
Exception Handling
during Asynchronous Method Invocation

Aaron W. Keen and Ronald A. Olsson

Department of Computer Science, University of California, Davis, CA 95616 USA,
{keen,olsson}@cs.ucdavis.edu

Abstract. Exception handling mechanisms provided by sequential pro-
gramming languages rely upon the call stack for the propagation of
exceptions. Unfortunately, this is inadequate for handling exceptions
thrown from asynchronously invoked methods. For instance, the invoking
method may no longer be executing when the asynchronously invoked
method throws an exception. We address this problem by requiring the
specification of handlers for exceptions thrown from asynchronously in-
voked methods. Our solution also supports handling exceptions thrown
after an early reply from a method and handling exceptions after forward-
ing the responsibility to reply. The JR programming language supports
the exception handling model discussed in this paper.

1 Introduction

Asynchronous method invocation facilitates the dynamic creation of concur-
rently executing threads and the communication between such threads. When
a method is asynchronously invoked, the invoking thread continues to execute
while another thread executes the body of the invoked method. Such concurrent
execution can benefit both the design of and the performance of a program.
The use of asynchronous method invocation, however, complicates the use of
exceptions and, in particular, the handling of thrown exceptions.

Exception handling mechanisms for sequential programming languages are
well-understood. Goodenough [2] presents a general discussion of the issues that
exception handling mechanisms need to address and the different semantics (e.g.,
terminate, retry, or resume) provided by such mechanisms. Yemini and Berry [9]
propose an additional model (replacement) that allows an erroneous subexpres-
sion (one that raises an exception) to be replaced by the handler’s result.

The exception handling mechanisms provided by sequential programming
languages rely upon the call stack for the propagation of exceptions. A thrown
exception is propagated (either implicitly or explicitly) up the call stack until
an appropriate handler is found. In Figure 1, method baz throws an exception.
The exception is propagated through method bar and into method foo, where
it is finally handled.

Unfortunately, the reliance of such mechanisms on the call stack is inade-
quate for handling exceptions thrown from an asynchronously invoked method.
Figure 2 depicts the same program as before, but with the method bar invoked

B. Monien and R. Feldmann (Eds.): Euro-Par 2002, LNCS 2400, pp. 656–660.
c© Springer-Verlag Berlin Heidelberg 2002



Exception Handling during Asynchronous Method Invocation 657

main foo bar baz

invocation invocation invocation

exception propagation

Fig. 1. Exception propagated through call stack.

main bar baz

invocation invocationinvocation
asynchronous

foo

invocation exception propagation?
Fig. 2. Exception propagated from method invoked asynchronously.

asynchronously. Again, an exception is thrown from method baz and propa-
gated to method bar. If method bar does not have an appropriate exception
handler, then the exception must be further propagated. But, since method bar
was invoked asynchronously, the preceding call stack is not accessible. In fact,
the method that invoked bar (i.e., foo) may no longer be executing. As such,
the call stack cannot be used to propagate exceptions from methods invoked
asynchronously.

We address this problem by requiring the specification of handlers for ex-
ceptions thrown from methods invoked asynchronously. The exception handling
support presented in this paper bears some resemblance to that provided in both
ABCL/1 [3] and Arche [4], which are discussed in greater detail in Section 4.
Our solution, however, differs in the support for static checks for handling ex-
ceptions, handling exceptions after an early reply from a method, and handling
exceptions after forwarding within a method. Both early reply and forwarding are
useful in distributed programming [7,1]. Early reply allows the invoked method
to transmit return values to its invoker, yet the invoked method continues to
exist and executes concurrently with its invoker.1 Forwarding passes the respon-
sibility for replying to the invoker from the invoked method to another method.
The exception handling support discussed in this paper has been designed and
implemented as part of the JR programming language [6,5].

2 Exceptions during Asynchronous Invocation

The JR programming language extends Java with support for, among other
features, asynchronous method invocation via the send statement. To facilitate
the handling of exceptions thrown from an asynchronously invoked method, we
require the specification of a handler object as part of a send. Any exceptions
propagated out of the invoked method will be directed to the handler object.
As such, in accordance with the verbose nature of Java’s exception handling
1 Further discussion of support for reply is discussed in [5].



658 A.W. Keen, R.A. Olsson

public class IOHandler implements edu.ucdavis.jr.Handler {
public handler void handleEOF(java.io.EOFException e)
{ /* handle exception */ }
public handler void handleNotFound(java.io.FileNotFoundException e)
{ /* handle exception */ }

}

Fig. 3. Class definition for a simple handler object.

IOHandler iohandler = new IOHandler();
...
send readFile("/etc/passwd") handler iohandler;
...

Fig. 4. Specification of a handler object during a send.

model, JR requires that the specified handler object is capable of handling any
exception potentially thrown from the invoked method.

To be used as a handler, an object must implement the Handler interface and
define a number of handler methods. A method is defined as a handler through
the use of the handler modifier (much like the public modifier). A handler
method takes only a single argument: a reference to an exception object. Each
handler method specifies the exact exception type that it can handle. When an
exception is delivered to a handler object, it is handled by the handler method
of the appropriate type. If two handler methods may handle the exception, then
the method handling the most specific type is selected. Handler methods cannot
propagate exceptions out of their method body.

An example definition of a handler object’s class is given in Figure 3. In this
example, handler objects of type IOHandler can handle end-of-file and file-not-
found exceptions. An exception of type java.io.EOFException directed to such
a handler object will be handled by the handleEOF method.

