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Abstract. In this paper we present SCALEA, which is a performance
instrumentation, measurement, analysis, and visualization tool for par-
allel and distributed programs that supports post-mortem and online
performance analysis. SCALEA currently focuses on performance anal-
ysis for OpenMP, MPI, HPF, and mixed parallel/distributed programs.
It computes a variety of performance metrics based on a novel overhead
classification. SCALEA also supports multiple experiment performance
analysis that allows to compare and to evaluate the performance out-
come of several experiments. A highly flexible instrumentation and mea-
surement system is provided which can be controlled by command-line
options and program directives. SCALEA can be interfaced by exter-
nal tools through the provision of a full Fortran90 OpenMP/MPI/HPF
frontend that allows to instrument an abstract syntax tree at a very
high-level with C-function calls and to generate source code. A graphical
user interface is provided to view a large variety of performance metrics
at the level of arbitrary code regions, threads, processes, and computa-
tional nodes for single- and multi-experiments.

Keywords: performance analysis, instrumentation, performance over-
heads

1 Introduction

The evolution of distributed/parallel architectures and programming paradigms
for performance-oriented program development challenge the state of technol-
ogy for performance tools. Coupling different programming paradigms such as
message passing and shared memory programming for hybrid cluster computing
(e.g. SMP clusters) is one example for high demands on performance analysis
that is capable to observe performance problems at all levels of a system while
relating low-level behavior to the application program.
In this paper we describe SCALEA, a performance instrumentation, mea-

surement, and analysis system for distributed and parallel architectures that
currently focuses on OpenMP, MPI, HPF programs, and mixed programming
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paradigms such as OpenMP/MPI. SCALEA seeks to explain the performance be-
havior of each program by computing a variety of performance metrics based on
a novel classification of performance overheads for shared and distributed mem-
ory parallel programs which includes data movement, synchronization, control
of parallelism, additional computation, loss of parallelism, and unidentified over-
heads. In order to determine overheads, SCALEA divides the program sources
into code regions (ranging from the entire program to single statement) and
locates whether performance problems occur in those regions or not. A highly
flexible instrumentation and measurement system is provided which can be pre-
cisely controlled by program directives and command-line options. In the center
of SCALEA’s performance analysis is a novel dynamic code region call graph
(DRG - [9]) which reflects the dynamic relationship between code regions and
their subregions and enables a detailed overhead analysis for every code region.
Moreover, SCALEA supports a high-level interface to traverse an abstract syntax
tree (AST), to locate arbitrary code regions, and to mark them for instrumen-
tation. The SCALEA overhead analysis engine can be used by external tools as
well.
A data repository is employed in order to store performance data and in-

formation about performance experiments which alleviates the association of
performance information with experiments and the source code. SCALEA also
supports multi-experiment performance analysis that allows to examine and
compare the performance outcome of different program executions. A sophis-
ticated visualization engine is provided to view the performance of programs at
the level of arbitrary code regions, threads, processes, and computational nodes
(e.g. single-processor systems, Symetric Multiple Processor (SMP) nodes sharing
a common memory, etc.) for single- and multi-experiments.
The rest of this paper is organized as follows: Section 2 presents an overview

of SCALEA. In Section 3 we present a classification of performance overheads.
The next section outlines the various instrumentation mechanisms offered by
SCALEA. The performance data repository is described in the following section.
Experiments are shown in Section 6. Related work is outlined in Section 7,
followed by conclusions in Section 8.

2 SCALEA Overview

SCALEA is a performance instrumentation, measurement, and analysis system
for distributed memory, shared memory, and mixed parallel programs. Figure
1 shows the architecture of SCALEA which consists of several components:
SCALEA Instrumentation System (SIS), SCALEA Runtime System, SCALEA
Performance Data Repository, and SCALEA Performance Analysis & Visualiza-
tion System. All components provide open interfaces thus they can be used by
external tools as well.
SIS uses the front-end and unparser of the VFC compiler [1]. SIS supports

automatic instrumentation of MPI, OpenMP, HPF, and mixed OpenMP/MPI
programs. The user can select (by directives or command-line options) code re-
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Fig. 1. Architecture of SCALEA

gions and performance metrics of interest. Moreover, SIS offers an interface for
other tools to traverse and annotate the AST at a high level in order to specify
code regions for which performance metrics should be obtained. SIS also gen-
erates an instrumentation description file [9] to relate all gathered performance
data back to the input program.
The SCALEA runtime system supports profiling and tracing for parallel and

