-
ation for a standard volume mesh generator. The usual domain decomposition
techniques [7,8,9] may be used at the initialisation stage.

2 The Modular Design Strategy

The overall process is presented in figure 1. From left to right clockwise, there
is the data flow through the modules.

The first module decomposes a geometric domain into two subdomains by
computing a cutting plane as we detail in section 4. The second module generates
a triangular mesh of the interface.

At this stage, we have generated two subdomains having a complete surface
mesh by building a compatible interface mesh on the two sides of the cutting



A Modular Design for a Parallel Multifrontal Mesh Generator 717

3D mesh 
merging module

generator module
3D meshinterface mesh

generator module

scheduler module

geometric
decomposition

module

initial domains geometrically
defined with a 3D surface mesh

fully 3D meshed domain

Fig. 1. The modules of the parallel multifrontal mesh generator

plane for the two subdomains that ensures merging the results. Two processors
using the sequential mesh generator can generate the internal meshes of the two
subdomains in parallel. The sequential mesh generator is the third module. The
fourth module merges the meshes to obtain the full mesh.

One can recursively generate the subdomains by applying the first and the
second module, and then compute each sub-mesh using the sequential mesh
generator. In this case the merging module has to be accordingly invoked. Con-
sequently a scheduling module has to pilot the process.

3 The Interface Mesh Generation

At this stage the goal is to generate the surface mesh in order to close the two
open subdomains obtained by applying the cutting plane Π to the domain D.
We perfom as follows:

1. we define the interface surface nodes that are close to Π;
2. we project this interface nodes to Π, that defines the geometry needed for

the surface mesh generator;
3. we generate a surface mesh using this geometry with a standard 2D mesh

generator [6];
4. we fit this surface mesh to the coordinates of the interface nodes.

The step 1 can be achieved by assigning first the triangles of the envelope to
three sets:

– S1: the triangular finite element on one side of Π;
– S2: the triangular finite element on the other side of Π;
– S3: the triangular finite element intersected by Π.

Then, using the geometric informations, we assign each triangular finite el-
ements of S3 either to S1 or S2. We therefore obtain the nodes defining the



718 J.-P. Boufflet et al.

Fig. 2. An example of a interface mesh generation: on the left the two subdomains
obtained by applying a cutting plane, on the right the interface mesh generated at the
boundary

boundary between the two subdomains. Then, we project the nodes on Π (step
2). These projections define a two-dimensionnal geometry and a two-dimensional
mesher can be applied on this classical problem [6]. At this stage we obtain a set
of plane two dimensionnal meshes composed of new triangular finite elements.
Finally, by applying geometrical transformations, we adapt the new triangles
near the interface nodes in order to fit with the three-dimensional shape of the
boundary. Consequently the interface mesh generated is not plane and can be
composed of several part if there are holes.

By applying this process we build a unique interface mesh that geometricaly
fits. By supplementing S1 and S2 with this interface mesh we finally obtain two
subdomains with two complete envelopes.

On the left of figure 2 we show an example of two subdomains obtained by
applying the process. One can notice the “cutted eggshell” shape aspect on the
boundary: we do not split the triangular finite elements of the initial envelope.
On this exemple the cutting plane Π applied to the complex geometry of the
initial domain leads to several areas with dense parts and holes. However, we
show on the right of figure 2 that the interface mesh is correctly generated at
the boundary between the subdomains.

Whatever the results of the three-dimensional meshing applied on these two
new complete envelopes can be, the unique interface mesh generated for the two
subdomains ensures the perfect merging of the two results.

4 Geometric Decomposition

The decomposition method that we present in this section exploits only the
geometric information of the nodes of the surface mesh. We choose to partition
a geometric domain by splitting it into two parts balancing the number of nodes
on both sides of the cutting plane. We have to choose the cutting plane defined
by its direction and its position with regard to the domain we want to partition
in order to satisfy the quality criteria of the submeshes.



A Modular Design for a Parallel Multifrontal Mesh Generator 719

the cutting plane
Normal of

Surface nodes

Cutting plane

Fig. 3. An example of a domain D with the cutting plane principle

Let D be a domain having a surface mesh (its envelope) such that its volume
is defined by the n nodes of the surface (cf. figure 3). Each node Xi is defined
by its Cartesian coordinates xi, yi and zi (for i = 1, . . . , n). The purpose is to
determine the mean plane that ensures a balanced partition of the domain. First,
we calculate the centre of gravity X̄:

X̄ = (x̄, ȳ, z̄) = (
1
n

∑
i

xi,
1
n

∑
i

yi,
1
n

∑
i

zi) (1)

Then, we compute the nodal coordinates centered around X̄. For each node Xi:

(ξi, ηi, νi) = (xi − x̄, yi − ȳ, zi − z̄) for i = 1, . . . , n (2)