A send statement must specify, using a handler clause, the handler object
that is to be used to handle any exceptions propagated from the asynchronously
invoked method. An example of the specification of a handler object is given in
Figure 4. The JR compiler statically checks that the specified handler object
can handle each of the potentially thrown exceptions.

3 Exceptions after Forwarding

A modification of the standard synchronous invocation semantics is forwarding.
An invoked method may forward to another method the responsibility of re-
plying. For example, in Figure 5, method foo does some calculations and then
forwards responsibility to method bar, after which the two methods execute
concurrently.

A forward statement must specify a handler object to handle any exceptions
thrown by the forwarding method after executing the forward statement. Any
exceptions thrown prior to executing a forward statement are propagated ac-
cording to the manner in which the method was invoked. Any exceptions thrown



Exception Handling during Asynchronous Method Invocation 659

int baz(String filename) throws java.io.EOFException {
int retval = foo(filename);
// retval actually comes from bar because of foo’s forward
...

}
int foo(String filename) throws java.io.EOFException {

...
IOHandler iohandler = new IOHandler();
forward bar(filename) handler iohandler; // forward invocation
... // continue executing

}
int bar(String filename) throws java.io.EOFException {

... // potentially throw java.io.EOFException
}

Fig. 5. Forwarding.

by the forwarding method after executing a forward statement are directed to
the handler object. The method to which responsibility is forwarded inherits the
handler of the forwarding method: the call stack link if invoked synchronously
and a handler object if invoked asynchronously.

4 Discussion

Handler objects are implemented as Serializable Java objects. The handler meth-
ods are implemented as normal methods, but are gathered during compilation
to generate a dispatch method (named by the Handler interface). The dispatch
method is necessary as a single, well-named entry point into each handler object.
All exceptions are directed to the dispatch method, which routes each exception
to the appropriate handler method. A handler object is sent, as an additional
parameter, to an invoked method, and used only when an exception is raised. As
such, the handler object will exist during the duration of the method execution.

A previous approach [8] to handling exceptions thrown from asynchronously
invoked methods allows for the specification of an exception handler when an
exception is actually raised. Unfortunately, specifying the handler at the point
an exception is raised introduces some limitations. For example, it might be de-
sirable for a method that can be invoked both synchronously and asynchronously
to propagate exceptions up the call stack or to a handler, as appropriate . Such a
distinction would require support for a method to determine how it was invoked.

As mentioned previously, the solution proposed in this paper bears some
resemblance to the solutions for ABCL/1 [3] and Arche [4]. ABCL/1 allows syn-
chronous, asynchronous, and future-based method invocation. Each invocation
may specify a “complaint” destination. Any exception raised during the exe-
cution of the method will be directed to the “complaint” object, if specified.
Otherwise, the exception is propagated to the invoker through the call stack.
ABCL/1, due to the nature of the language, does not perform static checks on
the “complaint” destination to ensure that it can handle the thrown exceptions.

The exception handling support in Arche is similar to that provided by
ABCL/1. A set of handler objects can be specified as part of an asynchronous



660 A.W. Keen, R.A. Olsson

invocation. Exceptions thrown from the invoked method are directed to each
of the specified handler objects. Arche also statically checks that each of the
handler objects can actually handle the potentially thrown exceptions.

5 Conclusion

This paper presented the design and implementation of an exception model that
supports handling exceptions thrown from an asynchronously invoked method,
handling exceptions thrown after an early reply from a method, and handling
exceptions after forwarding. The JR programming language supports handler
objects and the presented exception model.

References

1. G.R. Andrews. Concurrent Programming: Principles and Practice. Benja-
min/Cummings Publishing Company, Inc., Redwood City, CA, 1991.

2. J. B. Goodenough. Exception handling issues and a proposed notation. Communi-
cations of the ACM, 18(12):683–696, 1975.

3. Y. Ichisugi and A. Yonezawa. Exception handling and real time features in an object-
oriented concurrent language. In Proceedings of the UK/Japan Workshop on Con-
currency: Theory, Language, and Architecture, pages 604–615, 1990.

4. V. Issarny. An exception handling mechanism for parallel object-oriented program-
ming: toward reusable, robust distributed software. Journal of Object-Oriented Pro-
gramming, 6(6):29–40, 1993.

5. A. W. Keen. Integrating Concurrency Constructs with Object-Oriented Program-
ming Languages: A Case Study. PhD dissertation, University of California, Davis,
Department of Computer Science, June 2002.

6. A. W. Keen, T. Ge, J. T. Maris, and R. A. Olsson. JR: Flexible distributed program-
ming in an extended Java. In Proceedings of the 21st IEEE International Conference
on Distributed Computing Systems (ICDCS 2001), pages 575–584, April 2001.

7. B. Liskov, M. Herlihy, and L. Gilbert. Limitations of remote procedure call and
static process structure for distributed computing. In Proceedings of 13th ACM
Symposium on Principles of Programming Languages, St. Petersburg, FL, January
1986.

8. A. Szalas and D. Szczepanska. Exception handling in parallel computations. ACM
SIGPLAN Notices, 20(10):95–104, October 1985.

9. S. Yemini and D. M. Berry. A modular verifiable exception handling mechanism.
ACM Transactions on Programming Languages and Systems, 7(2):214–243, 1985.


	1 Introduction
	2 Exceptions during Asynchronous Invocation
	3 Exceptions after Forwarding
	4 Discussion
	5 Conclusion
	References