distributed programs, and sensors and sensor managers for capturing and man-
aging performance data of individual computing nodes of parallel and distributed
machines. The SCALEA profiling and tracing library collects timing, event, and
counter information, as well as hardware parameters. Hardware parameters are
determined through an interface with the PAPI library [2].
The SCALEA performance analysis and visualization module analyzes the

raw performance data which is collected post-mortem or online and stored in
the performance data repository. It computes all user-requested performance
metrics, and visualizes them together with the input program. Besides single-
experiment analysis, SCALEA also supports multi-experiment performance anal-
ysis. The visualization engine provides a rich set of displays for various metrics
in isolation or together with the source code.
The SCALEA performance data repository holds relevant information about

the experiments conducted.
In the following we provide a more detailed overview of SCALEA.

3 Classification of Temporal Overheads

In previous work [9], we presented a preliminary and very coarse grain classifica-
tion of performance overheads which has been stimulated by [3]. Figure 2 shows
our novel and substantially refined overhead classification which includes:
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– Data movement shown in Fig. 2(b) corresponds to any data transfer within
local memory (e.g. cache misses and page faults), file I/O, communication
(e.g. point to point or collective communication), and remote memory access
(e.g. put and get). Note that the overhead Communication of Accumulate
Operation has been stimulated by the MPI Accumulate construct which is
employed to move and combine (through reduction operations) data at re-
mote sites via remote memory access.

– Synchronization (e.g. barriers and locks) shown in Fig. 2(c) is used to coordi-
nate processes and threads when accessing data, maintaining consistent com-
putations and data, etc. We subdivided the synchronization overhead into
single address and multiple address-space overheads. A single address space
corresponds to memory parallel systems. For instance, any kind of OpenMP
synchronization falls into this category. Whereas multi-address space syn-
chronization has been stimulated by MPI synchronization, remote memory
locks, barriers, etc.
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– Control of parallelism (e.g. fork/join operations and loop scheduling) shown
in Fig. 2(d) is used to control and to manage the parallelism of a program
which is commonly caused by code inserted by the compiler (e.g. runtime
library) or by the programmer (e.g. to implement data redistribution).

– Additional computation (see Fig. 2(e)) reflects any change of the original se-
quential program including algorithmic or compiler changes to increase par-
allelism (e.g. by eliminating data dependences) or data locality (e.g. through
changing data access patterns). Moreover, requests for processing unit iden-
tifications, or the number of threads that execute a code region may also
imply additional computation overhead.

– Loss of parallelism (see Fig. 2(f)) is due to imperfect parallelization of a pro-
gram which can be further classified: unparallelized code (executed by only
one processor), replicated code (executed by all processors), and partially
parallelized code (executed by more than one but not all processors).

– Unidentified overhead corresponds to the overhead that is not covered by the
above categories.

4 SCALEA Instrumentation System (SIS)

SIS provides the user with three alternatives to control instrumentation which
includes command-line options, SIS directives, and an instrumentation library
combined with an OpenMP/HPF/MPI frontend and unparser. All of these al-
ternatives allow the specification of performance metrics and code regions of
interest for which SCALEA automatically generates instrumentation code and
determines the desired performance values during or after program execution. In
the remainder of this paper we assume that a code region refers to a single-entry
single-exit code region. A large variety of predefined mnemonics are provided
by SIS for instrumentation purposes. The current implementation of SCALEA
supports 49 code region and 29 performance metric mnemonics:

– code region mnemonics: arbitrary code regions, loops, outermost loops, pro-
cedures, I/O statements, HPF INDEPENDENT loops, HPF redistribution,
OpenMP parallel loops, OpenMP sections, OpenMP critical, MPI send, re-
ceive, and barrier statements, etc.

– performance metric mnemonics: wall clock time, cpu time, communication
overhead, cache misses, barrier time, synchronization, scheduling, compiler
overhead, unparallelized code overhead, HW-parameters, etc. See also Fig.
2 for a classification of performance overheads considered by SCALEA.