We now determine the plane passing through the point X̄ and as near as possible
to the nodes Xi. The equation of this plane is a priori:

a(x − x̄) + b(y − ȳ) + c(z − z̄) = 0 (3)

We have to compute the triplet (a, b, c) minimizing the following cost:

J(a, b, c) =
1
2

∑
i

wi (a ξi + b ηi + c νi)2 (4)

with respect to the constraint:

a2 + b2 + c2 = 1 (5)

where the weights are wi = wref (dist(h(Xi), X̄)/r). The term h(Xi) is the pro-
jection of each node Xi to the normal of the cutting plane passing through the
point X̄ (cf. figure 3). The quantity r is a reference radius that permits the
selection of the nodes contributing to the calculus of the weights wi. The func-
tion wref is the reference attenuation function. For instance, one can choose
wref (d) = 0.5 (1+cos(π d)) for d ∈ [0, 1], and 0 otherwise. This function permits
to assign higher weights to the nodes near X̄ for building the plane.



720 J.-P. Boufflet et al.

In order to compute the plane we set αT = (a, b, c) and we built the matrices
P and W as follows:

P =




ξ1 η1 ν1
ξ2 η2 ν2
...

...
...

ξn ηn νn


 W =




w1 0 · · · 0

0
. . . 0

...
... 0

. . . 0
0 · · · 0 wn




Considering these notations the equations 4 and 5 can be formulated as:
minα J(α) under the constraint αTα = 1 and where J(α) = 1

2 αTPTWP α. The
expression of the Lagrangian of this problem is:

L(α, λ) =
1
2
αTPTWP α − λαTα (6)

and the associated optimality system is:

PTWP α − λα = 0 (7)
αTα = 1 (8)

The equation 7 is equivalent to (λ I−PTWP )α = 0. That is to say (λ, α) are
respectively eigenvalues and eigenvectors of the matrix PTWP . This matrix is
positive definite symmetric, therefore there are 3 real eigenvalues λ1, λ2, λ3 such
that 0 < λ1 ≤ λ2 ≤ λ3 and 3 associated orthonormal eigenvectors. Consequently
the solution of the system of equation (7-8) is either (λ1, α1) or (λ2, α2) or
(λ3, α3). These three solutions represent the extrema of the cost function J(α).
In order to find the solution that minimizes, we evaluate J(αj) for (j = 1, 2, 3).

It follows:

J(αj) =
1
2
αT

j PTWP αj =
1
2
αT

j λj αj =
1
2
λj α

T
j αj =

1
2
λj (9)

To summarize, the vector α = (a, b, c) minimizing J(α) corresponds to the
normalized eigenvector associated with the smallest eigenvalue of the matrix
PTWP . From a practical point of view, we use the inverse iterate power method
to compute an approximation of the eigenvector associated with the smallest
modulus eigenvalue.

5 The Partitioning Algorithm

The outline of the algorithm consists in bringing up the cutting plane Π from
an initial position until we obtain a decomposition of the domain into two equal
parts subdomains.

The cutting plane is characterized by the point Ȳ and a normal direction α
(cf. former section). The initialization step includes the load of the coordinates
of the nodes of the surface mesh of the domain (the envelope) from data files and
the determination of the initial cutting plane. This initial cutting plane passes



A Modular Design for a Parallel Multifrontal Mesh Generator 721

through the centre of gravity X̄ (cf. equation 1) and the associated normal
vector is the normalized eigenvector associated with the smallest eigenvalue of
the matrix PTP . At this initialization step we take W = I.

The main loop that updates the cutting plane is as follows:

– select the nodes Xi that are the nearest from the intersection of the cutting
plane with the envelope;

– compute their centre of gravity Ȳ ;
– compute the projections Yi of all the nodes Xi to the straight line ∆ in

normal direction α from the cutting plane;
– sort the points Yi in an increasing order of distance from Ȳ ;
– compute the weights wi = wref (dist(Ȳ − Yi)/r);
– build the matrix PTWP ;
– compute the new normal vector α, (normalized eigenvector associated with

the smallest eigenvalue of PTWP );
– actualize the cutting plane.

The actualization of the cutting plane is performed as follows: the new cutting
plane passes through the point Xk and its new normal vector is the new normal
vector α. The point Xk has the point Yk as its projection to the straight line ∆
such that Yk is the nearest point from Ȳ decreasing the balancing criterion. We
define the balancing criterion as C(Π) = abs(n1−n2)

n1+n2
where n1 is the number of

nodes of the surface mesh (the envelope) located at the side with direction +α
from the cutting plane (while n2 is the number of nodes located at the other
side with direction −α from the cutting plane).

The main loop of the algorithm stops when the criterion C(Π) is lower or
equal than a chosen threshold. The parameter r we defined for computing the
weights wi can evolve during the process in order to escape from local minima
or to avoid cycling.