The user can specify arbitrary code regions ranging from the entire program
unit to single statements and name (to associate performance data with code
regions) these regions which is shown in the following:

!SIS$ CR region name BEGIN
code region

!SIS$ END CR
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In order to specify a set of code regions R = {r1, ..., rn} in an enclosing region
r and performance metrics which should be computed for every region in R, SIS
offers the following directive:

!SIS$ CR region name [,cr mnem-list] [PMETRIC perf mnem-list] BEGIN
code region r that includes all regions in R

!SIS$ END CR

The code region r defines the scope of the directive. Note that every (code)
region in R is a sub-region of r but r may contain sub-regions that are not in R.
The code region (cr mnem-list) and performance metric (perf mnem-list)

mnemonics are indicated as a list of mnemonics separated by commas. One of
the code region mnemonics (CR A) refers to arbitrary code regions. Note that
the above specified directive allows to indicate either only code region mnemon-
ics or performance metric mnemonics, or a combination of both. If in a SIS
directive d only code region mnemonics are indicated, then SIS is instrumenting
all code regions that correspond to these mnemonics inside of the scope of d.
The instrumentation is done for a set of default performance metrics which can
be overwritten by command-line options.
If only performance metric mnemonics are indicated in a directive d then SIS

is instrumenting those code regions that have an impact on the specified metrics.
This option is useful if a user is interested in specific performance metrics but
doesn’t know which code regions may cause these overheads. If both code region
and performance metrics are defined in a directive d, then SIS is instrument-
ing these code regions for the indicated performance metrics in the scope of d.
Feasibility checks are conducted by SIS, for instance, to determine whether the
programmer is asking for OpenMP overheads in HPF code regions. For these
cases, SIS outputs appropriate warnings.
All previous directives are called local directives as the scope of these di-

rectives is restricted to part of a program unit (main program, subroutines or
functions). The scope of a directive can be extended a full program unit by using
the following syntax:

!SIS$ CR [cr mnem-list] [PMETRIC perf mnem-list]

A global directive d collects performance metrics – indicated in the PMETRIC
part of d – for all code regions – specified in the CR part of d – in the program
unit which contains d. A local directive implies the request for performance
information restricted to the scope of d. There can be nested directives with
arbitrary combinations of global and local directives. If different performance
metrics are requested for a specific code region by several nested directives, then
the union of these metrics is determined. SIS supports command-line options
to instrument specific code regions for well-defined performance metrics in an
entire application (across all program units).
Moreover, SIS provides specific directives in order to control tracing/profiling.

The directives MEASURE ENABLE and MEASURE DISABLE allow the pro-
grammer to turn on and off tracing/profiling of a specific code region.

!SIS$ MEASURE DISABLE
code region

!SIS$ MEASURE ENABLE
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SCALEA also provides an interface that can be used by other tools to ex-
ploit SCALEA’s instrumentation, analysis and visualization features. We have
developed a C-library to traverse the AST and to mark arbitrary code regions
for instrumentation. For each code region, the user can specify the performance
metrics of interest. Based on the annotated AST, SIS automatically generates
an instrumented source code.
In the following example we demonstrate some of the directives as mentioned

above by showing a fraction of the application code of Section 6.

d1: !SIS$ CR PMETRIC ODATA SEND, ODATA RECV, ODATA COL
call MPI BCAST(nx, 1,MPI INTEGER, mpi master,MPI COMM WORLD,mpi err)
...

d2: !SIS$ CR comp main, CR A, CR S PMETRIC WTIME, L2 TCM BEGIN
...

d3: !SIS$ CR init comp BEGIN
dj=real(nx,b8)/real(nodes row,b8)
...

d4: !SIS$ END CR
...

d5: !SIS$ MEASURE DISABLE
call bc(psi,i1,i2,j1,j2)

d6: !SIS$ MEASURE ENABLE
...
call do force(i1,i2,j1,j2)
...

d7: !SIS$ END CR

Directive d1 is a global directive which instructs SIS to instrument all send,
receive and collective communication statements in this program unit. Directives
d2 (begin) and d7 (end) define a specific code region with the name comp main.
Within this code region comp main, SCALEA will determine wall clock times
(WTIME ) and the total number of L2 cache misses (L2 TCM ) for all arbitrary
code regions (based on mnemonic CR A) and subroutine calls (mnemonic CR S )
as specified in d2. Directives d3 and d4 specify an arbitrary code region with the
name init comp. No instrumentation as well as measurement is done for the code
region between directives d5 and d6.

5 Performance Data Repository

A key concept of SCALEA is to store the most important information about
performance experiments including application, source code, machine informa-
tion, and performance results in a data repository. Figure 3 shows the structure
of the data stored in SCALEA’s performance data repository. An experiment
refers to a sequential or parallel execution of a program on a given target ar-
chitecture. Every experiment is described by experiment-related data, which in-
cludes information about the application code, the part of a machine on which
the code has been executed, and performance information. An application (pro-
gram) may have a number of implementations (code versions), each of them
consists of a set of source files and is associated with one or several experiments.
Every source file has one or several static code regions (ranging from the entire
program unit to single statement), uniquely specified by startPos and endPos
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(position – start/end line and column – where the region begins and ends in
the source file). Experiments are associated with the virtual machines on which
they have been taken. The virtual machine is part of a physical machine available
to the experiment; it is described as a set of computational nodes (e.g. single-
processor systems, Symetric Multiple Processor (SMP) nodes sharing a common
memory, etc.) connected by a specific network. A region summary refers to the
performance information collected for a given code region and processing unit
(process or thread) on a specific virtual node used by the experiment. The region
summaries are associated with performance metrics that comprise performance
overheads, timing information, and hardware parameters. Moreover, most data
can be exported into XML format which further facilitates accessing performance
information by other tools (e.g. compilers or runtime systems) and applications.

6 Experiments

SCALEA as shown in Fig. 1 has been fully implemented. Our analysis and visual-
ization system is implemented in Java which greatly improves their portability.
The performance data repository uses PostgreSQL and the interface between
SCALEA and the data repository is realized by Java and JDBC. Due to space
limits we restrict the experiments shown in this section to a few selected fea-
tures for post-mortem performance analysis.Our experimental code is a mixed
OpenMP/MPI Fortran program that is used for ocean simulation. The experi-
ments have been conducted on an SMP cluster with 16 SMP nodes (connected
by Myrinet) each of which comprises 4 Intel Pentium III 700 MHz CPUs.

6.1 Overhead Analysis for a Single Experiment

SCALEA supports the user in the effort to examine the performance overheads
for a single experiment of a given program. Two modes are provided for this
analysis. Firstly, the Region-to-Overhead mode (see the “Region-to-Overhead”
window in Fig. 4) allows the programmer to select any code region instance in
the DRG for which all detected performance overheads are displayed. Secondly,
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Fig. 4. Region-To-Overhead and Overhead-To-Region DRG View

the Overhead-to-Region mode (see the “Overhead-to-Region” window in Fig. 4)
enables the programmer to select the performance overhead of interest, based on
which SCALEA displays the corresponding code region(s) in which this overhead
occurs. This selection can be limited to a specific code region instance, thread
or process. For both modi the source code of a region is shown if the code region
instance is selected in the DRG by a mouse click.

6.2 Multiple Experiments Analysis

Most performance tools investigate the performance for individual experiments
one at a time. SCALEA goes beyond this limitation by supporting also perfor-
mance analysis for multiple experiments. The user can select several experiments
and performance metrics of interest whose associated data are stored in the data
repository. The outcome of every selected metric is then analyzed and visualized
for all experiments. For instance, in Fig. 5 we have selected 6 experiments (see
x-axis in the left-most window) and examine the wall clock, user, and system
times for each of them. We believe that this feature is very useful for scalability
analysis of individual metrics for changing problem and machine sizes.

7 Related Work

Significant work has been done by Paradyn [6], TAU [5], VAMPIR [7], Pablo
toolkit [8], and EXPERT [10]. SCALEA differs from these approaches by pro-
viding a more flexible mechanism to control instrumentation for code regions and
performance metrics of interest. Although Paradyn enables dynamic insertion of
probes into a running code, Paradyn is currently limited to instrumentation of
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Fig. 5. Multiple Experiment Analysis

subroutines and functions, whereas SCALEA can instrument - at compile-time
only - arbitrary code regions including single statements. Moreover, SCALEA
differs by storing experiment-related data to a data repository, by providing mul-
tiple instrumentation options (directives, command-line options, and high-level
AST instrumentation), and by supporting also multi-experiment performance
analysis.

8 Conclusions and Future Work

In this paper, we described SCALEA, which is a performance analysis tool for
OpenMP/MPI/HPF and mixed parallel programs. The main contributions of
this paper are centered around a novel design of the SCALEA architecture, new
instrumentation directives, a substantially improved overhead classification, a
performance data repository, a visualization engine, and the capability to sup-
port both single- and multi-experiment performance analysis.
Currently, SCALEA is extended for online monitoring for Grid applications

and infrastructures. SCALEA is part of the ASKALON programming environ-
ment and tool set for cluster and Grid architectures [4]. SCALEA is used by
various other tools in ASKALON to support automatic bottleneck analysis, per-
formance experiment and parameter studies, and performance prediction.
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