We tested our algorithm on three examples having complex geometric shapes.
On the right part of figure 4, we use two level of grey to identify the subdomains.
On the left part, for each mesh, we report the graph of the percentage of unbal-
ance over the two subdomains as a function of the number of iterations of the
main loop.

We observe a rapid convergence to a cutting plane that balances the number
of surface nodes over the two subdomains. We also notice that the stopping
criterion we proposed for the algorithm depends on the detection of the first
local minimum encountered before stabilizing. We reach a relative gap roughly
of 2 % between the number of nodes by spending a computing time between one
and two minutes on a SUN Solaris workstation, that is satisfying with respect
to the time spent by the three-dimensional mesh generator on the domain.

The cutting plane Π may geometrically split the surface mesh into more than
two subdomains. The figure 5 show an example of such situation. We observe on
the left part of figure 5, more precisely top left near the cutting plane, that a small
part of the surface mesh has been assigned to the dark grey subdomain. There
is no connection with the other part of the dark grey subdomain. However, the
two separate dark grey parts belong to the same side of Π. We associate a graph



722 J.-P. Boufflet et al.

0 2 4 6 8 10 12 14 16 18 20
4

5

6

7

8

9

10

11

12

13

14

 Iterations 

 P
er

ce
nt

ag
e 

of
 u

nb
al

an
ce

 (
%

) 

0 2 4 6 8 10 12 14 16
0

1

2

3

4

5

6

7

8

 Iterations 

 P
er

ce
nt

ag
e 

of
 u

nb
al

an
ce

 (
%

) 

Fig. 4. Two examples of geometric partitioning (light grey and grey parts)

G(D) with the surface mesh of D. The post-processing consists in detecting
first all the connected components issued from Π in G(D). Considering the
exemple of figure 5 we obtain three connected components. Next, we merge
the smallest connected component with its biggest neighbour. The right part
of figure 5 shows the repaired mesh. By assigning correctly the parts we finally
obtain two connected components. This can be done by applying basic graph
algorithms on the parts of the surface mesh issued from the cutting plane.

Fig. 5. On the left, the initial geometric domain decomposition, on the right after
detection of the connected composant and re-assigning (Bench PSA)



A Modular Design for a Parallel Multifrontal Mesh Generator 723

6 Conclusion

The three main modules needed to design the parallel multifrontal mesh genera-
tor are: the sequential multifrontal mesh generator, the geometric decomposition
and the interface mesh generator. The preliminary results have to be confirmed
on other benchmarks and have to be compared with the meshes computed using
the sequential mesh generator alone. The behavior of our approach has to be
studied concerning the load balancing in order to design the scheduling module.

References

1. Chen M-B, Chuang T-R, Wu J-J.: Experience in parallelizing mesh generation code
with High Performance Fortran. In 9th SIAM Conference on Parallel Processing
for Scientific Computing. San Antonio, Texas, USA, SIAM Press. March (1999).

2. Hendrickson B., Devine K.: Dynamic Load Balancing in Computational Mechanics.
Comp. Meth. Applied Mechanics & Engineering. 184(2-4):485-500, (2000).

3. Simon H. D. Partioning of unstructured problems for parallel processing. Comput-
ing Systems in Engineering, 2(2/3):135-148, 1991.

4. Bouattoura D., Boufflet J.P., Rassineux A., Villon P. : Mailleur Parallèle Mul-
tifrontal. Proceedings of Quatrième Colloque National en Calcul des Structures,
(1999) 297-302

5. Rassineux A.: 3D Mesh Adaptation - Optimization of Tetrahedral Meshes by Ad-
vancing front Technique. Compt. Methd. Appli. Mech. Eng., Vol. 141. (1997)

6. Frey P. J., George P-L.: Maillages, applications aux éléments finis. HERMES Sci-
ence Publication (1999).

7. Karypis G. and Kumar V. METIS : A Software Package for Partitioning Unstruc-
tured Graphs, Partitioning Meshes, and Computing Fill-Reducing Orderings of
Sparse Matrices. Tech. Report University of Minnesota, Department of Computer
Science, sept, (1998).

8. Pellegrini F. SCOTCH 3.0 User’s guide. Tech. Report LaBRI, URA CNRS 1304,
Université Bordeaux I,(1996).

9. Hendrickson B. and Leland R. The Chaco user’s guide, version 2.0. Tech. Report
Sandia National Laboratories, Albuquerque SAND95–2344, jul, (1995).

10. Lancaster, P., Salkauskas, K., Surfaces Generated by Moving Least Squares Meth-
ods, Math. of Comp. Vol, 155, pp. 141-158, (1981).


	1 Introduction
	2 The Modular Design Strategy
	3 The Interface Mesh Generation
	4 Geometric Decomposition
	5 The Partitioning Algorithm
	6 Conclusion
	References

